JPH02290522A - Pressure detector - Google Patents

Pressure detector

Info

Publication number
JPH02290522A
JPH02290522A JP2021724A JP2172490A JPH02290522A JP H02290522 A JPH02290522 A JP H02290522A JP 2021724 A JP2021724 A JP 2021724A JP 2172490 A JP2172490 A JP 2172490A JP H02290522 A JPH02290522 A JP H02290522A
Authority
JP
Japan
Prior art keywords
diaphragm
ripple
ripples
pressure detection
spiral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021724A
Other languages
Japanese (ja)
Inventor
Toshinori Shimada
敏則 島田
Shinichi Oogashi
大樫 真一
Shigeaki Motokawa
本川 恵昭
Teruo Watanabe
照夫 渡辺
Kihachi Onishi
喜八 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tatsuta Electric Wire and Cable Co Ltd
Original Assignee
Tatsuta Electric Wire and Cable Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tatsuta Electric Wire and Cable Co Ltd filed Critical Tatsuta Electric Wire and Cable Co Ltd
Publication of JPH02290522A publication Critical patent/JPH02290522A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make a pressure displacement curve steep in gradient and to perform a detection in high accuracy by forming a diaphragm with a corrugated cross section showing a spiral wave ripple from the optional point of the peripheral of a base plate with circular center and making the wave ripple to incline toward the circular center. CONSTITUTION:A sensor 4 consists of a differential transformer 4a, lever 4b for moving an iron core, working ram 4c, etc. This ram 4c penetrates a member and the upper end is capable of attaching to or detaching from the diaphragm D, and the lower end is abutted to the lever 4b. The lever 4b is supported with a lever supporter 4d freely movable with swing, the under surface of which is abutted through a spring 9 to an adjuster 8 for exerted pressure penetrating the member with screwing. Then, positions of the lever 4b and the ram 4c are decided by means of adjusting a screwed-in amount of the adjuster 8, and by this adjustment, the ram 4c is pushed by the diaphragm D to move the iron core of the transformer 4a in the condition of that a deflection of the diaphragm at the time when it occurs is made to a linear state. At this time, the detected value is compensated with a consideration on an elastic force of the spring 9.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ダイヤフラムでもって被圧力検出流体の圧力
変動をアナログ的(連続的)に検出する圧力検出装置に
関するものである. 〔従来の技術及びその課題〕 この種の圧力検出装置は、第1図、第2図を参照して説
明すると、ケーシング1内に、ダイヤフラムDで区画さ
れた圧力検出室3を形成し、この圧力検出室3の一方3
aに被圧力検出流体aを導入するとともに、他方に前記
ダイヤフラムDの撓み量を連続的に検出するセンサー4
を設けたものが一般的である. この圧力検出装置において、検出精度を高めるためには
、ダイヤフラムDの撓み特性が圧力変化に対して比例的
であることが重要な要素である.このため、従来では、
第12図に示すように、ダイヤフラムDtの断面形状を
、素材板の中心円形10の周りに同心円状の波紋Pを呈
する波形として、前記撓み特性及び立上り特性を高めた
ものがある(図中の波紋Pは谷部の軌跡を示す、第4図
参照、以下、同様). しかしながら、このダイヤフラムDtは、周辺固定部は
ろう付け等で固定されるので剛性が大きくなり、一方、
中心部も曲率半径が小さいので剛性が大となる.従って
、周辺部と中心部の撓みが小さく、その中間部に、撓み
が集中して素材板が金属の場合、金属疲労によって座屈
あるいはクランクが生ずる他、長期間の使用の内に特性
、特に復元力が変化する等の問題がある.復元力が変化
すれば、前記撓み・立上り特性が変化して圧力の検出値
等が変化する. そこで、上記ダイヤフラムD2の問題解決策として、実
公昭40−33688号公報に開示され、第1)図に示
すように、前記波紋Pを、素材板の中心円形10の周り
にその2点対称位置から渦巻き状としたものが使用され
ている. しかしながら、波紋Pは各谷部又は各山部が同一レベル
、すなわち中心円形10に向って傾斜していないフラッ
ト状となっているため、撓み度合(変位)も小さく、押
圧力に対する変位曲線が緩勾配となる.*勾配の変位曲
線のものは、急激に圧力変化する流体の検出にはさほど
支障はないが、緩やかなものの場合、撓み変化が少なく
、精度的に問題が生じる. 本発明は、上記に鑑み、変位曲線を急勾配とすることを
課題とする.すなわち、撓み易くすることをtJRBと
する. (諜題を解決するための手段〕 上記課題を解決するために、本発明にあっては、前記の
従来周知の圧力検出装置において、そのダイヤフラムを
、素材板中心円形の周りに、その周り任意の点から、渦
巻き波紋を呈する波形断面とし、その渦巻き波紋は前記
中心円形に向って傾斜してなるものとしたのである. 上記波紋数は奇数が好ましく、その際、前記中心円形の
周り均等分位からスタートさせ、波紋の山部及び谷部は
連続曲面とするとよい.また、上記素材板中心円形の周
りに隣接して同心円形波紋を形成すると共に、この同心
円形波紋と同心でかつ所定間隔をあけて外側円形波紋を
形成し、両円形波紋間に、上記渦巻き波紋を形成しても
よい. この場合、上記渦巻き波紋の始終端を、上記同心円形波
紋又は外側円形波紋に合流させるとよい.上記所定間隔
は、ダイヤフラムの大きさ等を考慮して適宜に決定する
. 上記渦巻き波紋の傾斜度、すなわち、第4図における傾
斜高さhと径方向の長さlの比(h/l)はl/5以下
とするとよい.好ましくは1/6以下とする.l/5以
上となると、プレス成形の際、現在の技術では、その成
形圧が、外向きの斜面と内向きの斜面とで大きく異なっ
