JPH03199729A - Belleville spring - Google Patents

Belleville spring

Info

Publication number
JPH03199729A
JPH03199729A JP34183489A JP34183489A JPH03199729A JP H03199729 A JPH03199729 A JP H03199729A JP 34183489 A JP34183489 A JP 34183489A JP 34183489 A JP34183489 A JP 34183489A JP H03199729 A JPH03199729 A JP H03199729A
Authority
JP
Japan
Prior art keywords
spiral
ripples
wave pattern
spiral wave
disc spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34183489A
Other languages
Japanese (ja)
Inventor
Toshinori Shimada
敏則 島田
Shinichi Ookashi
大樫 真一
Shigeaki Motokawa
本川 恵昭
Teruo Watanabe
照夫 渡辺
Kihachi Onishi
喜八 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tatsuta Electric Wire and Cable Co Ltd
Original Assignee
Tatsuta Electric Wire and Cable Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tatsuta Electric Wire and Cable Co Ltd filed Critical Tatsuta Electric Wire and Cable Co Ltd
Priority to JP34183489A priority Critical patent/JPH03199729A/en
Publication of JPH03199729A publication Critical patent/JPH03199729A/en
Pending legal-status Critical Current

Links

Landscapes

  • Diaphragms And Bellows (AREA)
  • Springs (AREA)
  • Push-Button Switches (AREA)

Abstract

PURPOSE:To form a pressure/displacement curve in a large gradient and into linear shape at the time of starting pressurization by setting a number of revolving turns of a spiral wave pattern to three times or more and further forming a slope in the radial direction of the spiral wave pattern in outside recessed shape. CONSTITUTION:In the case of a belleville spring D formed by tilting its spiral wave pattern P, which is presented as a waveform section from an arbitrary peripheral point in the periphery of a material plate center circle 10, to the center circle 10, the spiral wave pattern P is formed with a number of its revolving turns set to at least three times, and further a slope in the radial direction of the spiral wave pattern P is formed in outside recessed shape while setting ratio h/l of slope height (h) to length l in the diametric direction, of the spiral wave pattern P, to 1/5 or less. In this belleville spring D, deflection by pressing force is transmitted to the total area through the spiral wave pattern P with no unevenness in generated stress, and the spring is uniformly deflected in the peripheral direction without tilting the center axis. Now because of the total length of the spiral wave pattern P increased larger, rigidity is decreased, and a pressure/displacement curve is formed in linear shape, at the time of starting pressurization as well as, a large gradient of the curve is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、周囲全域に亘って均一な撓みをなし得る皿
ばねに関し、ダイヤフラム、キーボードスイッチのキー
トップ復帰用ばねとして適した、主に鋼板、ステンレス
板、ゴム板、プラスチック板で作られる皿ばねに関する
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a disc spring that can be deflected uniformly over the entire circumference, and is mainly made of a steel plate suitable as a diaphragm or a spring for returning the key top of a keyboard switch. , concerning disc springs made of stainless steel plates, rubber plates, and plastic plates.

〔従来の技術及びその課題〕[Conventional technology and its problems]

ダイヤフラム用皿ばねとしては、従来、第9図に示すよ
うに、その断面形状を、素材板の中心円形10の周りに
同心円状の波紋Pを呈する波形としたものがある(第2
図参照)、なお、図中の波紋Pは谷部の軌跡を示す(以
下、同様)。
As shown in FIG. 9, conventional disc springs for diaphragms have a wavy cross-sectional shape that exhibits concentric ripples P around the center circle 10 of the material plate.
(see figure), and the ripples P in the figure indicate the locus of the trough (the same applies hereinafter).

しかしながら、このものDは、周辺固定部はろう付は等
が施されるので剛性が大きくなり、一方、中心部も曲率
半径が小さいので剛性が大となる。
However, in this case D, the rigidity is high because the peripheral fixing part is subjected to brazing, etc., and the central part also has a small radius of curvature, so the rigidity is high.

従って、周辺部と中心部の撓みが小さく、その中間部に
、撓みが集中して素材板が金属の場合、金属疲労によっ
て座屈あるいはクランクが生ずる他、長期間の使用の内
に特性、特に復元力が変化する等の問題がある。
Therefore, if the deflection is small at the periphery and the center, and the deflection is concentrated in the middle, if the material plate is made of metal, buckling or cranking may occur due to metal fatigue, and the characteristics may change over a long period of use. There are problems such as changes in resilience.

