JPH03225242A - Pressure detecting device - Google Patents

Pressure detecting device

Info

Publication number
JPH03225242A
JPH03225242A JP2172290A JP2172290A JPH03225242A JP H03225242 A JPH03225242 A JP H03225242A JP 2172290 A JP2172290 A JP 2172290A JP 2172290 A JP2172290 A JP 2172290A JP H03225242 A JPH03225242 A JP H03225242A
Authority
JP
Japan
Prior art keywords
diaphragm
ripple
pressure detection
pressure
spiral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2172290A
Other languages
Japanese (ja)
Other versions
JP2524237B2 (en
Inventor
Toshinori Shimada
敏則 島田
Masato Ookashi
大樫 真人
Shigeaki Motokawa
本川 恵昭
Teruo Watanabe
照夫 渡辺
Kihachi Onishi
喜八 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tatsuta Electric Wire and Cable Co Ltd
Original Assignee
Tatsuta Electric Wire and Cable Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tatsuta Electric Wire and Cable Co Ltd filed Critical Tatsuta Electric Wire and Cable Co Ltd
Priority to JP2021722A priority Critical patent/JP2524237B2/en
Publication of JPH03225242A publication Critical patent/JPH03225242A/en
Application granted granted Critical
Publication of JP2524237B2 publication Critical patent/JP2524237B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)
  • Diaphragms And Bellows (AREA)

Abstract

PURPOSE:To linearize a pressure-displacement curve at the time of starting pressurization by making the tilt of the swirly wave pattern of a diaphragm in a radial direction recessed on the outside. CONSTITUTION:A pressure detecting chamber 3 sectioned by the diaphragm D is formed in a casing 1. Fluid (a) whose pressure should be detected is introduced in one sectioned chamber 3a and a sensor 4 which consecutively detects the deflection of the diaphragm D is provided in the other sectioned chamber 3b. In the diaphragm D, the swirly wave pattern P is formed on the periphery of a central circle 10 by swirling from an optional point on the periphery. In a disk spring constituted by inclining toward the central circle 10, the tilt in the radial direction of the wave pattern P is made recessed on the outside. By applying pressing force, for example, compressed air, etc., to the surface of the diaphragm D, the deflection is transmitted to all the areas through the wave pattern P and deviation is not caused in generated stress, then the diaphragm equally bends in a peripheral direction without the inclination of a center axis.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ダイヤフラムでもって被圧力検出流体の圧力
変動を連続的(アナログ的)に検出する圧力検出装置に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a pressure detection device that continuously (analog-wise) detects pressure fluctuations in a pressure-detected fluid using a diaphragm.

〔従来の技術及びそのLIP!I) この種の圧力検出装置は、第1図、第2図を参照して説
明すると、ケーシング1内に、ダイヤフラムDで区画さ
れた圧力検出室3を形成し、この圧力検出室3の一方3
aに被圧力検出流体aを導入するとともに、他方3bに
前記ダイヤフラムDの撓みを連続的に検出するセンサー
4を設けたものが一般的である。
[Conventional technology and its LIP! I) This type of pressure detection device will be described with reference to FIGS. 1 and 2. A pressure detection chamber 3 partitioned by a diaphragm D is formed in a casing 1, and one side of the pressure detection chamber 3 is 3
Generally, a pressure detection fluid a is introduced into the diaphragm 3b, and a sensor 4 for continuously detecting the deflection of the diaphragm D is provided at the other 3b.

この圧力検出装置において、検出精度を高めるためには
、ダイヤフラムDの撓み特性が圧力変化に対して比例的
であることが重要な要素である。
In this pressure detection device, in order to improve detection accuracy, it is important that the deflection characteristics of the diaphragm D be proportional to pressure changes.

ところで、本発明者等は、実願平1−18718号、実
願乎118719号において、第7図、第8図に示すよ
うに、素材板中心円形10の周りに、その周方向均等分
位の少なくとも2点からスタートした渦巻き波紋Pを呈
する波形断面のダイヤフラムDを備えた圧力検出器を提
案した。この1!!案のダイヤフラムDは、波紋Pが渦
巻き状であることから、周囲の剛性が均一化され、撓み
作用時、応力の片寄りがなく周方向に均等に撓む、すな
わち、上記撓み特性においである程度満足いけるもので
あった。
By the way, in Utility Model Application No. 1-18718 and Utility Model Application No. 118719, the inventors of the present invention, as shown in FIG. 7 and FIG. We have proposed a pressure detector equipped with a diaphragm D having a wave-shaped cross section exhibiting spiral ripples P starting from at least two points. This one! ! In the proposed diaphragm D, since the ripples P have a spiral shape, the rigidity of the periphery is uniform, and when the diaphragm D is deflected, there is no unevenness of stress and the diaphragm D is deflected uniformly in the circumferential direction. It was satisfying.