て製造が不可能となるからである. 〔作用〕 上記の如く構成する本発明に係る圧力検出装置のダイヤ
フラムにあっては、その渦巻き波紋が中心円形に向って
傾斜しているので、剛性が低下して撓み易くなっており
、圧力変位曲線が急勾配のものとなる. したがって、被圧力検出流体の圧力上昇につれてダイヤ
フラムが円滑に撓み、その撓み量がセンサーによってア
ナログ的に検出される.なお、波紋数を奇数とすれば、
第1)図において、a,b部分のように、反対側のみな
らず、隣接部分(例えば同図において、aに対しC部分
)間の波紋曲率も近づき、ダイヤフラムの剛性がより均
一化される. 波紋の山部及び谷部を連続曲面とすれば、撓み作用が円
滑となる. また、同心円形波紋及び外側円形波紋を設けたものは、
波紋のプレス成形時、中心部に生じる盛り上り状の歪は
同心円形波紋に唆収分散され、外周囲に生じる皺状の歪
は外側円形波紋に吸収分散される.この吸収分散は、渦
巻き波紋の始終端を両円形波紋に合流させれば、より効
果が増す.〔実施例〕 第1図、第2図に示すように、ケーシング1は、3部材
1a、lb,lcとから成り、部材1a、1b間に圧力
検出室3が形成されている.両部材1a、1b間にはダ
イヤフラムDがパンキング2を介して介設されており、
このダイヤフラムDにより圧力検出室3が2室3a、3
bに区画されている.一方の検出室3aには、圧力導入
口5から被圧力検出流体aが導びかれ、この圧力変化に
基づきダイヤフラムDが撓む.両部材1a、1bの接合
面全周は、シーリング6により密封化されている. ケーシング1のもう1つの部材1cは、とス7により部
材1bに固着され、この部材1c内にセンサー4が構成
されている。センサー4は、差動トランス4a、その鉄
心移動用レバー4b、作動ラム40等から成る.作動ラ
ム4cは部材1bを貫通して、その上端がダイヤフラム
Dに接離可能となっており、下端がレバー4bに当接し
ている。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a pressure detection device that uses a diaphragm to detect pressure fluctuations in a pressure-detected fluid in an analog (continuous) manner. [Prior art and its problems] This type of pressure detection device will be described with reference to FIGS. 1 and 2. A pressure detection chamber 3 partitioned by a diaphragm D is formed in a casing 1, One side 3 of pressure detection chamber 3
A sensor 4 that introduces the pressure detection fluid a into a and continuously detects the amount of deflection of the diaphragm D on the other hand.
It is common to have In this pressure detection device, in order to improve detection accuracy, it is important that the deflection characteristics of the diaphragm D be proportional to pressure changes. For this reason, conventionally,
As shown in FIG. 12, the cross-sectional shape of the diaphragm Dt has a waveform that exhibits concentric ripples P around the center circle 10 of the material plate, which improves the deflection characteristics and rise characteristics (as shown in the figure). The ripple P indicates the locus of the trough (see Figure 4; the same applies hereafter). However, this diaphragm Dt has a large rigidity because the peripheral fixed part is fixed by brazing etc.
The center also has a small radius of curvature, so the rigidity is high. Therefore, if the deflection is small at the periphery and the center, and the deflection is concentrated in the middle, if the material plate is made of metal, buckling or cranking may occur due to metal fatigue, and the characteristics may change over a long period of use. There are problems such as changes in resilience. If the restoring force changes, the deflection/rise characteristics will change, and the detected pressure value etc. will change. Therefore, as a solution to the problem of the diaphragm D2, as disclosed in Japanese Utility Model Publication No. 40-33688, as shown in Figure 1), the ripples P are placed at two symmetrical positions around the center circle 10 of the material plate. A spiral shape is used. However, since each trough or each peak of the ripple P is at the same level, that is, it has a flat shape that is not inclined toward the center circle 10, the degree of deflection (displacement) is also small, and the displacement curve with respect to the pressing force is gentle. It becomes a slope. *Those with gradient displacement curves do not pose much of a problem in detecting fluids with rapid pressure changes, but those with gradual changes in deflection cause little change in deflection, causing problems in accuracy. In view of the above, an object of the present invention is to make the displacement curve steeper. In other words, tJRB means that it is easy to bend. (Means for Solving the Problem) In order to solve the above problem, in the present invention, in the above-mentioned conventionally known pressure detection device, the diaphragm