また、撓み(変形)作用において、中心円形10に加え
られた押圧力が皿ばね全域に伝わらず、まず、最も内側
の波紋Pまで伝わってその間で撓み、その撓みがある程
度になると、その波紋Pを越えてつぎの波紋Pに至ると
いった段階的な変形の伝播がなされる。このため、撓み
が波紋Pを越えるときに、変位曲線に乱れが生じる。
In addition, in the deflection (deformation) action, the pressing force applied to the center circle 10 is not transmitted to the entire area of the disk spring, but is first transmitted to the innermost ripple P and is deflected between them.When the deflection reaches a certain level, the ripple P The deformation is propagated in stages such that the ripple P reaches the next ripple P. Therefore, when the deflection exceeds the ripple P, a disturbance occurs in the displacement curve.

そこで、本発明者等は、特願昭63−99143号等に
おいて、第8図に示すように、素材板中心円形10の周
りに、その周方向均等分位の少なくとも2点からスター
トした渦巻き波紋Pを呈する波形断面の皿ばねDを提案
した。この提案の皿ばねDは、波形Pが渦巻き状である
ことから、周囲の剛性が均一化され、撓み作用時、応力
の片寄りがなく周方向に均等に撓む。
Therefore, in Japanese Patent Application No. 63-99143, etc., the inventors of the present invention have created spiral ripples that start from at least two points equidistant in the circumferential direction around the center circle 10 of the material board, as shown in FIG. We proposed a disc spring D with a corrugated cross section exhibiting P. In this proposed disc spring D, since the waveform P is spiral, the rigidity of the surrounding area is made uniform, and when the spring is deflected, it is deflected uniformly in the circumferential direction without any bias in stress.

しかしながら、第4図に示すように、その圧力−変位曲
線(○:加圧時、・:減圧時、比較例(破線)参照)は
、直線性に欠け、とくに加圧開始時がなめらかでない、
この種の皿ばねが多く使用されるダイヤフラム型センサ
ーにおいては、加圧開始時の直線性を要求されるものが
ある。
However, as shown in Fig. 4, the pressure-displacement curve (○: during pressurization, .: during depressurization, see comparative example (broken line)) lacks linearity, and is not smooth, especially at the start of pressurization.
Some diaphragm sensors, in which this type of disc spring is often used, require linearity at the start of pressurization.

また、ユーザからは、もつと微圧で大きい変位を得るも
の、すなわち、圧力−変位曲線の勾配が大きいものを要
求された。
Additionally, users have requested a device that can obtain a large displacement with very low pressure, that is, a device with a large slope of the pressure-displacement curve.

この要求に応えるべく、本願発明者等は、圧力−変位曲
線の勾配を大きくするには、皿ばね全体の剛性を低下さ
せることにあると考えた。このため、まず、−筋の渦巻
き波紋Pの全長が長くなればなるほど、剛性が低下する
ことを知見した。
In order to meet this demand, the inventors of the present invention considered that the way to increase the slope of the pressure-displacement curve is to reduce the rigidity of the entire disc spring. For this reason, first, it was found that the longer the total length of the spiral ripples P of the -stripe, the lower the rigidity.

また、渦巻き波紋Pを、中心円形10の周り均等分位の
少なくとも2点からスタートさせたのは、皿ばねDの撓
み時、その中心軸が傾くのを避けるためであった。しか
し、渦巻き波紋Pが1筋でも、その周廻数が増せば、中
心輪の傾きが生じない(無視できる程度しか傾かない)
ことを知見した。
Further, the reason why the spiral ripples P are started from at least two points equally spaced around the center circle 10 is to prevent the center axis from tilting when the disc spring D is bent. However, even if there is only one spiral ripple P, if the number of circumferences increases, the central ring will not tilt (it will tilt only to a negligible extent)
I found out that.

本発明は、以上の点に留意し、前記渦巻き波紋の皿ばね
の圧力−変位曲線の勾配を大きくすること、及び加圧開
始時の圧力−変位曲線を直線状とすることを課題とする
The present invention takes the above points into consideration, and aims to increase the gradient of the pressure-displacement curve of the spiral ripple disc spring, and to make the pressure-displacement curve linear at the start of pressurization.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するため、本発明にあっては、上記知見
に基づき、上記渦巻き波紋を呈する波形断面の皿ばねに
おいて、その渦巻き波紋の周廻数を3回以上とし、かつ
、?lI巻き波紋の半径方向の傾きを外側凹状としたの
である。
In order to solve the above problems, in the present invention, based on the above knowledge, in the disc spring with a wave-shaped cross section exhibiting the spiral ripples, the number of revolutions of the spiral ripples is three or more times, and ? The radial inclination of the II-wound ripples is concave to the outside.

f4巻き波紋は一条でもよく、また複数条の場合には、
その各起点は中心円形周り均等分位とする。
A single f4 winding ripple may be sufficient, or in the case of multiple ripples,
Each starting point is an equal quantile around the central circle.

