JPH0322585B2 - - Google Patents

Info

Publication number
JPH0322585B2
JPH0322585B2 JP55034636A JP3463680A JPH0322585B2 JP H0322585 B2 JPH0322585 B2 JP H0322585B2 JP 55034636 A JP55034636 A JP 55034636A JP 3463680 A JP3463680 A JP 3463680A JP H0322585 B2 JPH0322585 B2 JP H0322585B2
Authority
JP
Japan
Prior art keywords
metal
signal
excitation
phase
level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP55034636A
Other languages
Japanese (ja)
Other versions
JPS56130652A (en
Inventor
Kenji Iwanaga
Hideo Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP3463680A priority Critical patent/JPS56130652A/en
Publication of JPS56130652A publication Critical patent/JPS56130652A/en
Publication of JPH0322585B2 publication Critical patent/JPH0322585B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Testing Of Coins (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Description

【発明の詳細な説明】 本発明は金属の存在や金属の種別を識別するた
めの金属識別装置に関し、特に励磁コイルにより
発生する交番磁界中に金属を置き、この金属によ
る磁界の変化を検出コイルで検出することにより
金属の種類を識別する金属識別装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a metal identification device for identifying the presence of metal and the type of metal, and in particular to a metal identification device that places a metal in an alternating magnetic field generated by an excitation coil and detects changes in the magnetic field due to the metal. The present invention relates to a metal identification device that identifies the type of metal by detecting it.

従来より被識別金属(例えば硬貨)を狭んで励
磁コイル及び検出コイルを設け、励磁コイルによ
り発生する交番磁界が挿入された金属に生ずる渦
電流損などによつて影響を受け、その結果として
検出コイルに流れる検出信号が金属の種類によつ
て変化することを利用して金属の種別を識別する
方法が用いられている。
Conventionally, an excitation coil and a detection coil are provided by narrowing the metal to be identified (for example, a coin), and the alternating magnetic field generated by the excitation coil is affected by eddy current loss generated in the inserted metal, and as a result, the detection coil A method is used to identify the type of metal by utilizing the fact that the detection signal flowing through the metal changes depending on the type of metal.

例えば100円硬貨つまり白銅を交番磁界に置い
たとき検出コイルに発生する検出信号波形は第1
図aのイの如き波形となるが、異種の金属、例え
ば鉛を交番磁界に置いたときの検出信号波形はロ
の如くイの波形より振幅レベルが小で位相が若干
進んだ信号波形となり、ステンレスの場合はハの
如く振幅レベルがイの波形より大で位相が若干遅
れた信号波形となる。
For example, when a 100 yen coin, or cupronickel, is placed in an alternating magnetic field, the detection signal waveform generated in the detection coil is the first one.
The waveform will be as shown in A in Figure A, but when a different type of metal, such as lead, is placed in an alternating magnetic field, the detected signal waveform will be a signal waveform that has a smaller amplitude level and a slightly more advanced phase than the waveform in A, as shown in B. In the case of stainless steel, the signal waveform shown in C has a higher amplitude level than the waveform A and has a slightly delayed phase.

従来の金属識別装置はこのように金属の種類に
よつて検出コイル3に発生する検出信号の振幅レ
ベルが異なる点を利用するものであつて、第2図
に示すように、励磁コイル2と検出コイル3の間
に被識別金属Xを置き、発振器1の交流出力信号
を励磁コイル2に印加し、検出コイル3の検出信
号をそのまま増幅回路4で増幅し、これを整流回
路5で整流して直流信号に換え、この直流信号が
上限コンパレータ6で予め設定された上限の信号
レベル以下であり、且つ下限コンパレータ7で予
め設定された下限の信号レベル以上であることを
論理回路8によつて判定し、この条件に合致すれ
ば被識別金属xが所定の金属であり、そうでない
場合は異種の金属であると識別するように構成さ
れている。即ち、上限コンパレータ6の判定レベ
ルは第1図bに示すようにステンレスの場合の検
出信号の振幅レベルハ′よりやや下側で白銅の場
合の検出信号の振幅レベルのバラツキ範囲の上限
値(m1)に設定し、下限コンパレータ7の判定
レベルは鉛の場合の検出信号の振幅レベルロ′よ
りやや上側で白銅のバラツキ範囲の下限値(m2)
に設定しており、検出した交流信号を直流に整流
した直流信号の振幅レベルが2つの判定レベルに
よつてどの領域に相当するかを調べて識別してい
る。
The conventional metal identification device utilizes the fact that the amplitude level of the detection signal generated in the detection coil 3 differs depending on the type of metal.As shown in FIG. A metal to be identified In place of the DC signal, the logic circuit 8 determines that this DC signal is below the upper limit signal level preset by the upper limit comparator 6 and above the lower limit signal level preset by the lower limit comparator 7. However, if this condition is met, the metal to be identified x is determined to be a predetermined metal, and if not, it is determined to be a different type of metal. That is, as shown in FIG. 1b, the judgment level of the upper limit comparator 6 is slightly lower than the amplitude level H' of the detection signal in the case of stainless steel, and the upper limit value (m1) of the variation range of the amplitude level of the detection signal in the case of cupronickel. The judgment level of the lower limit comparator 7 is slightly above the amplitude level LO' of the detection signal in the case of lead, which is the lower limit value (m2) of the variation range for cupronickel.
The amplitude level of a DC signal obtained by rectifying a detected AC signal into a DC signal corresponds to which region it corresponds to is checked and identified using two determination levels.