is arranged around the center circle of the material plate at any point around the center circle. From this point of view, the waveform cross section exhibiting spiral ripples was chosen, and the spiral ripples were inclined toward the central circle.The number of ripples is preferably an odd number, and in this case, the ripples are equally distributed around the central circle. The peaks and troughs of the ripples should be continuous curved surfaces.In addition, concentric circular ripples are formed adjacent to the center circle of the material plate, and concentrically with the concentric circular ripples and at a predetermined interval. An outer circular ripple may be formed with a gap between the two circular ripples, and the spiral ripple may be formed between the two circular ripples. In this case, the beginning and end of the spiral ripple may be merged with the concentric circular ripple or the outer circular ripple. .The above-mentioned predetermined interval is determined appropriately by considering the size of the diaphragm, etc. The inclination of the above-mentioned spiral ripples, that is, the ratio of the inclination height h to the radial length l in Fig. 4 (h/l) ) should be 1/5 or less.Preferably 1/6 or less.When it is 1/5 or more, when press forming, with current technology, the molding pressure is equal to the outward slope and the inward slope. [Operation] In the diaphragm of the pressure detection device according to the present invention constructed as described above, the spiral ripples are inclined toward the central circle. As a result, the diaphragm becomes less rigid and easily deflects, resulting in a steeper pressure displacement curve. Therefore, as the pressure of the fluid to be detected increases, the diaphragm deflects smoothly, and the amount of deflection is detected analogously by a sensor. In addition, if the number of ripples is an odd number,
In Figure 1), the ripple curvatures not only between opposite sides, but also between adjacent parts (for example, parts A and C in the same figure) become closer, making the rigidity of the diaphragm more uniform. .. If the peaks and troughs of the ripples are made into continuous curved surfaces, the bending action will be smooth. In addition, those with concentric circular ripples and outer circular ripples,
During press forming of ripples, the bulge-like distortion that occurs in the center is absorbed and dispersed by the concentric circular ripples, and the wrinkle-like distortion that occurs on the outer periphery is absorbed and dispersed by the outer circular ripples. This absorption and dispersion becomes even more effective if the beginning and end of the spiral ripples merge into both circular ripples. [Example] As shown in FIGS. 1 and 2, the casing 1 consists of three members 1a, lb, and lc, and a pressure detection chamber 3 is formed between the members 1a and 1b. A diaphragm D is interposed between both members 1a and 1b via a puncture 2,
Due to this diaphragm D, the pressure detection chamber 3 is divided into two chambers 3a and 3.
It is divided into b. A pressure-detected fluid a is introduced into one of the detection chambers 3a from a pressure introduction port 5, and a diaphragm D is bent based on this pressure change. The entire circumference of the joint surfaces of both members 1a and 1b is sealed with a sealing member 6. Another member 1c of the casing 1 is fixed to the member 1b by a stud 7, and a sensor 4 is configured within this member 1c. The sensor 4 consists of a differential transformer 4a, a lever 4b for moving its core, an actuating ram 40, and the like. The actuating ram 4c passes through the member 1b so that its upper end can move toward and away from the diaphragm D, and its lower end is in contact with the lever 4b.