しかしながら、第5図に示すように、その圧力−変位曲
線(○:加圧時、・:減圧時、比較例(破線)参照)は
、直線性に欠け、とくに加圧開始時がなめらかでない、
この種の圧力検出器においては、加圧開始時の直線性を
要求されるものがある。
However, as shown in Fig. 5, the pressure-displacement curve (○: during pressurization, .: during depressurization, see comparative example (broken line)) lacks linearity, and is not smooth, especially at the start of pressurization.
Some pressure detectors of this type require linearity at the start of pressurization.

そこで、本発明は、加圧開始時の圧力−変位曲線が直線
状となる圧力検出器を提供することを課題とする。
Therefore, an object of the present invention is to provide a pressure detector in which the pressure-displacement curve at the start of pressurization is linear.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するため、本発明にあっては、前述の渦
巻き波紋を有し、その波紋が中心円形に向って傾斜して
なるダイヤフラムを有する圧力検出器において、そのダ
イヤフラムの渦巻き波紋の半径方向の傾きを外側凹状と
したのである。
In order to solve the above problems, the present invention provides a pressure sensor having a diaphragm having the above-mentioned spiral ripples and whose ripples are inclined toward a central circle, in the radial direction of the spiral ripples of the diaphragm. The slope was made concave outward.

上記渦巻き波紋の傾斜度、すなわち、第4図における傾
斜高さhと径方向の長さlの比(h/7りは115以下
とするとよい、好ましくは1/6以下とする。115以
上となると、プレス成形の際、現在の技術では、その成
形圧が外向きの斜面と内向斜面とで大きく異なって製造
が不可能となるからである。
The degree of inclination of the spiral ripples, that is, the ratio of the inclination height h to the radial length l in FIG. 4 (h/7) is preferably 115 or less, preferably 1/6 or less. This is because, with the current technology, during press molding, the molding pressure differs greatly between the outward and inward slopes, making it impossible to manufacture them.

上記素材板中心円形の周りに隣接して同心円形波紋を形
成すると共に、この同心円形波紋と同心でかつ所定間隔
をあけて外側円形波紋を形成し、この両用形波紋間に上
記渦巻き波紋を形成したものとすることもできる。
Concentric circular ripples are formed adjacent to the center circle of the material plate, outer circular ripples are formed concentrically with the concentric circular ripples at a predetermined interval, and the spiral ripples are formed between the dual-purpose ripples. It can also be assumed that

〔作用〕[Effect]

このように構成される圧力検出装置は、そのダイヤフラ
ム表面に押圧力、例えば圧縮空気圧等が加わると、その
押゛圧力による撓みが渦巻き波紋を介して全域に伝達さ
れ、発生する応力に片寄りがなく、中心軸が傾くことな
く周方向に均等に撓む。
In a pressure detection device configured in this way, when a pressing force, such as compressed air pressure, is applied to the surface of the diaphragm, the deflection due to the pressing pressure is transmitted to the entire area via spiral ripples, and the stress generated is biased. The center axis flexes evenly in the circumferential direction without tilting.

また、同心円形波紋及び外側円形波紋を設ければ、波紋
のプレス成形時、中心部に生じる盛り上り状の歪は同心
円形波紋に吸収分散され、外周囲に生じる融状の歪は外
側円形波紋に吸収分散される。この吸収分散は、渦巻き
波紋の始終端を両用形波紋に合流させれば、より効果が
増す。
In addition, if concentric circular ripples and outer circular ripples are provided, when the ripples are press-formed, the raised distortion that occurs in the center will be absorbed and dispersed in the concentric circular ripples, and the melted distortion that occurs on the outer periphery will be absorbed and dispersed in the outer circular ripples. absorbed and dispersed. This absorption and dispersion becomes even more effective if the beginning and end of the spiral ripple merge into the dual-use ripple.