しかしながら、このような従来装置では温度の
変化、電源電圧変動、発振器の出力信号のレベル
変動、増幅回路の増幅度の変動、整流回路の整流
特性、上限、下限コンパレータのしきい値の変動
などが振幅レベルの判定に関与するものとして累
積されるため、第1図bに示すように所定の金属
の上限下限の領域内に異種の金属の下限値あるい
は上限値が入り込む場合が上して誤判定を生じや
すく、識別の精度が高くないという欠点があつ
た。このことは金属の特性が類似して振幅レベル
の差がそれほど大でないものを識別する場合には
特に問題であり、識別精度を高くするには、それ
ぞれの回路を極めて高安定な回路に構成しなけれ
ばならないので回路が複雑化し、また識別範囲設
定の場合の調整も上限値、下限値を共に変動幅を
考慮した上で決定しなければならないので極めて
面倒であるという欠点があつた。具体的に言え
ば、上述の3種の金属を識別する場合には各金属
のバラツキを考慮するとその差異は僅か数パーセ
ントであるので各コンパレータの判定レベルの変
動が数パーセント以下でないと精度良く識別でき
ず実用的に不向きであつた。
However, such conventional devices are susceptible to changes in temperature, power supply voltage fluctuations, level fluctuations in the oscillator output signal, fluctuations in the amplification degree of the amplifier circuit, rectification characteristics of the rectifier circuit, fluctuations in the thresholds of the upper and lower limit comparators, etc. Since it is accumulated as something involved in determining the amplitude level, as shown in Figure 1b, if the lower limit or upper limit of a different metal falls within the upper and lower limits of a given metal, this may lead to an incorrect determination. This method has disadvantages in that it tends to cause errors and the accuracy of identification is not high. This is a particular problem when identifying metals with similar characteristics and small differences in amplitude levels.In order to increase identification accuracy, each circuit must be configured as an extremely stable circuit. This has the disadvantage that the circuit becomes complicated, and the adjustment for setting the identification range is extremely troublesome because both the upper and lower limits must be determined by taking into account the range of variation. Specifically, when identifying the three types of metals mentioned above, the difference is only a few percent when considering the dispersion of each metal, so accurate identification is possible unless the variation in the judgment level of each comparator is less than a few percent. It was impossible and unsuitable for practical use.

本発明は上記の従来の装置の欠点を除去するた
めになされたものである。本発明は、第1図aに
示したように検出コイルに発生する検出信号が金
属の種類によつて振幅レベルだけでなく位相も変
化することに着目し、振幅差と位相差とを合成す
ることによつて感度を向上させると共に、所定の
金属の場合に出力信号レベルが最も小さくなるよ
うに予め設定しておき、一定レベル以上の出力信
号があるか否かによつて被識別金属が所定の金属
であるか否かを識別するようにしたことを特徴と
している。
The present invention has been made to eliminate the drawbacks of the above-mentioned conventional devices. The present invention focuses on the fact that the detection signal generated in the detection coil changes not only the amplitude level but also the phase depending on the type of metal, as shown in Fig. 1a, and synthesizes the amplitude difference and the phase difference. In addition to improving sensitivity, the output signal level is set in advance to be the lowest for a given metal, and the metal to be identified is determined by whether or not there is an output signal above a certain level. It is characterized by being able to identify whether it is a metal or not.

以下、図面によつて本発明の実施例について説
明する。
Embodiments of the present invention will be described below with reference to the drawings.

