JPH03225240A - Pressure detecting device - Google Patents

Pressure detecting device

Info

Publication number
JPH03225240A
JPH03225240A JP2172090A JP2172090A JPH03225240A JP H03225240 A JPH03225240 A JP H03225240A JP 2172090 A JP2172090 A JP 2172090A JP 2172090 A JP2172090 A JP 2172090A JP H03225240 A JPH03225240 A JP H03225240A
Authority
JP
Japan
Prior art keywords
ripple
diaphragm
spiral
pressure
pressure detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2172090A
Other languages
Japanese (ja)
Other versions
JP2524235B2 (en
Inventor
Toshinori Shimada
敏則 島田
Shinichi Ookashi
大樫 真一
Shigeaki Motokawa
本川 恵昭
Teruo Watanabe
照夫 渡辺
Kihachi Onishi
喜八 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tatsuta Electric Wire and Cable Co Ltd
Original Assignee
Tatsuta Electric Wire and Cable Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tatsuta Electric Wire and Cable Co Ltd filed Critical Tatsuta Electric Wire and Cable Co Ltd
Priority to JP2021720A priority Critical patent/JP2524235B2/en
Publication of JPH03225240A publication Critical patent/JPH03225240A/en
Application granted granted Critical
Publication of JP2524235B2 publication Critical patent/JP2524235B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain large deflection with fine pressure and to make a pressure- displacement curve at the time of starting pressurization linear by forming the swirly wave pattern of a diaphragm by swirling about three or more times and making the tilt of the wave pattern in a radial direction recessed on the outside. CONSTITUTION:A pressure detecting chamber 3 sectioned by the diaphragm D is formed in a casing 1. Fluid (a) whose pressure should be detected is introduced in one sectioned chamber 3a and a sensor 4 which continuously detects the deflection of the diaphragm D is provided in the other sectioned chamber 3b. Then, in the diaphragm D, the swirly wave pattern P is formed on the periphery of a central circle 10 by swirling from an optional point on the periphery. In a disk spring constituted by inclining toward the central circle 10, the wave pattern P is formed by swirling about at least three times and the tilt in the radial direction of the wave pattern P is made recessed on the outside. By applying pressing force, for example, compressed air pressure, etc., to the surface of the diaphragm D, the deflection is transmitted to all the areas through the wave pattern P. Since the entire length of the wave pattern P becomes long, rigidity is low and the degree of the deflection is high. Therefore, the inclination of the pressure-displacement curve becomes steep.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ダイヤフラムでもって被圧力検出流体の圧力
変動を連続的(アナログ的)に検出する圧力検出装置に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a pressure detection device that continuously (analog-wise) detects pressure fluctuations in a pressure-detected fluid using a diaphragm.

(従来の技術及びその課題] この種の圧力検出装置は、第1図、第2図を参照して説
明すると、ケーシング1内に、ダイヤフラムDで区画さ
れた圧力検出室3を形成し、この圧力検出室3の一方3
aに被圧力検出流体aを導入するとともに、他方3bに
前記ダイヤフラムDの撓み量を連続的に検出するセンサ
ー4を設けたものが一般的である。
(Prior art and its problems) This type of pressure detection device will be described with reference to FIGS. 1 and 2. A pressure detection chamber 3 partitioned by a diaphragm D is formed in a casing 1, One side 3 of pressure detection chamber 3
Generally, a pressure detection fluid a is introduced into the diaphragm 3b, and a sensor 4 for continuously detecting the amount of deflection of the diaphragm D is provided at the other 3b.

この圧力検出装置において、検出精度を高めるためには
、ダイヤフラムDの撓み特性が圧力変化に対して比例的
であることが重要な要素である。
In this pressure detection device, in order to improve detection accuracy, it is important that the deflection characteristics of the diaphragm D be proportional to pressure changes.