〔実施例〕〔Example〕

第1図、第2図に示すように、ケーシング1は、3部材
1a、1b、1cとから成り、部材1a、1b間に圧力
検出室3が形成されている0両部材la、lb間にはダ
イヤフラムDがバッキング2を介して介設されており、
このダイヤフラムDにより圧力検出室3が2室3a、3
bに区画されている。一方の検出室3aには、圧力導入
口5から被圧力検出流体aが導びかれ、この圧力変化に
基づきダイヤフラムDが撓む0両部材1a、1bの接合
面全周は、シーリング6により密封化されている。
As shown in FIGS. 1 and 2, the casing 1 consists of three members 1a, 1b, and 1c, and a pressure detection chamber 3 is formed between the members 1a and 1b. The diaphragm D is interposed through the backing 2,
Due to this diaphragm D, the pressure detection chamber 3 is divided into two chambers 3a and 3.
It is divided into b. A pressure-detected fluid a is introduced into one detection chamber 3a from a pressure introduction port 5, and a diaphragm D is bent based on this pressure change. has been made into

ケーシング1のもう1つの部材1Cは、ビス7により部
材1bに固着され、この部材1C内にセンサー4が構成
されている。センサー4は、差動トランス4a、その鉄
心移動用レバー4b、作動ラム4C等から成る0作動ラ
ム4Cは部材1bを貫通して、その上端がダイヤフラム
Dに接離可能となっており、下端がレバー4bに当接し
ている。
Another member 1C of the casing 1 is fixed to the member 1b with screws 7, and a sensor 4 is configured within this member 1C. The sensor 4 includes a differential transformer 4a, a lever 4b for moving its iron core, an operating ram 4C, etc.A zero-actuation ram 4C passes through a member 1b, and its upper end can come into contact with and separate from a diaphragm D, and its lower end It is in contact with the lever 4b.

レバー4bは、支杆4dにより揺動自在に支持されてお
り、その下面に部材1Cをねじ通した作動圧力調整子8
がばね9を介して当接している。この調整子8のねじ込
み量を調整することにより、レバー4b及び作動ラム4
Cの位置が決定され、この調整によって、後述のダイヤ
フラムDの撓み時、その撓み状態が直鎖状となった状態
で、ダイヤフラムDが作動ラム4Cを押して差動トラン
ス4aの鉄心を動かすようにする。このとき、績出値に
ばばね9の弾性力を考慮して補償する。
The lever 4b is swingably supported by a support rod 4d, and has an operating pressure regulator 8 having a member 1C screwed through its lower surface.
are in contact with each other via a spring 9. By adjusting the screwing amount of this adjuster 8, the lever 4b and the actuating ram 4 can be adjusted.
The position of C is determined, and by this adjustment, when the diaphragm D is bent, which will be described later, the diaphragm D pushes the operating ram 4C and moves the iron core of the differential transformer 4a, with the bending state being linear. do. At this time, the elastic force of the spring 9 is taken into consideration and compensated for in the result value.

つぎに、ダイヤフラムDについて説明する。Next, the diaphragm D will be explained.

このダイヤフラムDは、渦巻き波紋Pを中心円形10の
周囲の一点から渦巻き波紋Pを12周廻余り形成したも
のであり、厚さ:  0.015mmのステンレス笛、
341IIφのフープを、プレス加工して仕上がり外径
で25.4mmφであった。
This diaphragm D has a spiral ripple P formed around 12 times from one point around the central circle 10, and is a stainless steel whistle with a thickness of 0.015 mm.
A hoop of 341 IIφ was pressed and had a finished outer diameter of 25.4 mmφ.

このものを第3図、第4図に示し、同図において、渦巻
き波紋Pのピッチd = 0.598龍、中心円形10
の径S=S、O龍、波紋Pの最外径=20.21、谷部
及び山部の曲率r = Q、3ms、波紋Pの高さ【=
0.08龍、外周と中心との高低差T=1.2■−1波
紋P部分の曲率R=100m、その曲率Rの中心を外側
(波紋Pの傾きを外側凹状)とした(なお、第3図、第
4図は波が省略しである)。
This is shown in Figures 3 and 4, in which the pitch of the spiral ripple P is d = 0.598, the center circle is 10.
diameter S = S, O dragon, outermost diameter of ripple P = 20.21, curvature of valley and peak r = Q, 3ms, height of ripple P [=
0.08 dragon, height difference between the outer periphery and the center T = 1.2 ■ -1 Curvature R of the ripple P portion = 100 m, the center of the curvature R is set to the outside (the slope of the ripple P is concave to the outside) (in addition, Waves are omitted in Figures 3 and 4).

一方、比較例として、第7図、第8図に示した渦巻き波
紋Pを中心円形1003等分位から形成し、その周廻数
を1回余りとし、かつ、曲率Rの中心を内側(波紋Pの
傾きを外側凸状)としたものも製作した。このとき、d
、S、r、t、T、R等は全て同じとした。
On the other hand, as a comparative example, the spiral ripples P shown in FIGS. We also manufactured one in which the slope of P was outwardly convex. At this time, d
, S, r, t, T, R, etc. were all the same.