第3図は本発明の原理図を示すブロツク図であ
り、第4図は第3図の各点における出力波形を示
す図である。
FIG. 3 is a block diagram showing the principle of the present invention, and FIG. 4 is a diagram showing output waveforms at each point in FIG.

発振器9の交流出力信号(励磁信号)は励磁コ
イル10に印加され、この励磁コイル10から交
番磁界が発生し、被識別金属xに作用する。被識
別金属Xを介して対向あるいは併設して配置され
た検出コイル11には、被識別金属Xの影響を受
けた交番磁界によつて検出信号が流れ、この検出
信号は補正回路12に発振器9の励磁信号を分岐
した分岐励磁信号と共に入力される。補正回路1
2は、被識別金属Xとして所定の金属が両コイル
間に挿入されたときに検出コイル11に流れる検
出信号Aの振幅レベルと分岐励磁信号Bとを同一
振幅レベルとなるように設定するためのレベル設
定器を有すると共に、該検出信号Aと分岐励磁信
号Bとの位相を同一位相または逆位相にするため
に挿入された移相器を有している。そして、所定
の金属の場合の検出信号Aが第4図aの実線の如
き波形で、発振器9の出力信号Bが第4図bの実
線の如き波形であるとすると、補正回路12のレ
ベル設定器で出力信号Bの振幅レベルを検出信号
Aに一致させるとともに、移相器で出力信号Bの
位相を遅らせて検出信号Aと逆位相にして第4図
bの点線で示す如き波形の信号Cにする。
The alternating current output signal (excitation signal) of the oscillator 9 is applied to the excitation coil 10, and an alternating magnetic field is generated from the excitation coil 10 and acts on the metal to be identified x. A detection signal flows through the detection coil 11 disposed opposite or in parallel to the metal to be identified by an alternating magnetic field influenced by the metal to be identified, and this detection signal is sent to the correction circuit 12 by an oscillator 9 It is input together with a branched excitation signal obtained by branching the excitation signal. Correction circuit 1
2 is for setting the amplitude level of the detection signal A flowing to the detection coil 11 and the branch excitation signal B to be the same amplitude level when a predetermined metal as the metal to be identified X is inserted between both coils. It has a level setter and a phase shifter inserted to make the detection signal A and the branch excitation signal B have the same phase or opposite phases. If the detection signal A for a given metal has a waveform as shown by the solid line in FIG. 4a, and the output signal B of the oscillator 9 has a waveform as shown by the solid line in FIG. The amplitude level of output signal B is made to match that of detection signal A by a phase shifter, and the phase of output signal B is delayed by a phase shifter so that the phase is opposite to that of detection signal A, and a signal C having a waveform as shown by the dotted line in FIG. 4b is obtained. Make it.

補正回路12は検出信号Aそのままの出力信号
Dと、前述の如く分岐励磁信号Bを移相し且つレ
ベル設定した信号Cとを演算増幅回路13に入力
する。この演算増幅回路13は加算器または減算
器を有し、加算器は所定の金属が励磁コイル10
と検出コイル11との間に挿入されたときに、補
正回路12から互いに逆位相の2つの信号が出力
される場合に用いられ、減算器は補正回路12か
ら同一位相の2信号が出力される場合に用いられ
る。従つて信号C、Dが第4図a,bに示すよう
な逆位相の場合は加算器を用いる。
The correction circuit 12 inputs the output signal D, which is the detection signal A as it is, and the signal C, which is obtained by shifting the phase of the branch excitation signal B and setting the level as described above, to the operational amplifier circuit 13. This operational amplifier circuit 13 has an adder or a subtracter, and the adder has a predetermined metal that is connected to the exciting coil 10.
When inserted between the subtracter and the detection coil 11, the subtracter is used when the correction circuit 12 outputs two signals with opposite phases to each other, and the subtracter outputs two signals with the same phase from the correction circuit 12. Used in cases. Therefore, when the signals C and D have opposite phases as shown in FIG. 4a and b, an adder is used.

従つて所定の金属の場合はこれらの2つの信号
C、Dが演算増幅回路13(加算器)に入力され
るとその出力は2つの信号が振幅レベルがほぼ同
一で位ほぼ逆位相であるため、打ち消された形と
なつているため出力端には第4図cに示すよう
に、ほとんど零レベルの信号Eが出力されること
にる。
Therefore, in the case of a given metal, when these two signals C and D are input to the operational amplifier circuit 13 (adder), the output will be as follows, since the two signals have almost the same amplitude level and almost opposite phase. , are in a canceled form, so that a signal E of almost zero level is output at the output end, as shown in FIG. 4c.