ところで、本発明者等は、実願平1−18718号、実
願平1−18719号において、第8図、第9図に示す
ように、素材板中心円形10の周りに、その周方向均等
分位の少なくとも2点からスタートした渦巻き波紋Pを
呈する波形断面のダイヤフラムDを備えた圧力検出器を
1に案した。この提案のダイヤフラムDは、波紋Pが渦
巻き状であることから、周囲の剛性が均一化され、撓※
作用時、応力の片寄りがなく周方向に均等に撓む。すな
わち、上記撓み特性においである程度満足いけるもので
あった。
By the way, in Utility Model Application No. 1-18718 and Utility Model Application No. 1-18719, the inventors of the present invention, as shown in FIG. 8 and FIG. A pressure detector is proposed in 1, which is equipped with a diaphragm D having a corrugated cross section exhibiting a spiral ripple P starting from at least two quantile points. In this proposed diaphragm D, since the ripples P have a spiral shape, the rigidity of the surrounding area is uniform, and the diaphragm D has a
When acting, there is no unevenness of stress and it deflects evenly in the circumferential direction. That is, the above-mentioned deflection characteristics were satisfactory to some extent.

しかしながら、第6図に示すように、その圧力−変位曲
線(○:加圧時、・:減圧時、比較例(破線)参照)は
、直線性に欠け、とくに加圧開始時がなめらかでない。
However, as shown in FIG. 6, the pressure-displacement curve (○: at pressurization, .: at depressurization, see comparative example (broken line)) lacks linearity, and is not smooth especially at the start of pressurization.

この種のダイヤフラムDが多く使用される圧力検出装置
においては、加圧開始時の直線性を要求されるものがあ
る。
Some pressure detection devices in which this type of diaphragm D is often used require linearity at the start of pressurization.

また、ユーザからは、もつと微圧で大きい変位を得るも
の、すなわち、圧力−変位曲線の勾配が大きいものを要
求された。
Additionally, users have requested a device that can obtain a large displacement with very low pressure, that is, a device with a large slope of the pressure-displacement curve.

この要求に応えるべく、本願発明者等は、圧力変位曲線
の勾配を大きくするには、ダイヤフラムDの全体の剛性
を低下させるごとにあると考えた。このため、まず、−
筋の渦巻き波紋Pの全長が長くなればなるほど、剛性が
低下することを知見した。
In order to meet this demand, the inventors of the present invention have considered that the slope of the pressure displacement curve can be increased by decreasing the overall rigidity of the diaphragm D. For this reason, first, −
It was found that the longer the total length of the spiral ripples P of the muscle, the lower the rigidity.

また、渦巻き波紋Pを、中心円形10の周り均等分位の
少なくとも2点からスタートさIたのは、ダイヤフラム
Dの撓み時、その中心軸が傾くのを避けるためであった
。しかし、渦巻き波紋Pが一筋でも、その周廻数が増せ
ば、中心軸の傾きが生じない(無視できる程度しか傾か
ない)ことを知見した。
Further, the reason why the spiral ripples P are started from at least two points equally spaced around the central circle 10 is to prevent the central axis from tilting when the diaphragm D is deflected. However, it has been found that even if the spiral ripple P is a single line, as the number of turns increases, the central axis does not tilt (it tilts only to a negligible extent).

本発明は、以上の点に留意し、前記渦巻き波紋のダイヤ
フラムの圧力−変位曲線の勾配を大きくすること、及び
加圧開始時の圧力−変位曲線を直線状とすることを課題
とする。
The present invention takes the above points into consideration, and aims to increase the slope of the pressure-displacement curve of the diaphragm with the spiral ripples, and to make the pressure-displacement curve at the start of pressurization linear.

r課題を解決するための手段〕 上記課題を解決するため、本発明にあっては、上記知見
に基づき、前述の圧力検出装置において、そのダイヤフ
ラムの渦巻き波紋の周廻数を3回以上とし、かつ、渦巻
き波紋の半径方向の傾きを外側凹状としたのである。
Means for Solving Problems] In order to solve the above problems, in the present invention, based on the above findings, in the pressure detection device described above, the number of revolutions of the spiral ripples of the diaphragm is set to be three or more times, In addition, the radial slope of the spiral ripples is concave to the outside.