このようにして製作した実施例および比較例のダイヤフ
ラムDを第1図及び第2図のごとくケーシング1にセッ
トし、検出室3aに被圧力検出流体aを導びいた際の圧
力−変位結果を第5図に示す0図中、実線が実施例、破
線が比較例を示す。
The diaphragm D of the example and comparative example manufactured in this way was set in the casing 1 as shown in Figs. In Figure 0 shown in FIG. 5, the solid line represents the example, and the broken line represents the comparative example.

この結果から、実施例は、加圧開始時(0〜700sn
Ag)、はぼ直線状の圧力−変位を示すことがわかる。
From this result, in the example, at the start of pressurization (0 to 700 sn
It can be seen that Ag) exhibits a nearly linear pressure-displacement.

上記実施例において、第6図に示すように、中心円形1
0の周りに隣接して同心円形波紋P、を形成するととも
に、この同心円形波紋P1と同心でかつ所定間隔をあけ
て外側円形波紋P2を形成し、両日形波紋P+、Pg間
に渦巻き波紋P、を前記実施例と同−周廻り形成したも
のを製作したところ、同様な効果を得た。このものの場
合、内側の円形波紋P、を省略することもできる。
In the above embodiment, as shown in FIG.
A concentric circular ripple P is formed adjacent to the concentric circular ripple P1, and an outer circular ripple P2 is formed concentrically with the concentric circular ripple P1 at a predetermined interval, and a spiral ripple P is formed between the sun-shaped ripples P+ and Pg. , was manufactured with the same circumference as in the previous example, and similar effects were obtained. In this case, the inner circular ripple P can also be omitted.

また、第7図のものにおいて、各渦巻き波紋Pの半径方
向の傾きを外側凹状としたものも同様な効果を得た。こ
のものにおいて、前記外側円形波紋P2を形成し、その
波紋P、に各渦巻き波紋Pを合流した構成とすることも
できる。
Furthermore, in the case shown in FIG. 7, the same effect was obtained when each spiral ripple P had an outward concave inclination in the radial direction. In this case, the outer circular ripple P2 may be formed, and each spiral ripple P may be added to the outer circular ripple P2.

〔発明の効果〕〔Effect of the invention〕

本発明は、以上のように構成したので、加圧開始時にお
ける圧力−変位曲線を直線状とすることができる。
Since the present invention is configured as described above, the pressure-displacement curve at the start of pressurization can be made linear.

【図面の簡単な説明】[Brief explanation of drawings]

第1回、第2図は、本発明に係る圧力検出装置の一実施
例の切断正面図、切断側面図、第3図は第1図のダイヤ
フラムの一例の概略正面図、第4図は第3図の概略断面
図、第5図は圧力−変位測定図、第6図はダイヤフラム
Dの他側の概略正面図、第7図はダイヤフラムDの従来
例の概略正面図、第8図は第7図の概略断面図である。 D・・・・・・ダイヤフラム、 P、P+、Pg、Ps・・・・・・波紋、R・・・・・
・ダイヤフラム曲率5 、r・・・・・・谷部及び山部曲率、 1・・・・・・ケーシング、 3. 3a、 3b・・・・・・圧力検出室、 4・・・・・・センサー 10・・・・・・中心円形。
1 and 2 are a cutaway front view and a cutaway side view of an embodiment of the pressure detection device according to the present invention, FIG. 3 is a schematic front view of an example of the diaphragm of FIG. 1, and FIG. 3 is a schematic sectional view, FIG. 5 is a pressure-displacement measurement diagram, FIG. 6 is a schematic front view of the other side of diaphragm D, FIG. 7 is a schematic front view of a conventional example of diaphragm D, and FIG. 8 is a schematic front view of the other side of diaphragm D. FIG. 7 is a schematic cross-sectional view of FIG. 7; D...Diaphragm, P, P+, Pg, Ps...Ripple, R...
-Diaphragm curvature 5, r...Trough and peak curvature, 1...Casing, 3. 3a, 3b...Pressure detection chamber, 4...Sensor 10...Central circular shape.