ところが、所定の金属以外の金属が励磁コイル
10及び検出コイル11間に挿入されたときに
は、第4図aに示すように検出信号Aは前記の所
定金属の場合とは振幅も位相も異なるものとな
る。このため補正回路12の出力C、Dを加算し
た出力Eは所定の金属の場合第4図cのように零
にはならない。即ち、所定の金属以外の金属の場
合の検出信号Aが例えば第4図dの如き波形(実
線)であるとすると、補正回路12の出力C、D
を加算した信号Eは、両信号の振幅レベル差と位
相差が合成された第4図eに示す如き波形とな
る。
However, when a metal other than the predetermined metal is inserted between the excitation coil 10 and the detection coil 11, as shown in FIG. 4a, the detection signal A differs in amplitude and phase from that for the predetermined metal. Become. Therefore, the output E obtained by adding the outputs C and D of the correction circuit 12 does not become zero as shown in FIG. 4c in the case of a predetermined metal. That is, if the detection signal A for a metal other than the predetermined metal has a waveform (solid line) as shown in FIG. 4d, the outputs C and D of the correction circuit 12
The signal E resulting from the addition of the two signals has a waveform as shown in FIG. 4e, in which the amplitude level difference and phase difference of both signals are combined.

この演算増幅回路13の出力Eは判定回路14
に送られる。判定回路14は整流回路及びコンパ
レータとを有し、出力Eはこの整流回路で整流さ
れ、この整流信号Fがコンパレータに制定された
レベルLと比較される。
The output E of this operational amplifier circuit 13 is determined by the judgment circuit 14.
sent to. The determination circuit 14 includes a rectifier circuit and a comparator, the output E is rectified by the rectifier circuit, and the rectified signal F is compared with a level L established by the comparator.

しかして、検出信号Aの振幅レベル及び位相と
所定の金属の場合の振幅レベル及び位相との差が
大きいほど、演算増幅回路13の出力Eの振幅は
大となり、整流信号Fのレベルは大となる。即
ち、所定の金属の場合は第4図cに示すように振
幅が最も小さくほとんど零になるから整流信号F
のレベルもほとんど零となるが、他の金属の場合
は出力Eは振幅レベルと位相が異なり、例えば第
4図のようになるから、整流信号Fは第4図fの
ようになり、ある高さのレベルとなる。従つて、
判定回路14のコンパレータの設定レベルLを所
定値に設定して、整流信号Fのレベルが所定値以
上であれば被識別金属Xは所定金属ではないと判
定し、所定値より小であれば所定金属であると判
定する。
Therefore, the greater the difference between the amplitude level and phase of the detection signal A and the amplitude level and phase for a predetermined metal, the greater the amplitude of the output E of the operational amplifier circuit 13, and the greater the level of the rectified signal F. Become. That is, in the case of a certain metal, the amplitude is the smallest and almost zero, as shown in Figure 4c, so the rectified signal F
The level of will also be almost zero, but in the case of other metals, the output E will have a different amplitude level and phase, as shown in Figure 4, for example, so the rectified signal F will be as shown in Figure 4 f, and at a certain high level. The level of Therefore,
The set level L of the comparator of the determination circuit 14 is set to a predetermined value, and if the level of the rectified signal F is greater than or equal to the predetermined value, it is determined that the metal to be identified is not the predetermined metal, and if it is smaller than the predetermined value, the metal It is determined that it is metal.

次に補正回路12及び演算増幅回路13の具体
的な回路例を第5,6,7図によつて説明する。
Next, specific circuit examples of the correction circuit 12 and the operational amplifier circuit 13 will be explained with reference to FIGS.