渦巻き波紋は一条でもよく、また複数条の場合には、そ
の各起点は中心円形周り均等分位とする。
A single spiral ripple may be used, or in the case of multiple ripples, the starting points of each ripple are equally spaced around the central circle.

上記素材板中心円形の周りに隣接して同心円形波紋を形
成すると共に、この同心円形波紋と同心でかつ所定間隔
をあけて外側円形波紋を形成し、この両用形波紋間に上
記渦巻き波紋を形成したものとすることもできる。
Concentric circular ripples are formed adjacent to the center circle of the material plate, outer circular ripples are formed concentrically with the concentric circular ripples at a predetermined interval, and the spiral ripples are formed between the dual-purpose ripples. It can also be assumed that

上記渦巻き波紋の周廻数を3周以上とすると、ダイヤフ
ラムの撓み時、その中心軸の傾きがなくなり、好ましく
は5周以上とする。
If the number of turns of the spiral ripple is three or more, the inclination of the central axis will be eliminated when the diaphragm is deflected, and preferably it is five or more.

〔作用〕[Effect]

このように構成される圧力検出装置は、そのダイヤプラ
ム表面に押圧力、例えば圧縮空気圧等が加わると、その
押圧力による撓みが渦巻き波紋を介して全域に伝達され
、発生する応力に片寄りがなく、中心軸が傾くことなく
周方向に均等に撓む。
In a pressure detection device configured in this way, when a pressing force, such as compressed air pressure, is applied to the surface of the diaphragm, the deflection due to the pressing force is transmitted to the entire area via spiral ripples, and the stress generated is biased. The center axis flexes evenly in the circumferential direction without tilting.

この撓み時、渦巻き波紋の全長が長くなっているため、
従来のものに比べ、剛性も低く、すなわち、撓み度合も
大きい。よって、圧力−変位曲線の勾配は大きいものと
なるとともに、加圧開始時、直線状となる(実施例参照
)。
During this deflection, the total length of the spiral ripples becomes longer, so
Compared to conventional ones, the rigidity is lower, that is, the degree of deflection is greater. Therefore, the gradient of the pressure-displacement curve becomes large and becomes linear at the start of pressurization (see Examples).

また、同心円形波紋及び外側円形波紋を設ければ、波紋
のプレス成形時、中心部に生じる盛り上り状の歪は同心
円形波紋に吸収分散され、外周囲に生しる皺状の歪は外
側円形波紋に吸収分散される。この吸収分散は、渦巻き
波紋の始終端を両用形波紋に合流させれば、より効果が
増す。
In addition, if concentric circular ripples and outer circular ripples are provided, when the ripples are press-formed, the raised distortion that occurs in the center will be absorbed and dispersed in the concentric circular ripples, and the wrinkle-shaped distortion that occurs on the outer periphery will be absorbed and dispersed on the outer periphery. It is absorbed and dispersed into circular ripples. This absorption and dispersion becomes even more effective if the beginning and end of the spiral ripple merge into the dual-use ripple.

〔実施例〕〔Example〕

第1図、第2図に示すように、ケーシング1は、3部材
1a、1b、1cとから成り、部材1a、1b間に圧力
検出室3が形成されている。両部材1a、1b間にはダ
イヤフラムDがバッキング2を介して介設されており、
このダイヤフラムDにより圧力検出室3が2室3a、3
bに区画されている。一方の検出室3aには、圧力導入
口5がら被圧力検出流体aが導ひかれ、この圧力変化に
基づきダイヤフラムDが撓む。両部材1a、1bの接合
面全周は、シーリング6により密封化されている。
As shown in FIGS. 1 and 2, the casing 1 consists of three members 1a, 1b, and 1c, and a pressure detection chamber 3 is formed between the members 1a and 1b. A diaphragm D is interposed between both members 1a and 1b via a backing 2,
Due to this diaphragm D, the pressure detection chamber 3 is divided into two chambers 3a and 3.
It is divided into b. The pressure-detected fluid a is introduced into one of the detection chambers 3a through the pressure introduction port 5, and the diaphragm D is bent based on this pressure change. The entire circumference of the joint surfaces of both members 1a and 1b is sealed with a sealing member 6.