上記素材板中心円形の周りに隣接して同心円形波紋を形
成すると共に、この同心円形波紋と同心でかつ所定間隔
をあけて外側円形波紋を形成し、この両用形波紋間に上
記渦巻き波紋を形成したものとすることもできる。
Concentric circular ripples are formed adjacent to the center circle of the material plate, outer circular ripples are formed concentrically with the concentric circular ripples at a predetermined interval, and the spiral ripples are formed between the dual-purpose ripples. It can also be assumed that

上記渦巻き波紋の周廻数を3周以上とすると、皿ばねの
撓み時、その中心軸の傾きがなくなり、好ましくは5周
以上とする。
If the number of turns of the spiral ripple is three or more, the central axis will not be tilted when the disk spring is bent, and preferably it is five or more turns.

〔作用〕[Effect]

このように構成される皿ばねは、その表面に押圧力、例
えば圧縮空気圧等が加わると、その押圧力による撓みが
渦巻き波紋を介して全域に伝達され、発生する応力に片
寄りがなく、中心軸が傾くことなく周方向に均等に撓む
、この撓み時、渦巻き波紋の全長が長くなっているため
、従来のものに比べ、剛性も低く、すなわち、撓み度合
も大きい。よって、圧力−変位曲線は、その勾配は大き
いものとなるとともに、加圧開始時、直線状となる(実
施例参照)。
When a pressure force, such as compressed air pressure, is applied to the surface of a disc spring constructed in this way, the deflection due to the pressure force is transmitted to the entire area via spiral ripples, and the generated stress is not biased and is centered. During this bending, when the axis is deflected uniformly in the circumferential direction without inclination, the total length of the spiral ripples is longer, so the rigidity is lower than that of conventional ones, that is, the degree of deflection is also large. Therefore, the pressure-displacement curve has a large slope and is linear at the start of pressurization (see Examples).

また、同心円形波紋及び外側円形波紋を設ければ、波紋
のプレス酸形時、中心部に生じる盛り上り状の歪は同心
円形波紋に吸収分散され、外周囲に生じる線状の歪は外
側円形波紋に吸収分散される。この吸収分散は、渦巻き
波紋の始終端を両用形波紋に合流させれば、より効果が
増す。
In addition, if concentric circular ripples and outer circular ripples are provided, when the ripples are in the press acid form, the raised distortion that occurs in the center will be absorbed and dispersed by the concentric circular ripples, and the linear distortion that occurs on the outer periphery will be absorbed and dispersed in the outer circular ripples. Absorbed and dispersed by ripples. This absorption and dispersion becomes even more effective if the beginning and end of the spiral ripple merge into the dual-use ripple.

したがって、上記皿ばねをダイヤフラム、ダイヤフラム
型圧力検出装置に使用すれば、皿ばねが上記特性を有す
るため、長期に亘って一定の特性(復元力)を有し、高
い信頼性を得るものとなる。
Therefore, if the above disc spring is used in a diaphragm or diaphragm type pressure detection device, since the disc spring has the above characteristics, it will have constant characteristics (restoring force) over a long period of time and will have high reliability. .

また、上記皿ばねをキーボートスインチのキートップ復
帰用ばねに使用すれば、その上記特性により押圧力が波
紋を介して全域に伝達されるため、垂直分力のみならず
、水平分力によっても撓み、円滑な撓み作用をなし、操
作性がよいものとなる。
In addition, if the disc spring described above is used as a spring for returning the key top of a keyboard switch, the pressing force will be transmitted to the entire area via ripples due to the above characteristics, so it will be possible to transmit not only the vertical component force but also the horizontal component force. It has a smooth bending action and is easy to operate.

〔実施例〕〔Example〕

この実施例は、皿ばねをダイヤフラムとしたものであり
、使用した素材は、厚さ:  0.OL5mmのステン
レス箔、34車φのフープを、プレス加工して仕上がり
外径で25.4mlφとしたものである。
In this example, a disc spring is used as a diaphragm, and the material used has a thickness of 0. A hoop made of stainless steel foil with an OL of 5 mm and a diameter of 34 wheels was pressed to have a finished outer diameter of 25.4 ml.