第5図の実施例では、補正回路12aは交番磁
界中に所定の金属を存在させた際に検出コイル1
1に発生する検出信号レベルに発振器9から分岐
された分岐励磁信号Bの振幅レベルを合わせるた
め抵抗R1及びR2から成るレベル調整器15
と、このレベル調整器15の出力信号の位相を検
出コイル11の前記検出信号の位相と180°異なる
ようにするための抵抗R3及びコンデンサC1か
ら成る移相器16とで構成されている。この場合
検出信号Aとしては検出コイル11の巻終り側か
ら出力されるようにし、励磁コイル10に対して
逆位相になるようにしておく。一方、演算増幅回
路13aはコンデンサC2,C3、抵抗R4,R
5,R6から成る加算器17と、この加算器17
の出力信号を増幅するオペアンプQ1、抵抗R
7,R8、コンデンサC4から成る増幅器18と
で構成されている。
In the embodiment shown in FIG. 5, the correction circuit 12a detects the detection coil 1 when a predetermined metal is present in the alternating magnetic field.
In order to match the amplitude level of the branch excitation signal B branched from the oscillator 9 to the detection signal level generated at
and a phase shifter 16 consisting of a resistor R3 and a capacitor C1 for making the phase of the output signal of the level adjuster 15 different from the phase of the detection signal of the detection coil 11 by 180 degrees. In this case, the detection signal A is outputted from the winding end side of the detection coil 11, and is set to have an opposite phase to the excitation coil 10. On the other hand, the operational amplifier circuit 13a includes capacitors C2 and C3, resistors R4 and R
5, R6, and this adder 17.
Operational amplifier Q1 and resistor R that amplify the output signal of
7, R8, and an amplifier 18 consisting of a capacitor C4.

このように構成すれば、所定の金属の場合に
は、加算器17に加わる2つの信号C、Dの振幅
レベルが同一で位相が180°異なるので加算結果と
しての演算増幅回路13の出力信号Eはほとんど
零レベルの信号となり、被識別金属Xが異種の金
属の場合には、その金属の特性と所定の金属の特
性との差に対応した振幅差及び位相差が合成され
た信号が増幅されて演算増幅回路13から出力さ
れることになる。
With this configuration, in the case of a predetermined metal, the two signals C and D applied to the adder 17 have the same amplitude level and a 180° phase difference, so that the output signal E of the operational amplifier circuit 13 as the addition result becomes a signal of almost zero level, and if the metal to be identified The signal is then output from the operational amplifier circuit 13.

第6図は他の実施例を示すもので、所定の金属
の場合の検出信号Aが分岐励磁信号とほぼ同一位
相に現われるときに好適であり、演算増幅回路1
3bとしてはオペアンブQ2、抵抗R12,R1
3,R14からなる減算器を用いている。そして
検出信号Aをそのまま抵抗R13を介してオペア
ンプQ2に接続し、分岐励磁信号Bは可変抵抗器
9、コンデンサC5から成る移相器19で所定の
金属の場合の検出信号Aとの移相差が零となるよ
うに調整し、その出力信号を抵抗R10、可変抵
抗器R11から成るレベル調整器20で振幅レベ
ルを交番磁界中に所定の金属を存在させた場合の
検出信号Aのレベルに合わせて前記演算増幅回路
13bの他方の入力端に入力させて、所定の金属
の場合は演算増幅回路13bの出力がほぼ零レベ
ルとなるようにしている。従つて所定の金属以外
の場合には演算増幅回路の一方の入力信号Dが所
定の金属とは位相及び振幅レベルが異なるので、
信号Cと信号Dの差が演算増幅回路13bから出
力される。
FIG. 6 shows another embodiment, which is suitable when the detection signal A for a predetermined metal appears in almost the same phase as the branch excitation signal, and is suitable for the operational amplifier circuit 1.
3b is operational amplifier Q2, resistor R12, R1
A subtracter consisting of 3 and R14 is used. Then, the detection signal A is directly connected to the operational amplifier Q2 via the resistor R13, and the branch excitation signal B is transmitted through a phase shifter 19 consisting of a variable resistor 9 and a capacitor C5, so that the phase shift difference between the detection signal A and the detection signal A for a predetermined metal is determined. The amplitude level of the output signal is adjusted to zero using a level adjuster 20 consisting of a resistor R10 and a variable resistor R11 to match the level of the detection signal A when a predetermined metal is present in an alternating magnetic field. The signal is inputted to the other input terminal of the operational amplifier circuit 13b so that the output of the operational amplifier circuit 13b becomes approximately zero level in the case of a predetermined metal. Therefore, if the metal is other than the predetermined metal, one input signal D of the operational amplifier circuit will have a different phase and amplitude level from the predetermined metal.
The difference between the signal C and the signal D is output from the operational amplifier circuit 13b.

第5,6図の二つの実施例はいずれも分岐励磁
信号Bの振幅レベル、位相を所定の金属による検
出信号Aに合わせていたが、第7図に示す実施例
では所定金属挿入時における位相について、検出
信号の位相をさらに遅らせて分岐励磁信号Bの位
相と同一位相または180°異なる位相に設定するよ
うにしたものである。
In the two embodiments shown in FIGS. 5 and 6, the amplitude level and phase of the branch excitation signal B are matched to the detection signal A from a predetermined metal, but in the embodiment shown in FIG. , the phase of the detection signal is further delayed and set to the same phase as the phase of the branch excitation signal B or a phase different by 180°.