ケーシング1のもう1つの部材1cは、ビス7により部
材1bに固着され、この部材1c内にセンサー4が構成
されている。センサー4は、差動トランス4a、その鉄
心移動用レバー4b、作動ラム40等から成る。作動ラ
ム4cは部材1bを貫通して、その上端がダイヤフラム
Dに接離可能となっており、下端がレバー4bに当接し
ている。
Another member 1c of the casing 1 is fixed to the member 1b with screws 7, and a sensor 4 is configured within this member 1c. The sensor 4 includes a differential transformer 4a, a lever 4b for moving its core, an actuating ram 40, and the like. The actuating ram 4c passes through the member 1b so that its upper end can move toward and away from the diaphragm D, and its lower end is in contact with the lever 4b.

レバー4bは、支杆4dにより揺動自在に支持されてお
り、その下面に部材1cをねじ通した作動圧力調整子8
がばね9を介して当接している。この調整子8のねじ込
み量を調整することにより、レバー4b及び作動ラム4
cの位置が決定され、この調整によって、後述のダイヤ
フラムDの撓み時、その撓み状態が直線状となった状態
で、ダイヤフラムDが作動ラム4cを押して差動トラン
ス4aの鉄心を動かすようにする。このとき、検出値に
ばばね9の弾性力を考慮して補償する。
The lever 4b is swingably supported by a support rod 4d, and has an operating pressure regulator 8 having a member 1c screwed through the lower surface thereof.
are in contact with each other via a spring 9. By adjusting the screwing amount of this adjuster 8, the lever 4b and the actuating ram 4 can be adjusted.
The position of c is determined, and this adjustment allows the diaphragm D to push the actuating ram 4c and move the iron core of the differential transformer 4a when the diaphragm D is deflected, which will be described later, in a straight line state. . At this time, the detected value is compensated by taking into consideration the elastic force of the spring 9.

つぎに、ダイヤフラムDについて説明する。Next, the diaphragm D will be explained.

このダイヤフラムDは、渦巻き波紋Pを中心円形10の
周囲の一点から渦巻き波紋Pを12周廻余り形成したも
のであり、厚さ:  0.015mmのステンレス箔、
34wφのフープを、プレス加工して仕上がり外径で2
5.4mmであった。
This diaphragm D is formed by forming spiral ripples P around 12 times from one point around the central circle 10, and is made of stainless steel foil with a thickness of 0.015 mm.
A 34wφ hoop is pressed and the finished outer diameter is 2.
It was 5.4 mm.

このものを第3図、第4図に示し、同図において、渦巻
き波紋Pのピッチd = 0.598mm、中心円形1
0の径S=5.0mm、波紋Pの最外径−20,2n+
m、谷部及び山部の曲率r = 0.3mm、波紋Pの
高さt−0,08an、外周と中心との高低差T=1.
2nu++、波紋P部分の曲率R=lOOmm、その曲
率Rの中心を外側(波紋Pの傾きを外側凹状)とした(
なお、第3M、第4図は彼が省略しである)。
This is shown in Figures 3 and 4, in which the pitch d of the spiral ripple P is 0.598 mm, and the center circle is 1.
0 diameter S = 5.0 mm, ripple P outermost diameter -20,2n+
m, curvature of valleys and peaks r = 0.3 mm, height of ripple P t-0,08 an, height difference between outer periphery and center T = 1.
2nu++, curvature R of the ripple P portion = lOOmm, the center of the curvature R is set to the outside (the slope of the ripple P is concave to the outside) (
Note that he has omitted figures 3M and 4).