レバー4bは、支杆4dにより揺動自在に支持されてお
り、その下面に部材1cをねじ通した作動圧力調整子8
がばねSを介して当接している。この調整子8のねじ込
み量を調整することにより、レバー4b及び作動ラム4
cの位置が決定され、この調整によって、後述のダイヤ
フラムDの撓み時、その撓み状態が直線状となった状態
で、ダイヤフラムDが作動ラム4cを押して差動トラン
ス4aの鉄心を動かすようにする.このとき、検出値に
はばね9の弾性力を考慮して補償する。
The lever 4b is swingably supported by a support rod 4d, and has an operating pressure regulator 8 having a member 1c screwed through the lower surface thereof.
are in contact with each other via a spring S. By adjusting the screwing amount of this adjuster 8, the lever 4b and the actuating ram 4 can be adjusted.
The position of c is determined, and this adjustment allows the diaphragm D to push the actuating ram 4c and move the iron core of the differential transformer 4a when the diaphragm D is deflected, which will be described later, in a straight line state. .. At this time, the detected value is compensated in consideration of the elastic force of the spring 9.

つぎに、ダイヤフラムDについて説明する.このダイヤ
フラムDは第3図に示すように、渦巻き波紋Pを中心円
形10周方向均等分位3個所から形成したものであり、
まず、同図に示すように、中心円形10の周りに三等分
位から互に隣接させて渦巻き波紋Pを形成し、第4図に
示す波の高さ:t、ダイヤフラムDの外周と中心の高低
差:T1ダイヤフラムDの曲率:R1波紋Pの谷部曲率
:r、同山部曲率:r′をそれぞれ所定値とした.この
各値は、ダイヤフラムDの使用箇所、材質等を考慮して
、実験等により適宜に選定する.中心円形10の部分も
、第4図鎖線のごとくわん曲させれば、波紋Pとの境が
なめらかとなる.上記ダイヤフラムDの製造は、その前
記諸元(形状)に基づいて設計された金型によりプレス
成形されて打抜かれる.金型は、放電加工によって基本
的に制作され、調整の上使用される.上記金型製造のた
めの放電加工用電極Sの製作は、例えば、三次元数値制
御可能なフライス盤にダイヤフラムDの諸元を入力し、
そのエンドミルにより、電掻素材板の表面に第5図に示
す波紋Pを呈する凹凸を形成して製作する. このようにして得た電極Sに、第6図のごとくボス13
を介して電極取付け棒14を立設し、その電極Sを放電
加工機に装着し金型Wを制作する。
Next, diaphragm D will be explained. As shown in Fig. 3, this diaphragm D has spiral ripples P formed from three equally spaced points in the circumferential direction of ten central circles.
First, as shown in the same figure, spiral ripples P are formed around the center circle 10 by adjoining each other from the tertiles, and the height of the wave is t as shown in FIG. Height difference: T1 Curvature of diaphragm D: R1 Valley curvature: r and peak curvature: r' of R1 ripple P were set to predetermined values, respectively. These values are selected appropriately through experiments, etc., taking into account the location of the diaphragm D, the material, etc. If the center circle 10 is also curved as shown by the chain line in Figure 4, the border with the ripple P will be smooth. The above-mentioned diaphragm D is manufactured by press-forming and punching using a die designed based on the above-mentioned specifications (shape). Molds are basically manufactured by electrical discharge machining and are used after adjustment. To manufacture the electrode S for electrical discharge machining for manufacturing the mold, for example, the specifications of the diaphragm D are input into a milling machine capable of three-dimensional numerical control.
The end mill is used to form irregularities exhibiting ripples P shown in Fig. 5 on the surface of the electric scraping material plate. A boss 13 is attached to the electrode S obtained in this way as shown in FIG.
The electrode mounting rod 14 is erected through the electrode S, and the electrode S is mounted on an electrical discharge machine to produce a mold W.