この実施例を第1図、第2図に示し、同図において、渦
巻き波紋Pのピッチd = 0.598mm、中心円形
10の径S−5,01自、波紋Pの最外径−20,2m
m、谷部及び山部の曲率r = 0.3m、波紋Pの高
さt =0.08m、外周と中心との高低差T=1.2
璽嘗、波紋P部分の曲率R=100富■とし、その曲率
Rの中心を外側とするとともに、前記中心円形10の周
囲−点から渦巻き波紋Pを12周廻余り形威した(第1
図、第2図は波が省略しである)。
This embodiment is shown in FIGS. 1 and 2, in which the pitch d of the spiral ripple P is 0.598 mm, the diameter of the center circle 10 is S-5,01, and the outermost diameter of the ripple P is -20, 2m
m, curvature of valley and peak r = 0.3 m, height of ripple P t = 0.08 m, height difference between outer periphery and center T = 1.2
The curvature R of the ripple P part was set to 100 mm, and the center of the curvature R was set to the outside, and the spiral ripple P was shaped around 12 times from the point around the central circle 10 (the first
Waves are omitted in Figures 2 and 2).

一方、比較例として、第8図に示した渦巻き波紋Pを中
心円形10の3等分位から形成し、その周廻数を1回余
りとし、かつ、曲率Rの中心を内側(波紋P部分の傾斜
を外向き凸面)としたものも製作した。このとき、dS
 s、r、t、’r、R等は全て同じとした。
On the other hand, as a comparative example, the spiral ripple P shown in FIG. We also manufactured one in which the slope is outwardly convex. At this time, dS
s, r, t, 'r, R, etc. were all the same.

上記実施例および比較例を第5図及び第6図に示す圧力
−変位測定装置にセットし、それぞれの圧力−変位結果
を第3図、第4図に示す0図中、実線が実施例、鎖線(
破vA)が比較例を示す。
The above examples and comparative examples were set in the pressure-displacement measuring device shown in FIGS. 5 and 6, and the respective pressure-displacement results are shown in FIGS. Dashed line (
A) shows a comparative example.

この第3図の結果から、実施例のものが比較例に比べ、
その勾配が急(大)となっていることが理解できる。す
なわち、実施例は、比較例に比べ微圧で大きい変位を得
ることができる。なお、両側において、中心軸の傾きは
生じなかった。
From the results shown in Figure 3, it can be seen that the example has a higher
It can be seen that the slope is steep (large). That is, the example can obtain a larger displacement with a lower pressure than the comparative example. Note that no inclination of the central axis occurred on both sides.

また、第4図の結果から、実施例のものは、加圧開始時
(θ〜700mAg) 、はぼ直線状の圧力−変位を示
すことがわかる。
Moreover, from the results shown in FIG. 4, it can be seen that the example exhibits a nearly linear pressure-displacement at the start of pressurization (θ~700 mAg).

上記圧力−変位測定装置は、第5図に示すように、第6
図に示す測定器Aを基盤1にボルト締めし、変位杆2の
上下の動き量を周知の光センサ−3によって検出するも
のとした。測定器Aは、第5図に示すように、ケーシン
グ4内にバンキング5を介して実施例又は比較例の皿ば
ねDをセフ)し、ポート6から圧縮空気を導入し、その
導入圧で皿ばねDを撓ませて、変位杆2をばね7に抗し
て押し下げるものである0図中、8は透明アクリル板で
、これを通して皿ばねDの撓み作用を見ることができる
As shown in FIG.
The measuring device A shown in the figure was bolted to the base 1, and the amount of vertical movement of the displacement rod 2 was detected by a well-known optical sensor 3. As shown in FIG. 5, the measuring device A includes a disc spring D of an embodiment or a comparative example inserted into a casing 4 through a banking 5, compressed air is introduced from a port 6, and the introduced pressure causes a disc spring D to be inserted into the casing 4 through a banking 5. In Figure 0, reference numeral 8 is a transparent acrylic plate, through which the deflection action of the disc spring D can be seen.