Claims (1)

【特許請求の範囲】 (1)ケーシング1内に、ダイヤフラムDで区画された
圧力検出室3を形成し、この圧力検出室3の一方3aに
被圧力検出流体aを導入するとともに、他方3bに前記
ダイヤフラムDの撓みを連続的に検出するセンサー4を
設けた圧力検出装置において、前記ダイヤフラムDを、
素材板中心円形10の周りに、その周り任意の点から、
渦巻き波紋Pを呈する波形断面とし、その渦巻き波紋P
は前記円形10に向かって傾斜してなる皿ばねにおいて
、前記渦巻き波紋Pの半径方向の傾きを外側凹状とした
ことを特徴とする圧力検出装置。(2)上記渦巻き波紋
Pの傾斜高さhと径方向の長さ、の比h/lを1/5以
下としたことを特徴とする請求項(1)記載の圧力検出
装置。 (3)上記素材板中心円形10の周りに隣接して同心円
形波紋P_1を形成すると共に、この同心円形波紋P_
1と同心でかつ所定間隔をあけて外側円形波紋P_2を
形成し、両円形波紋P_1、P_2間に、上記渦巻き波
紋P_3を形成したことを特徴とする請求項(1)又は
(2)に記載の圧力検出装置。 (4)上記渦巻き波紋の始終端を、上記中心円形波紋P
_1又は外側円形波紋P_2に合流させたことを特徴と
する請求項(3)記載の圧力検出装置。
[Scope of Claims] (1) A pressure detection chamber 3 partitioned by a diaphragm D is formed in the casing 1, and a pressure-detected fluid a is introduced into one side 3a of the pressure detection chamber 3 and the other 3b. In a pressure detection device provided with a sensor 4 that continuously detects the deflection of the diaphragm D, the diaphragm D is
Around the center circle 10 of the material plate, from any point around it,
A wave cross section exhibiting a spiral ripple P, and the spiral ripple P
2. A pressure detection device characterized in that, in a disc spring inclined toward the circular shape 10, the spiral ripple P has an outward concave inclination in the radial direction. (2) The pressure detection device according to claim (1), wherein the ratio h/l of the inclination height h to the radial length of the spiral ripple P is 1/5 or less. (3) Concentric circular ripples P_1 are formed adjacently around the center circle 10 of the material plate, and this concentric circular ripple P_
According to claim (1) or (2), an outer circular ripple P_2 is formed concentrically with the outer circular ripple P_2 at a predetermined interval from the outer circular ripple P_2, and the spiral ripple P_3 is formed between both the circular ripples P_1 and P_2. pressure detection device. (4) The starting and ending ends of the spiral ripples are connected to the center circular ripple P
The pressure detection device according to claim (3), characterized in that the pressure detection device merges with the outer circular ripple P_1 or the outer circular ripple P_2.
JP2021722A 1990-01-30 1990-01-30 Pressure detector Expired - Lifetime JP2524237B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021722A JP2524237B2 (en) 1990-01-30 1990-01-30 Pressure detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021722A JP2524237B2 (en) 1990-01-30 1990-01-30 Pressure detector

Publications (2)

Publication Number Publication Date
JPH03225242A true JPH03225242A (en) 1991-10-04
JP2524237B2 JP2524237B2 (en) 1996-08-14

Family

ID=12062974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021722A Expired - Lifetime JP2524237B2 (en) 1990-01-30 1990-01-30 Pressure detector

Country Status (1)

Country Link
JP (1) JP2524237B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60227141A (en) * 1984-01-06 1985-11-12 シュランベルジュ、インダストリーズ、ソシエテ、アノニム Corrugated film for pressure sensor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60227141A (en) * 1984-01-06 1985-11-12 シュランベルジュ、インダストリーズ、ソシエテ、アノニム Corrugated film for pressure sensor

Also Published As

Publication number Publication date
JP2524237B2 (en) 1996-08-14

Similar Documents

Publication Publication Date Title
US4809589A (en) Corrugated diaphragm for a pressure sensor
JP2677678B2 (en) Pressure or force sensor
CA1038644A (en) Capacitive load cell
EP0610797B1 (en) Floating type brake disk assembly
US4375182A (en) Ultra-sensitive diaphragm with dual stress-relief structures
US4237775A (en) Diaphragm for pressure sensors
JPH0473019B2 (en)
US20040187589A1 (en) Capacitance manometer having a relatively thick flush diaphragm under tension to provide low hysteresis
US4170889A (en) Method and apparatus for roll-forming an end plate
JPH03225242A (en) Pressure detecting device
JPH0544759Y2 (en)
JPH03225238A (en) Pressure detecting device
JPH03225243A (en) Pressure detecting device
JPH03225240A (en) Pressure detecting device
JPH03225241A (en) Pressure detecting device
JPH0531689B2 (en)
JPH03225239A (en) Pressure detecting device
US2925829A (en) Bellows
JPH03199729A (en) Belleville spring
JPH03251730A (en) Fitting structure of load sensor
JP2524232B2 (en) Pressure sensor
JP2524234B2 (en) Pressure sensor
CA2224141A1 (en) Pressure sensor membrane having stepped annular peripheral surfaces and sensor employing same
JP2524233B2 (en) Pressure sensor
JPH04168332A (en) Support construction of diaphragm for pressure sensor