金型Wは雄型と雌型を必要とするが、上記放電加工によ
り得られる金型Wを2個形成し、この一方を逆に電極と
して前記の放電加工をすることにより、その加工品及び
残りの前記金型Wにより雄、雌両型が得られる. 上記製造手段によって、下記表1に示す諸元(t,T等
)の試作例1〜4を製作した。なお、全てステンレス箔
(フープ)を使用し、その厚さ:0.015fi、曲率
R : 100自■、その曲率中re弓よ内側、すなわ
ち傾斜は外向き凸面とし、ダイヤフラムDの仕上り外径
:25.4mmは各例同じである。また、試作例1の波
紋Pの断面は第4図(blのごとく、他は同図(alの
ごとくである. なお、波紋Pの巻回数は波紋Pの幅(谷間隔d)によう
て決定されるが、試作例1、2は1回半、3、4は2回
であった. 表 l 8^ :光輝軟化材、”/.}I : 4分の3軟化材
、このようにして、製作したダイヤフラムDを、第1図
、第2図のごとくケーシング1に装着し、検出室3aに
被圧力検出流体aを導いた際のダイヤフラムDの圧力変
位測定結果を第7図に示す.この結果から、試作例1、
2では、圧力変化に対しほぼ比例的に撓んでおり、試作
例3、4では、3001mH20以上又は5001)s
HzO以上でほぼ比例的に撓んでおり、この範囲でセン
サー4を作動させるとよい.このとき、例えば、試作例
I、2では、ダイヤフラムDと作動ラム4Cの間隙【を
0.2+uw以上、試作例3、4では、0.9m一以上
とすれば、ダイヤフラムDが作動ラム4Cに当接するま
で、ばね9の弾性力を考慮する必要がない。
The mold W requires a male mold and a female mold, but by forming two molds W obtained by the above electric discharge machining and performing the electric discharge machining using one of them as an electrode, the processed product and The remaining molds W provide both male and female molds. Prototypes 1 to 4 having the specifications (t, T, etc.) shown in Table 1 below were manufactured using the above manufacturing method. In addition, all stainless steel foil (hoop) is used, its thickness: 0.015fi, curvature R: 100cm, the inside of the curvature, that is, the slope is an outward convex surface, and the finished outer diameter of diaphragm D: 25.4 mm is the same in each example. In addition, the cross section of the ripple P of prototype example 1 is shown in Figure 4 (bl), and the others are as shown in the same figure (al). The number of turns of the ripple P is determined according to the width of the ripple P (valley interval d). However, it was determined that the number of times was 1 and a half times for Prototypes 1 and 2, and 2 times for 3 and 4. The manufactured diaphragm D was attached to the casing 1 as shown in Figs. 1 and 2, and Fig. 7 shows the measurement results of the pressure displacement of the diaphragm D when the pressure-detected fluid a was introduced into the detection chamber 3a. .From this result, prototype example 1,
In case 2, the deflection is almost proportional to the pressure change, and in prototype examples 3 and 4, it is 3001mH20 or more or 5001)s
It bends almost proportionally above HzO, and it is best to operate the sensor 4 in this range. At this time, for example, if the gap between the diaphragm D and the actuating ram 4C is 0.2+uw or more in prototypes I and 2, and 0.9m or more in prototypes 3 and 4, then the diaphragm D is connected to the actuating ram 4C. There is no need to consider the elastic force of the spring 9 until the contact occurs.