上記実施例において、第7図に示すように、中心円形1
0の周りに隣接して同心円形波紋P+を形成するととも
に、この同心円形波紋P、と同心でかつ所定間隔をあけ
て外側円形波紋P2を形成し、両目形波紋p、 、Pg
間に渦巻き波紋P、を前記実施例と同−周廻り形威した
ものを製作したところ、同様な効果を得た。このものの
場合、内側の円形波紋P1を省略することもできる。
In the above embodiment, as shown in FIG.
A concentric circular ripple P+ is formed adjacent to 0, and an outer circular ripple P2 is formed concentrically with this concentric circular ripple P and at a predetermined interval, and eye-shaped ripples p, , Pg are formed.
A similar effect was obtained by manufacturing a structure in which the spiral ripples P were formed in the same circumferential shape as in the above embodiment. In this case, the inner circular ripple P1 can also be omitted.

また、第8図のものにおいて、各渦巻き波紋Pを3周廻
り以上させたものも同様な効果を得た。
Furthermore, in the case shown in FIG. 8, a similar effect was obtained when each spiral ripple P was made to rotate three times or more.

このものにおいて、前記外側円形波紋P、を形威し、そ
の波紋P□に各渦巻き波紋Pを合流した構成とすること
もできる。
In this structure, the outer circular ripples P can be formed, and each spiral ripple P can be added to the ripples P□.

なお、上記渦巻き波紋P、P、の傾斜度、すなわち、第
2図における傾斜高さhと径方向の長さlの比(hlo
を115以下とするとよい、好ましくは1/6とする。
The degree of inclination of the spiral ripples P, P, that is, the ratio of the inclination height h to the radial length l in FIG. 2 (hlo
is preferably 115 or less, preferably 1/6.

115以上となると、プレス底形の際、現在の技術では
、その成形圧が、外向きの斜面と内向きの斜面とで大き
く異なって製造が不可能となるからである。
This is because if it exceeds 115, the molding pressure for the outwardly facing slope and the inwardly facing slope will be significantly different, making it impossible to manufacture with the current technology when pressing the bottom shape.

〔発明の効果〕〔Effect of the invention〕

本発明は、以上のように構成したので、従来のものに比
べ微圧で大きい変位(撓み)を得ることができるととも
に、加圧開始時における圧力−変位曲線を直線状とする
ことができる。
Since the present invention is configured as described above, it is possible to obtain a large displacement (deflection) with a small pressure compared to the conventional one, and it is also possible to make the pressure-displacement curve at the start of pressurization linear.

また、渦巻き波紋を一条とすれば、複数条形成するのに
比べれば、その製作も容易である。
In addition, if the spiral ripples are formed in one line, it is easier to manufacture them than if they are formed in multiple lines.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第7図は、本発明に係る皿ばねの各実施例の概
略正面図、第2図は第1図の実施例の断面図、第3図、
第4図は圧力−変位測定図、第5図は圧力−変位測定装
置の概略図、第6図は第5図の要部断面図、第8図、第
9図は従来例のそれぞれ概略正面図である。 10・・・・・・中心円形、   P、P、 、pg・
・・・・・円形波紋、 A・・・・・・圧力−変位測定器、 D・・・・・・皿ばね。 P、・・・・・・渦巻き波紋、
1 and 7 are schematic front views of each embodiment of the disc spring according to the present invention, FIG. 2 is a sectional view of the embodiment of FIG. 1, and FIG.
Fig. 4 is a pressure-displacement measurement diagram, Fig. 5 is a schematic diagram of the pressure-displacement measuring device, Fig. 6 is a sectional view of the main part of Fig. 5, and Figs. 8 and 9 are schematic front views of the conventional example. It is a diagram. 10...Central circle, P, P, , pg・
...Circular ripples, A...Pressure-displacement measuring device, D...Disc spring. P... spiral ripples,

Claims (1)