つまり、分岐励磁信号Bを抵抗R15、可変抵
抗器R16から成るレベル調整器21で所定レベ
ルに減衰させ、抵抗R18を介してオペアンブQ
3に入力すると共に、所定金属の場合の検出コイ
ル11の検出信号Aの位相を可変抵抗器R17、
コンデンサC6から成る移相器22でレベル調整
器21の出力信号と同一位相となるようにして抵
抗R19を介してオペアンブQ3の一方の入力端
に入力している。抵抗R20はオペアンブQ3の
帰還抵抗の役割を担つている。
That is, the branch excitation signal B is attenuated to a predetermined level by a level adjuster 21 consisting of a resistor R15 and a variable resistor R16, and an operational amplifier Q is attenuated via a resistor R18.
At the same time, the phase of the detection signal A of the detection coil 11 in the case of a predetermined metal is input to the variable resistor R17,
The signal is input into one input terminal of the operational amplifier Q3 via a resistor R19 so as to be in the same phase as the output signal of the level adjuster 21 by a phase shifter 22 consisting of a capacitor C6. Resistor R20 serves as a feedback resistor for operational amplifier Q3.

以上説明したように、本発明による金属識別装
置は、励磁コイル10に印加する交流信号から分
岐した分岐励磁信号と検出コイル11に発生する
検出信号とを補正回路12に入力させ、励磁コイ
ル10が発生する交番磁界中に識別しようとする
所定の金属が存在する場合には、それぞれの信号
またはいずれか一方の信号の振幅レベルがほぼ同
一で位相が同相または逆相になるように予め補正
して、演算増幅回路13の出力信号が実質的にほ
ぼ零となるように設定して判定の基準としてお
き、未知の被識別金属Xを交番磁界中に存在させ
た場合に、予め設定した所定の金属の特性との差
異を振幅レベル差、位相差が合成された形で演算
増幅回路13の出力信号として現われるようにし
て、この出力信号のレベルが一定レベル以上であ
るか否かによつて未知の被識別金属Xが所定の金
属と異なる金属であるか否かを識別するようにし
ている。従つて、従来の装置が被識別金属Xの振
幅レベルが上限、下限の二つのレベル内の領域内
であるか否かを判定したのに比し、本発明は一つ
のレベルのみで判定できるので識別お精度は飛躍
的に向上する。しかも判定の基準を前述したよう
にほぼ零にすることができるから識別精度は一層
向上し、識別が容易になる。また従来の装置が振
幅レベル差のみで判定しているのに比し、本発明
は振幅レベル差のみをレベル信号とするだけでな
く、位相差をもレベル信号として取り出して合成
したレベル信号によつて判定しているので一層、
識別の精度が向上する。従つて、従来の装置では
振幅レベル差のみで判定していたため、所定金属
の場合と位相が異なつていても振幅に大きな差が
ない場合には、異なる金属を誤つて所定金属と誤
判定するのを防ぐのは困難であつたが、本発明の
装置では、位相差をレベル信号に変換して合成す
るから、振幅差が大きくない金属でも高精度に識
別できるようになる。また発振器9の出力変動は
演算増幅回路13によつて打ち消された形となり
判定の基準となる補正回路12は受動素子から成
るので回路構成が単純で温度変化などによる影響
を受けにくい。また演算増幅回路13の出力信号
は、識別すべき所定の金属の特性を基準とした偏
差値を拡大した状態として出力されるので、補正
回路12によつて所定の金属の場合の演算増幅回
路13の出力ができるだけ小さくなるように設定
しておくだけで済み調整が容易になる。さらに従
来装置のように2個のコンパレータと論理回路を
必要とせず演算増幅回路13や判定回路14はご
く一般的な簡単な回路でよいので温度変動や電源
電圧変動の影響を受けにくい高精度高安定な金属
識別ができる。
As explained above, the metal identification device according to the present invention inputs the branch excitation signal branched from the AC signal applied to the excitation coil 10 and the detection signal generated in the detection coil 11 to the correction circuit 12, so that the excitation coil 10 If there is a certain metal to be identified in the generated alternating magnetic field, correct it in advance so that the amplitude levels of each signal or one of the signals are approximately the same and the phases are in-phase or out-of-phase. , the output signal of the operational amplifier circuit 13 is set to be substantially zero as a criterion for determination, and when an unknown metal to be identified X is present in an alternating magnetic field, a predetermined metal The difference between the characteristics of It is determined whether the metal X to be identified is a metal different from a predetermined metal. Therefore, while the conventional device determines whether the amplitude level of the metal to be identified Identification accuracy improves dramatically. Furthermore, since the criterion for determination can be set to almost zero as described above, the identification accuracy is further improved and identification becomes easier. Furthermore, while conventional devices make judgments based only on amplitude level differences, the present invention uses not only amplitude level differences as level signals, but also phase differences as level signals and synthesized level signals. Even more so, since we are making judgments based on