ダイヤフラムDの他例として、第8図に示すように、中
心円形10の周りに、隣接して同心円形波紋P,を形成
するとともに、外側にも円形波紋P8を形成し、両波紋
Pr 、Pg間に、中心円形波紋P.の周囲3等分位か
らの渦巻き波紋P,を形成し、その波紋P,の始終端を
両波紋P1、P:に合流させたものも製作した. このダイヤフラムDも、前記の例と同様に、まず、三次
元数値制御可能なフライス盤にそのダイヤフラムDの諸
元を入力し、そのエンドミルにより、電極素材板の表面
に第10図に示す波紋P1、pg 、p.を呈する凹凸
を形成して電極Sを製作する. つぎに、この電極Sを、前記と同様にして放電加工機に
装着し金型Wを製作し、この金型Wによるプレス加工で
もって、第8図、第9図に示したものを得た. このプレス成形の際、内外側に円形波紋P1、P2を形
成し、両波紋PI,Pxに渦巻き波紋P,の両端が合流
しているため、渦巻き波紋P3の成形による歪が円形波
紋P1、Pt内に吸収されて皺は生じなかった. この例も、素材を、厚さ: 0.015 flのステン
レス箔、仕上り外径:25.4mm,曲率R : 10
0鰭、その曲率中心は内側とし、第9図において、各波
紋P,、Pt,P3(総称IP》の輻d (谷と谷の間
、合流間は除<)、同心円形波紋P1の谷径:q、外側
波紋Pの内側谷径q 、渦巻き波紋P,の谷部曲率『、
山部曲率r 、波の高さt、高低差Tを下記表2に示す
値とした試作例5、6を製作し、第1図、第2図のケー
シング1に装着したところ、周方向に均等に撓み、応力
の偏りもな《、良好な撓み特性を得ることができた。
As another example of the diaphragm D, as shown in FIG. 8, a concentric circular ripple P is formed adjacent to the center circle 10, and a circular ripple P8 is also formed on the outside, and both ripples Pr and Pg are formed. In between, there is a central circular ripple P. A spiral ripple P, was formed from three equal parts of the circumference of P, and the beginning and end of the ripple P merged with both ripples P1 and P:. For this diaphragm D, as in the previous example, first, the specifications of the diaphragm D are input into a milling machine capable of three-dimensional numerical control, and the end mill produces ripples P1 on the surface of the electrode material plate as shown in FIG. pg, p. The electrode S is manufactured by forming unevenness exhibiting the following. Next, this electrode S was attached to an electrical discharge machine in the same manner as described above to produce a mold W, and by press working with this mold W, the electrodes shown in FIGS. 8 and 9 were obtained. .. During this press forming, circular ripples P1, P2 are formed on the inner and outer sides, and both ends of the spiral ripple P, merge with both ripples PI, Px. It was absorbed into the skin and no wrinkles appeared. In this example, the material is stainless steel foil with thickness: 0.015 fl, finished outer diameter: 25.4 mm, and curvature R: 10.
0 fin, its center of curvature is on the inside, and in Fig. 9, the radius d of each ripple P,, Pt, P3 (general term IP) (excluding between troughs and merging), and the trough of concentric circular ripple P1. Diameter: q, inner trough diameter q of outer ripple P, trough curvature of spiral ripple P,
Prototypes 5 and 6 were manufactured with the crest curvature r, wave height t, and height difference T as shown in Table 2 below, and when they were installed in the casing 1 shown in Figures 1 and 2, the circumferential direction Good deflection characteristics were obtained, with uniform deflection and no uneven stress.