一方、比較例として、第8図、第9図に示した渦巻き波
紋Pを中心円形10の3等分位から形成し、その周例数
を1回余りとし、かつ曲率Rの中心を内側(波紋Pの傾
きを外側凸状)としたものも製作した。このとき、d、
S、r、L、T、R等は全て同しとした。
On the other hand, as a comparative example, the spiral ripples P shown in FIGS. We also manufactured one in which the slope of the ripples P was outwardly convex. At this time, d,
S, r, L, T, R, etc. were all the same.

このようにして製作した実施例および比較例のダイヤフ
ラムDを第1図及び第2図のごとくケーシング1にセッ
トし、検出室3aに被圧力検出流体aを導ひいた際の圧
力−変位結果を第5図、第6図に示す。図中、実線が実
施例、鎖線(破線)が比較例を示す。
The diaphragm D of the example and comparative example manufactured in this way was set in the casing 1 as shown in Figs. 1 and 2, and the pressure-displacement results when the pressure detection fluid a was introduced into the detection chamber 3a It is shown in FIGS. 5 and 6. In the figure, solid lines indicate examples and chain lines (dashed lines) indicate comparative examples.

この第5図の結果から、実施例のものが比較例に比べ、
その勾配が急(大)となっていることが理解できる。す
なわち、実施例は、比較例に比べ微圧で大きい変位を得
ることができる。なお、両側において、中心軸の傾きは
住しなかった。
From the results shown in FIG. 5, it can be seen that the example is more
It can be seen that the slope is steep (large). That is, the example can obtain a larger displacement with a lower pressure than the comparative example. Note that the inclination of the central axis was not the same on both sides.

また、第6図の結果から、実施例のものは、加圧開始時
(O〜700mmAg) 、はぼ直線状の圧力変位を示
すことがわかる。
Moreover, from the results shown in FIG. 6, it can be seen that the example exhibits a nearly linear pressure displacement at the start of pressurization (0 to 700 mmAg).

上記実施例において、第7図に示すようどこ、中心円形
10の周りに隣接して同心円形波紋P、を形成するとと
もに、この同心円形波紋P、と同心でかつ所定間隔をあ
けて外側円形波紋P2を形成し、両用形波紋P、 、P
、間に渦巻き波紋P、を前記実施例と同−周廻り形成し
たものを製作したところ、同様な効果を得た。このもの
の場合、内側の円形波紋P、を省略することもできる。
In the above embodiment, as shown in FIG. 7, concentric circular ripples P are formed adjacent to the center circle 10, and outer circular ripples are formed concentrically with the concentric circular ripples P and at a predetermined interval. P2 is formed, and dual-purpose ripples P, ,P
, in which spiral ripples P were formed around the same circumference as in the above embodiment, and similar effects were obtained. In this case, the inner circular ripple P can also be omitted.

また、第8図のものにおいて、各渦巻き波紋Pを3周廻
り以上させたものも同様な効果を得た。
Furthermore, in the case shown in FIG. 8, a similar effect was obtained when each spiral ripple P was made to rotate three times or more.

このものにおいて、前記外側円形波紋P2を形成し、そ
の波紋P2に各渦巻き波紋Pを合流した構成とすること
もできる。
In this structure, the outer circular ripple P2 may be formed and each spiral ripple P may be merged with the ripple P2.

なお、上記渦巻き波紋P、P2の傾斜度、すなわち、第
4図における傾斜高さhと径方向の長さ!の比(h#り
を1)5以下とするとよい。好ましくは1/6以下とす
る。]15以上となると、プレス成形の際、現在の技術
では、その成形圧が、外向きの斜面と内向きの斜面とで
大きく異なって製造が不可能となるからである。
Incidentally, the degree of inclination of the spiral ripples P and P2, that is, the inclination height h and the radial length in FIG. 4! The ratio (h# = 1) is preferably 5 or less. Preferably it is 1/6 or less. ] 15 or more, the molding pressure during press molding would be significantly different between the outward slope and the inward slope, making production impossible.

〔発明の効果〕〔Effect of the invention〕

本発明は、以上のように構成したので、従来のものに比
べ微圧で大きい変位(撓み)を得ることができるととも
に、加圧開始時における圧力−変移曲線を直線状とする
ことができる。
Since the present invention is configured as described above, it is possible to obtain a large displacement (deflection) with a small pressure compared to the conventional one, and it is also possible to make the pressure-displacement curve at the start of pressurization linear.