Identification accuracy is improved. Therefore, since conventional devices only make judgments based on amplitude level differences, if there is no large difference in amplitude even if the phase is different from that of a given metal, a different metal may be mistakenly judged as the given metal. However, since the device of the present invention converts the phase difference into a level signal and synthesizes it, even metals with small amplitude differences can be identified with high precision. Further, the output fluctuation of the oscillator 9 is canceled out by the operational amplifier circuit 13, and since the correction circuit 12, which serves as a reference for determination, is composed of passive elements, the circuit configuration is simple and is not easily affected by temperature changes. Further, since the output signal of the operational amplifier circuit 13 is outputted as an expanded deviation value based on the characteristics of the predetermined metal to be identified, the correction circuit 12 adjusts the output signal of the operational amplifier circuit 13 for the predetermined metal. Adjustment is easy because all you have to do is set the output so that it is as small as possible. Furthermore, unlike conventional devices, two comparators and a logic circuit are not required, and the operational amplifier circuit 13 and judgment circuit 14 can be simple, common circuits, resulting in high precision and high accuracy that is less susceptible to temperature fluctuations and power supply voltage fluctuations. Stable metal identification is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図aは検出信号Aの波形の三つの例を示す
図、第1図bは従来金属識別装置の原理を脱明す
るための図、第2図は従来の金属識別装置を示す
ブロツク図、第3図は本発明による装置の原理を
示すブロツク図、第4図は第3図の各ブロツクの
出力信号波形を示す図、第5,6,7図はそれぞ
れ本発明の実施例を示す回路図である。 1……発振器、2……励磁コイル、3……検出
コイル、5……整流回路、6……上限コンパレー
タ、7……下限コンパレータ、8……論理回路、
9……発振器、10……励磁コイル、11……検
出コイル、12,12a,12b,12c……補正
回路、13,13a,13b,13c……演算増
幅回路、14……判定回路。
Fig. 1a is a diagram showing three examples of the waveform of the detection signal A, Fig. 1b is a diagram for clarifying the principle of a conventional metal identification device, and Fig. 2 is a block diagram showing a conventional metal identification device. , FIG. 3 is a block diagram showing the principle of the device according to the invention, FIG. 4 is a diagram showing the output signal waveform of each block in FIG. 3, and FIGS. 5, 6, and 7 each show an embodiment of the invention. It is a circuit diagram. DESCRIPTION OF SYMBOLS 1... Oscillator, 2... Excitation coil, 3... Detection coil, 5... Rectifier circuit, 6... Upper limit comparator, 7... Lower limit comparator, 8... Logic circuit,
9... Oscillator, 10... Excitation coil, 11... Detection coil, 12, 12a, 12b, 12c... Correction circuit, 13, 13a, 13b, 13c... Operational amplifier circuit, 14... Judgment circuit.

Claims (1)