なお、渦壱き波紋P,は、中心円形波紋P,の等分位か
らスタートし、一回転余りで終了させているが、好まし
くは3周回以上させることが好ましく、また、一点のみ
からスタートして3周回以上させたものとすることがで
きる.実施例(第3図)のものにおいて、前記外側円形
波紋P2を形成し、その波紋P.に渦巻き波紋Pを合流
した構成とすることもできる. 各部寸法もこれに限るものではなく、ダイヤフラムDの
使用箇所、材質等を考慮して、実験等により適宜に選定
する.又、使用素材としてはステンレス箔の他、リン青
銅、ベリリウム銅等の銅合金箔、ゴム、プラスチックス
等公知のものを使用することができる. さらに、センサー4は、実施例のものに限定されず、可
変容量式センサー、磁気抵抗素子変位センサー、ホール
素子センサー、過電流式変位センサー、スライド抵抗式
変位センサー、ストレンゲージ変位センサー等の種々の
周知のアナログセンサーを採用できることは勿論である
. 〔発明の効果〕 本発明は、以上のように構成して、ダイヤフラムの剛性
を構造的に低下させて、その圧力変位曲線が急勾配とな
るものとしたので、被検出流体が緩やかに圧力変化する
場合でも、精度よく検出する.また、疲労の集中や、座
屈・クランクの発住がなく、復元力等の特性変化も少な
い.この効果は、波紋を奇数、波紋の谷及び山を曲面と
すれば、増進される. また、内外側に円形波紋を形成するようにすれば、プレ
ス成形の際、中心部及び外周囲に皺等の歪が生じない効
果を発揮する.この効果は、渦巻き波紋を内外側円形波
紋に合流させれば、さらに増進される.
Incidentally, the vortex ripple P, starts at an equal division of the central circular ripple P, and is completed in just over one rotation, but it is preferable to make three or more revolutions, and it is not necessary to start from only one point. It is possible to do this three times or more. In the embodiment (FIG. 3), the outer circular ripple P2 is formed, and the ripple P. It is also possible to have a configuration in which the spiral ripples P are merged with the spiral ripples P. The dimensions of each part are not limited to these, but should be selected appropriately through experiments, etc., taking into account the location of the diaphragm D, the material, etc. In addition to stainless steel foil, other known materials such as copper alloy foils such as phosphor bronze and beryllium copper, rubber, and plastics can be used as materials. Furthermore, the sensor 4 is not limited to the one in the embodiment, and may be various types such as a variable capacitance type sensor, a magnetoresistive element displacement sensor, a Hall element sensor, an overcurrent type displacement sensor, a sliding resistance type displacement sensor, a strain gauge displacement sensor, etc. Of course, well-known analog sensors can be used. [Effects of the Invention] The present invention is configured as described above, and the rigidity of the diaphragm is structurally reduced so that its pressure displacement curve becomes steep, so that the pressure of the fluid to be detected is gradually changed. It detects with high accuracy even when Additionally, there is no concentration of fatigue, buckling or cranking, and there is little change in properties such as restoring force. This effect is enhanced if the ripples are an odd number and the troughs and peaks of the ripples are curved. Furthermore, by forming circular ripples on the inner and outer sides, distortions such as wrinkles will not occur in the center and outer periphery during press molding. This effect is further enhanced by merging the spiral ripples with the inner and outer circular ripples.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図は本発明に係る圧力検出装置の一実施例
のそれぞれ 切断正面図及び切断側面図、第3図は第1
図のダイヤフラムの一例の正面図、第4図18+、(b
lは同断面図、第5図乃び第6図は同例の制作説明図、
第7図は圧力変位測定図、第8図はダイヤフラムの他例
の正面図、第9図は同断面図、第lO図は同例の製作説
明図、第1)図、第12図は従来例の説明図である. D,,ox ,D・・・・・・ダイヤフラム、P,P+
1Pg、Pz・・・・・・波紋、Q・・・・・・治工具
、   R・・・・・・ダイヤフラム曲率、r・・・・
・・谷部曲率、  r′・・・・・・山部曲率、S・・
・・・・電極、    W・・・・・・金型、1・・・
・・・ケーシング、 3、3a、3b・・・・・・圧力検出室、4・・・・・
・センサー   10・・・・・・中心円形.特許出願
人  タック電線株式会社 同 代理人 鎌 田 文 第7図 第6図 第9図 第8図
1 and 2 are a cutaway front view and a cutaway side view of an embodiment of the pressure detection device according to the present invention, and FIG.
Front view of an example of the diaphragm shown in Figure 4, 18+, (b
l is the same sectional view, Figures 5 and 6 are production explanatory diagrams of the same example,
Fig. 7 is a pressure displacement measurement diagram, Fig. 8 is a front view of another example of the diaphragm, Fig. 9 is a sectional view of the same, Fig. 10 is a manufacturing explanation diagram of the same example, Fig. 1) and Fig. 12 are conventional This is an explanatory diagram of an example. D,,ox,D...diaphragm,P,P+
1Pg, Pz...Ripple, Q...Jig, R...Diaphragm curvature, r...
... Valley curvature, r' ... Peak curvature, S...
...Electrode, W...Mold, 1...
...Casing, 3, 3a, 3b...Pressure detection chamber, 4...
・Sensor 10...Central circle. Patent Applicant Tuck Electric Cable Co., Ltd. Agent Aya Kamata Figure 7 Figure 6 Figure 9 Figure 8

Claims (6)