また、ダイヤフラムDの渦巻き波紋を一条とすれば、複
数条形成するのに比べれば、その製作も容易である。
Further, if the spiral ripples of the diaphragm D are made into one strip, it is easier to manufacture than if a plurality of strips are formed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は、本発明に係る圧力検出装置の一実施
例の切断正面図、切断側面図、第3図は第1図のダイヤ
フラムの一例の概略正面図、第4図は第3図の概略断面
図、第5図、第6回は圧力変位測定図、第7図はダイヤ
フラムDの他側の概略正面図、第8図はダイヤフラムD
の従来例の概略正面図、第9図は第8図の概略断面図で
ある。 D・・・・・・ダイヤフラム、 P1、P2、P1、P2・・・・・・波紋、R・・・・
・・ダイヤフラム曲率、 r・・・・・・谷部及び山部曲率、 1・・・・・・ケーシング、 3.3a、3b・・・・・・圧力検出室、4・・・・・
・センサー、  10・・・・・・中心円形。
1 and 2 are a cutaway front view and a cutaway side view of an embodiment of the pressure detection device according to the present invention, FIG. 3 is a schematic front view of an example of the diaphragm of FIG. 1, and FIG. Figure 3 is a schematic sectional view, Figures 5 and 6 are pressure displacement measurement diagrams, Figure 7 is a schematic front view of the other side of diaphragm D, and Figure 8 is diaphragm D.
FIG. 9 is a schematic front view of the conventional example, and FIG. 9 is a schematic sectional view of FIG. D...Diaphragm, P1, P2, P1, P2...Ripple, R...
...Diaphragm curvature, r...Trough and peak curvature, 1...Casing, 3.3a, 3b...Pressure detection chamber, 4...
・Sensor, 10...Central circle.

Claims (6)

【特許請求の範囲】[Claims] (1)ケーシング1内に、ダイヤフラムDで区画された
圧力検出室3を形成し、この圧力検出室3の一方3aに
被圧力検出流体aを導入するとともに、他方3bに前記
ダイヤフラムDの撓みを連続的に検出するセンサー4を
設けた圧力検出装置において、前記ダイヤフラムDを、
素材板中心円形10の周りに、その周り任意の点から渦
巻き波紋Pを呈する波形断面とし、その渦巻き波紋Pは
前記中心円形10に傾斜してなる皿ばねにおいて、前記
渦巻き波紋Pを少なくとも3周廻り形成し、かつ渦巻き
波紋Pの半径方向の傾きを外側凹状としたことを特徴と
する圧力検出装置。
(1) A pressure detection chamber 3 partitioned by a diaphragm D is formed in the casing 1, and the pressure-detected fluid a is introduced into one 3a of the pressure detection chamber 3, and the deflection of the diaphragm D is introduced into the other 3b. In a pressure detection device provided with a sensor 4 for continuous detection, the diaphragm D is
A corrugated cross-section exhibiting a spiral ripple P from any point around the center circle 10 of the material board, and the spiral ripple P is formed by rotating the spiral ripple P at least three times in a disc spring formed by being inclined to the center circle 10. A pressure detection device characterized in that the spiral ripples P are formed around the radial direction and have an outwardly concave inclination.
(2)上記渦巻き波紋Pを一条として成ることを特徴と
する請求項(1)記載の圧力検出装置。
(2) The pressure detection device according to claim (1), wherein the spiral ripple P is formed as a single line.
(3)上記渦巻き波紋Pを複数条とし、その各渦巻き波
紋Pの起点を上記中心円形10の周り均等分位としたこ
とを特徴とする請求項(1)記載の圧力検出装置。
(3) The pressure detection device according to claim 1, wherein the spiral ripples P are formed in a plurality of stripes, and the starting point of each spiral ripple P is equally spaced around the central circle 10.
(4)上記素材板中心円形10の周りに隣接して同心円
形波紋P_1を形成すると共に、この同心円形波紋P_
1と同心でかつ所定間隔をあけて外側円形波紋P_2を
形成し、両円形波紋P_1、P_2間に、上記渦巻き波
紋P_3を形成したことを特徴とする請求項(1)乃至
(3)のいずれか1つに記載の圧力検出装置。
(4) Concentric circular ripples P_1 are formed adjacently around the center circle 10 of the material plate, and this concentric circular ripple P_
1, and an outer circular ripple P_2 is formed concentrically with the circular ripple P_2 at a predetermined interval, and the spiral ripple P_3 is formed between both the circular ripples P_1 and P_2. The pressure detection device according to item 1.
(5)上記渦巻き波紋の始終端を、上記中心円形波紋P
_1又は外側円形波紋P_2に合流させたことを特徴と
する請求項(4)記載の圧力検出装置。
(5) The starting and ending ends of the spiral ripples are connected to the center circular ripple P
The pressure detection device according to claim (4), characterized in that the pressure detection device merges with the outer circular ripple P_1 or the outer circular ripple P_2.
(6)上記渦巻き波紋Pの傾斜高さhと径方向の長さl
の比h/lを1/5以下としたことを特徴とする請求項
(1)乃至(5)のいずれか1つに記載の圧力検出装置
(6) Incline height h and radial length l of the spiral ripple P
The pressure detection device according to any one of claims (1) to (5), characterized in that the ratio h/l is 1/5 or less.
JP2021720A 1990-01-30 1990-01-30 Pressure detector Expired - Lifetime JP2524235B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021720A JP2524235B2 (en) 1990-01-30 1990-01-30 Pressure detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021720A JP2524235B2 (en) 1990-01-30 1990-01-30 Pressure detector