【特許請求の範囲】 1 励磁信号を発生する発振器と、 前記励磁信号を受けて、励磁磁界を発生する励
磁コイルと、 前記励磁磁界中に被識別金属が存在するときの
磁界の変化を検出するための検出信号を出力する
検出コイルと、 被識別金属が所定金属であるときの前記検出コ
イルからの検出信号と、前記励磁コイルに印加さ
れる励磁信号を分岐した分岐励磁信号との振幅差
をほぼ零とする振幅補正量が予め設定されたレベ
ル調整器、及び、位相差をほぼ0°又は180°とする
位相補正量が予め設定された移相器を有し、前記
検出信号及び前記分岐励磁信号のいずれか一方又
は双方を該振幅補正量及び位相補正量だけ補正す
る補正回路と、 前記補正回路を介した前記分岐励磁信号と前記
検出コイルからの検出信号とを受領し、両者を減
算又は加算する演算回路と、 前記演算回路の出力信号が所定レベル以下であ
ると、被識別金属が所定金属である旨の判定信号
を出力する判定回路とを備えた金属識別装置。
[Claims] 1. An oscillator that generates an excitation signal; An excitation coil that generates an excitation magnetic field in response to the excitation signal; A change in the magnetic field when a metal to be identified is present in the excitation magnetic field; a detection coil that outputs a detection signal for the purpose of the detection; and an amplitude difference between the detection signal from the detection coil when the metal to be identified is a predetermined metal, and a branch excitation signal obtained by branching the excitation signal applied to the excitation coil. a level adjuster in which an amplitude correction amount is preset to make the phase difference approximately zero; and a phase shifter in which a phase correction amount is preset to make the phase difference approximately 0° or 180°; a correction circuit that corrects one or both of the excitation signals by the amplitude correction amount and the phase correction amount; and a correction circuit that receives the branch excitation signal via the correction circuit and the detection signal from the detection coil, and subtracts both. Alternatively, a metal identification device comprising: an arithmetic circuit that performs addition; and a determination circuit that outputs a determination signal indicating that the metal to be identified is a predetermined metal when the output signal of the arithmetic circuit is below a predetermined level.
JP3463680A 1980-03-18 1980-03-18 Metal discriminating device Granted JPS56130652A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3463680A JPS56130652A (en) 1980-03-18 1980-03-18 Metal discriminating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3463680A JPS56130652A (en) 1980-03-18 1980-03-18 Metal discriminating device

Publications (2)

Publication Number Publication Date
JPS56130652A JPS56130652A (en) 1981-10-13
JPH0322585B2 true JPH0322585B2 (en) 1991-03-27

Family

ID=12419887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3463680A Granted JPS56130652A (en) 1980-03-18 1980-03-18 Metal discriminating device

Country Status (1)

Country Link
JP (1) JPS56130652A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11118765A (en) * 1997-10-09 1999-04-30 Ishida Co Ltd Metal detection machine and metal detection system
WO2008032834A1 (en) * 2006-09-14 2008-03-20 Panasonic Corporation Metal identifying device and metal identifying method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61201176U (en) * 1985-05-31 1986-12-17
US6958603B2 (en) 2001-09-21 2005-10-25 Tok Engineering Co., Ltd. Method for detecting metallic foreign matter and system for detecting metallic foreign matter
JP4756409B1 (en) * 2011-02-18 2011-08-24 大日機械工業株式会社 Nondestructive inspection apparatus and nondestructive inspection method using alternating magnetic field

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5543420A (en) * 1978-09-25 1980-03-27 Saginomiya Seisakusho Inc Metallic material examination device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5543420A (en) * 1978-09-25 1980-03-27 Saginomiya Seisakusho Inc Metallic material examination device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11118765A (en) * 1997-10-09 1999-04-30 Ishida Co Ltd Metal detection machine and metal detection system
WO2008032834A1 (en) * 2006-09-14 2008-03-20 Panasonic Corporation Metal identifying device and metal identifying method

Also Published As

Publication number Publication date
JPS56130652A (en) 1981-10-13

Similar Documents

Publication Publication Date Title
US6984979B1 (en) Measurement and control of magnetomotive force in current transformers and other magnetic bodies
EP0284472A1 (en) Current measuring and magnetic core compensating apparatus and method
EP0168696A1 (en) Eddy current distance signal formation apparatus
WO2008104919A1 (en) Load current detection in electrical power converters
US5522269A (en) Apparatus and method for transducing torque applied to a magnetostrictive shaft while minimizing temperature induced variations
JPH0322585B2 (en)
US20130249539A1 (en) Detection of a Metal or Magnetic Object
GB2025630A (en) Electrical bridge circuit with compensation for long-term drift
JP2002022528A (en) Electronic measuring instrument
US5048662A (en) Coin discriminator
GB2216699A (en) Coin discriminator
US5461306A (en) DC current detection system for a current transformer
JPH11230702A (en) Sense signal output circuit
US4449093A (en) Circuit for measuring electrical properties
JPS62240817A (en) Electromagnetic flowmeter
JP3324840B2 (en) Metal detector
JP2006112833A (en) Inductance measuring instrument
US7235985B2 (en) Method and device for signal amplitude detection
JPS5923054B2 (en) proximity switch
JPH0545537U (en) Magnetostrictive torque sensor
JP3096788B2 (en) Metal detector
JP3048327B2 (en) Load discriminator in high frequency transmission lines
JPS6132353Y2 (en)
JPH0645201Y2 (en) Dimension measuring device
JPS62298757A (en) Method and apparatus for discriminating steel plate