【特許請求の範囲】[Claims] (1)ケーシング1内に、ダイヤフラムDで区画された
圧力検出室3を形成し、この圧力検出室3の一方3aに
被圧力検出流体aを導入するとともに、他方3bに前記
ダイヤフラムDの撓み量を連続的に検出するセンサー4
を設けた圧力検出装置において、前記ダイヤフラムDを
、素材板中心円形10の周りに、その周り任意の点から
、渦巻き波紋Pを呈する波形断面とし、その渦巻き波紋
Pは前記中心円形10に向って傾斜してなるものとした
ことを特徴とする圧力検出装置。
(1) A pressure detection chamber 3 partitioned by a diaphragm D is formed in the casing 1, and the pressure-detected fluid a is introduced into one 3a of the pressure detection chamber 3, and the amount of deflection of the diaphragm D is introduced into the other 3b. Sensor 4 that continuously detects
In the pressure detection device, the diaphragm D has a wave-shaped cross section that exhibits spiral ripples P from any point around the center circle 10 of the material plate, and the spiral ripples P extend toward the center circle 10. A pressure detection device characterized by being inclined.
(2)上記渦巻き波紋Pの傾斜高さhと径方向の長さl
の比h/lを1/5以下としたことを特徴とする請求項
(1)記載の圧力検出装置。
(2) Incline height h and radial length l of the spiral ripple P
The pressure detection device according to claim 1, wherein the ratio h/l is 1/5 or less.
(3)上記素材板中心円形10の周りに隣接して同心円
形波紋P_1を形成すると共に、この同心円形波紋P_
1と同心でかつ所定間隔をあけて外側円形波紋P_2を
形成し、両円形波紋P_1、P_2間に、上記渦巻き波
紋P_3を形成したことを特徴とする請求項(1)又は
(2)記載の圧力検出装置。
(3) Concentric circular ripples P_1 are formed adjacently around the center circle 10 of the material plate, and this concentric circular ripple P_
1 and 2, an outer circular ripple P_2 is formed concentrically with the ripple P_2 at a predetermined interval, and the spiral ripple P_3 is formed between both the circular ripples P_1 and P_2. Pressure detection device.
(4)上記渦巻き波紋P_3の始終端を、上記中心円形
波紋P_1及び外側円形波紋P_2に合流させたことを
特徴とする請求項(3)記載の圧力検出装置。
(4) The pressure detection device according to claim (3), wherein the starting and ending ends of the spiral ripple P_3 are merged with the center circular ripple P_1 and the outer circular ripple P_2.
(5)上記渦巻き波紋P、P_3を3条以上の奇数とし
、その各波紋を、上記素材中心円形10の周り均等分位
からスタートさせたことを特徴とする請求項(1)乃至
(4)のいずれか1つに記載の圧力検出装置。
(5) Claims (1) to (4) characterized in that the spiral ripples P and P_3 are an odd number of 3 or more, and each ripple starts from an equal quantile around the center circle 10 of the material. The pressure detection device according to any one of the above.
(6)上記各波紋P、P_1、P_2の山部及び谷部を
連続曲面としたことを特徴とする請求項(1)乃至(5
)のいずれか1つに記載の圧力検出装置。
(6) Claims (1) to (5) characterized in that the peaks and valleys of each of the ripples P, P_1, and P_2 are continuous curved surfaces.
) The pressure detection device according to any one of the above.
JP2021724A 1989-02-20 1990-01-30 Pressure detector Pending JPH02290522A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP1871989 1989-02-20
JP1-18719 1989-02-20

Publications (1)

Publication Number Publication Date
JPH02290522A true JPH02290522A (en) 1990-11-30

Family

ID=11979468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021724A Pending JPH02290522A (en) 1989-02-20 1990-01-30 Pressure detector

Country Status (1)

Country Link
JP (1) JPH02290522A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0515005A (en) * 1991-06-27 1993-01-22 Hitachi Cable Ltd Brush wear detector for current collector of insulated trolley
JP5417317B2 (en) * 2008-03-14 2014-02-12 株式会社タクミナ Metal diaphragm

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60227141A (en) * 1984-01-06 1985-11-12 シュランベルジュ、インダストリーズ、ソシエテ、アノニム Corrugated film for pressure sensor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60227141A (en) * 1984-01-06 1985-11-12 シュランベルジュ、インダストリーズ、ソシエテ、アノニム Corrugated film for pressure sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0515005A (en) * 1991-06-27 1993-01-22 Hitachi Cable Ltd Brush wear detector for current collector of insulated trolley
JP5417317B2 (en) * 2008-03-14 2014-02-12 株式会社タクミナ Metal diaphragm

Similar Documents

Publication Publication Date Title
JP4687890B2 (en) Straightening method of metal bending pipe and straightening press mold
US4364252A (en) Method for the manufacture of diaphragm bellows
CN106040811B (en) A kind of major diameter bellows vibration shaping device and method
JPS6335930B2 (en)
JPH02290522A (en) Pressure detector
TW201545825A (en) Formed material manufacturing method and formed material
US5140733A (en) Method of fixing flange to peripheral edge of a disc spring
JP3673152B2 (en) Fixed member, commutator forming plate material, and manufacturing method thereof
US5320331A (en) Method and apparatus for forming corrugations in tubing and a corrugated tube produced thereby
JPH02290523A (en) Pressure detector
JP3645352B2 (en) Zigzag folding method for strip foil
CN116460227A (en) Method for stamping and forming C-shaped metal seal ring by using die
JPS61255725A (en) Elbow production and device for forming multiple bent pipe for production
JPH0555749B2 (en)
JPH03225238A (en) Pressure detecting device
JP6787013B2 (en) Molding material manufacturing method
JP3565395B2 (en) Washer manufacturing method
JPH11197752A (en) Bulg die for corrugated tube
JPH03225241A (en) Pressure detecting device
JPH03225243A (en) Pressure detecting device
RU2162758C2 (en) Tube production method
JP2524237B2 (en) Pressure detector
JP2524233B2 (en) Pressure sensor
RU2238813C2 (en) Apparatus for gauging of pipe ends (versions)
SU438475A1 (en) Method of making double-layer tubular parts with a flange