Publications (2)

Publication Number Publication Date
JPH03225240A true JPH03225240A (en) 1991-10-04
JP2524235B2 JP2524235B2 (en) 1996-08-14

Family

ID=12062918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021720A Expired - Lifetime JP2524235B2 (en) 1990-01-30 1990-01-30 Pressure detector

Country Status (1)

Country Link
JP (1) JP2524235B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60227141A (en) * 1984-01-06 1985-11-12 シュランベルジュ、インダストリーズ、ソシエテ、アノニム Corrugated film for pressure sensor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60227141A (en) * 1984-01-06 1985-11-12 シュランベルジュ、インダストリーズ、ソシエテ、アノニム Corrugated film for pressure sensor

Also Published As

Publication number Publication date
JP2524235B2 (en) 1996-08-14

Similar Documents

Publication Publication Date Title
EP0149568B1 (en) Corrugated diaphragm for a pressure transducer
US4434203A (en) Diaphragm
US7490835B2 (en) At least substantially metallic cylinder head gasket
US4375182A (en) Ultra-sensitive diaphragm with dual stress-relief structures
JPH06505547A (en) Thrust bearing underspring
US4237775A (en) Diaphragm for pressure sensors
JPS60263093A (en) Tube for heat exchanger and manufacture thereof
JPH03225238A (en) Pressure detecting device
JPH03225240A (en) Pressure detecting device
JPH03225241A (en) Pressure detecting device
US5140733A (en) Method of fixing flange to peripheral edge of a disc spring
JPH03225242A (en) Pressure detecting device
JPH03225243A (en) Pressure detecting device
JPH03225239A (en) Pressure detecting device
JPH03199729A (en) Belleville spring
JP2543772B2 (en) Disc spring
JPH03199728A (en) Leaf spring
JPH0676728U (en) Disc spring
JP2524232B2 (en) Pressure sensor
JP2524233B2 (en) Pressure sensor
CA2224141A1 (en) Pressure sensor membrane having stepped annular peripheral surfaces and sensor employing same
JPH02290522A (en) Pressure detector
JPH06213740A (en) Diaphragm plate
JPH0314930A (en) Coned disc spring
JPH0245201A (en) Wheel cover mounting device