【特許請求の範囲】 (1)素材板中心円形10の周りに、その周り任意の点
から渦巻き波紋Pを呈する波形断面とし、その渦巻き波
紋Pは前記中心円形10に傾斜してなる皿ばねにおいて
、前記渦巻き波紋Pを少なくとも3周廻り形成し、かつ
渦巻き波紋Pの半径方向の傾きを外側凹状としたことを
特徴とする皿ばね。 (2)請求項(1)に記載の皿ばねDにおいて、上記渦
巻き波紋Pを一条として成ることを特徴とする皿ばね。 (3)請求項(1)に記載の皿ばねDにおいて、上記渦
巻き波紋Pを複数条とし、その各渦巻き波紋Pの起点を
上記中心円形10の周り均等分位としたことを特徴とす
る皿ばね。(4)請求項(1)に記載の皿ばねDにおい
て、上記素材板中心円形10の周りに隣接して同心円形
波紋P_1を形成すると共に、この同心円形波紋P_1
と同心でかつ所定間隔をあけて外側円形波紋P_2を形
成し、両円形波紋P_1、P_2間に、上記渦巻き波紋
P_3を形成したことを特徴とする皿ばね。 (5)上記渦巻き波紋Pの傾斜高さhと径方向の長さl
の比h/lを1/5以下としたことを特徴とする請求項
(1)乃至(4)のいずれかに記載の皿ばね。
Scope of Claims: (1) A wavy cross section exhibiting spiral ripples P from any point around the center circle 10 of the material plate, and the spiral ripples P are inclined to the center circle 10 in a disc spring. . A disc spring characterized in that the spiral ripples P are formed around at least three times, and the spiral ripples P have an outwardly concave inclination in the radial direction. (2) A disc spring D according to claim (1), characterized in that the spiral ripple P is formed as a single strip. (3) The disc spring D according to claim (1), characterized in that the spiral ripples P are plural, and the starting point of each spiral ripple P is equally spaced around the central circle 10. Spring. (4) In the disc spring D according to claim (1), concentric circular ripples P_1 are formed adjacently around the center circle 10 of the material plate, and the concentric circular ripples P_1
A disc spring characterized in that outer circular ripples P_2 are formed concentrically with and spaced apart from each other at a predetermined interval, and the spiral ripple P_3 is formed between both circular ripples P_1 and P_2. (5) Incline height h and radial length l of the spiral ripple P
The disc spring according to any one of claims (1) to (4), characterized in that the ratio h/l is 1/5 or less.
JP34183489A 1989-12-28 1989-12-28 Belleville spring Pending JPH03199729A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34183489A JPH03199729A (en) 1989-12-28 1989-12-28 Belleville spring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34183489A JPH03199729A (en) 1989-12-28 1989-12-28 Belleville spring

Publications (1)

Publication Number Publication Date
JPH03199729A true JPH03199729A (en) 1991-08-30

Family

ID=18349114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34183489A Pending JPH03199729A (en) 1989-12-28 1989-12-28 Belleville spring

Country Status (1)

Country Link
JP (1) JPH03199729A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011018503A1 (en) 2009-08-12 2011-02-17 Vilis Ivars Lietuvietis Direct injection injector for internal combustion engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU241170A1 (en) * А. П. Германов, Ю. Е. Захаров , В. Г. Янов CORRUGATED MEMBRANE
JPS63225706A (en) * 1987-03-11 1988-09-20 Fuji Tool & Die Co Ltd Diaphragm actuator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU241170A1 (en) * А. П. Германов, Ю. Е. Захаров , В. Г. Янов CORRUGATED MEMBRANE
JPS63225706A (en) * 1987-03-11 1988-09-20 Fuji Tool & Die Co Ltd Diaphragm actuator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011018503A1 (en) 2009-08-12 2011-02-17 Vilis Ivars Lietuvietis Direct injection injector for internal combustion engine

Similar Documents

Publication Publication Date Title
EP0702759B1 (en) Foil thrust bearing with varying radial and circumferential stiffness
US4434203A (en) Diaphragm
US4375182A (en) Ultra-sensitive diaphragm with dual stress-relief structures
JP4318125B2 (en) Disk drive device with disk clamp to reduce distortion
KR950031163A (en) Hub rings and support plates for filters and methods for manufacturing these members
EP0008900B1 (en) Diaphragm for pressure sensors
JP2010527795A (en) Continuously nested springs and their manufacture
US20040062406A1 (en) Diaphragm structure of light-sound converter
JPH03199729A (en) Belleville spring
JPS60146922A (en) Torsional damper disk
JPS5942812B2 (en) flat force meter
JPH03199728A (en) Leaf spring
US6050557A (en) Coiled disk spring
JPH03225238A (en) Pressure detecting device
JP3242829B2 (en) Seismic isolation device
JPH03225241A (en) Pressure detecting device
JPH0676728U (en) Disc spring
JPS603396Y2 (en) Retaining ring for rotating member of tripod type universal joint
JP2543772B2 (en) Disc spring
JPH03225240A (en) Pressure detecting device
CA1071031A (en) Apparatus for manufacture of ship's propellers
JPH03225242A (en) Pressure detecting device
JPH0937387A (en) Speaker
CN213583077U (en) Cymbal structure of electronic drum
JPH03225243A (en) Pressure detecting device