JPH03224613A - Gas separator - Google Patents

Gas separator

Info

Publication number
JPH03224613A
JPH03224613A JP2018441A JP1844190A JPH03224613A JP H03224613 A JPH03224613 A JP H03224613A JP 2018441 A JP2018441 A JP 2018441A JP 1844190 A JP1844190 A JP 1844190A JP H03224613 A JPH03224613 A JP H03224613A
Authority
JP
Japan
Prior art keywords
gas
tank
adsorption
product
adsorption tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018441A
Other languages
Japanese (ja)
Inventor
Manabu Matsuchi
学 真土
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokico Ltd
Original Assignee
Tokico Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokico Ltd filed Critical Tokico Ltd
Priority to JP2018441A priority Critical patent/JPH03224613A/en
Publication of JPH03224613A publication Critical patent/JPH03224613A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)

Abstract

PURPOSE:To retain the product gas returned to an adsorption vessel from a product tank in the adsorption vessel for a long period and to obtain the corresponding improvement of adsorption efficiency by providing returning flow valves which are opened when the adsorption vessel is pressurized and return the product gas in the product tank through plural pipings into the adsorption vessel through plural position of the adsorption vessel, to plural pipings. CONSTITUTION:Plural pipings are provided which connect the adsorption vessels 1, 2 with the product tank 20, and the returning flow valves 8, 9, 18, 19 are provided in plural pipings which are opened when the adsorption vessels 1, 2 are pressurized and return the product gas in the product tank 20 through plural pipings into the adsorption vessels 1, 2 through plural positions of the adsorption vessels 1, 2. By this method, the product gas in the product tank 20 is simultaneously returned to the adsorption vessels 1, 2 through plural pipings, and the product gas is supplied into all over the inner area of the adsorption vessels 1, 2 so that the passing time of gas in the adsorption vessels 1, 2 is elongated and the product gas of high purity is obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は気体分離装置に係り、・特にPSA式(Pre
ssure 5w1na AdSOrl)tion)の
気体分離装置に関し、例えば窒素発生装置又は酸素発生
装置として用いて好適な気体分離装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a gas separation device, and in particular a PSA type (Pre
The present invention relates to a gas separation device suitable for use as a nitrogen generation device or an oxygen generation device, for example.

従来の技術 一般に、PSA式気体分離装置は、分子ふるいカーボン
からなる吸着剤を用いて、空気を窒素と酸素に分離し、
いずれか一方を製品ガスとして取出し、使用するもので
ある。
Conventional technology In general, a PSA gas separation device uses an adsorbent made of molecular sieve carbon to separate air into nitrogen and oxygen.
Either one is taken out and used as a product gas.

このため、例えばPSA式窒素発生装置にあっては、吸
着剤を充填した吸着槽に圧縮空気を導入して胃圧する吸
着工程と、該吸着槽内を大気開放し又は真空ポンプで減
圧する脱着工程とを繰返し、吸着工程では吸着槽内の吸
着剤に酸素分子を吸着させて、窒素を外部に取出し、一
方脱着工程では吸着された酸素を脱着し、次の吸着工程
に備えるようになっている。そして、製品ガスである窒
素は吸着槽内を昇圧状態にして取出すものであるため、
発生する窒素ガスは断続的で圧力変化も大きい。このた
め、窒素ガスを一定圧力で、かつ連続的に使用する場合
には取出側に製品タンクを設け、製品タンク内に窒素ガ
スを貯えるように構成されている。
For this reason, for example, in a PSA nitrogen generator, there is an adsorption step in which compressed air is introduced into an adsorption tank filled with an adsorbent to apply gastric pressure, and a desorption step in which the inside of the adsorption tank is opened to the atmosphere or the pressure is reduced using a vacuum pump. In the adsorption process, the adsorbent in the adsorption tank adsorbs oxygen molecules and extracts nitrogen to the outside, while in the desorption process, the adsorbed oxygen is desorbed and prepared for the next adsorption process. . Since the product gas, nitrogen, is extracted by increasing the pressure inside the adsorption tank,
The nitrogen gas generated is intermittent and the pressure changes are large. For this reason, when nitrogen gas is used continuously at a constant pressure, a product tank is provided on the extraction side and the nitrogen gas is stored in the product tank.

尚、従来の装置では吸着槽で生成した製品ガスを製品タ
ンクに取出した後、吸着槽内に残留するガスを別の吸着
槽に供給して均圧化を図り、より高純度の製品ガスを生
成するようにしている。しかるに、窒素ガスの需要が高
まるとともにさらに高純度の窒素ガスが効率良く生成で
きることが要望されている。
In addition, in conventional equipment, after the product gas generated in the adsorption tank is taken out into the product tank, the gas remaining in the adsorption tank is supplied to another adsorption tank to equalize the pressure and produce product gas of higher purity. I am trying to generate it. However, as the demand for nitrogen gas increases, it is desired to be able to efficiently generate nitrogen gas of even higher purity.

発明が解決しようとする課題 上記問題を解決する装置としては例えば実開昭1−77
828号に記載されたものがある。
Problems to be Solved by the Invention An example of a device for solving the above problems is the Utility Model Application Publication No. 1-77
There is one described in No. 828.

この公報の装置では還流用タンクに蓄圧された製品ガス
を吸着槽の上部(下流側)より還流させて高純度の製品
ガスを生成する構成である。しかしながら、この装置に
おいても@薯槽の上部より製品ガスを還流させるだけな
ので、製品ガスは吸着槽の上部近傍にしか供給されず、
しかもコンプレッサからの圧縮空気は吸着槽の下部から
供給されるため、製品ガスを吸着槽内部全体に供給する
ことができなかった。従って、上記装置では製品ガスを
吸着槽に還流させても、吸着槽から製品ガスを取出す際
還流したガスがそのまま取出されたしまうので、充分な
還流効果が得られず結果的には高純度の製品ガスを効率
良く生成するとかできないといった課題があった。
The apparatus disclosed in this publication is configured to reflux the product gas that has been pressure-accumulated in the reflux tank from the upper part (downstream side) of the adsorption tank to generate high-purity product gas. However, even in this device, the product gas is only refluxed from the top of the adsorption tank, so the product gas is only supplied near the top of the adsorption tank.
Moreover, since the compressed air from the compressor is supplied from the lower part of the adsorption tank, it is not possible to supply the product gas to the entire interior of the adsorption tank. Therefore, in the above device, even if the product gas is refluxed into the adsorption tank, the refluxed gas is taken out as it is when taking out the product gas from the adsorption tank, so a sufficient reflux effect cannot be obtained and as a result, high purity The problem was that it was not possible to efficiently generate product gas.

そこで、本発明は上記課題を解決した気体分離装置を提
供することを目的とする。
Therefore, an object of the present invention is to provide a gas separation device that solves the above problems.

課題を解決するための手段 本発明は上記気体分離装置において、 製品タンクと吸着槽との間を接続する複数の配管を設け
、吸着槽を昇圧させるとき開弁され複数の配管を介して
製品タンク内に製品ガスを吸着槽の複数個所より吸着槽
内に還流さぜる遭流用弁を前記複数の配管に設けてなる
Means for Solving the Problems The present invention provides the above-mentioned gas separation apparatus, in which a plurality of pipes are provided to connect the product tank and the adsorption tank, and when the adsorption tank is pressurized, the valve is opened and the product tank is connected via the plurality of pipes. The plurality of pipes are provided with flow valves for circulating product gas back into the adsorption tank from a plurality of locations in the adsorption tank.

作用 製品タンク内の製品ガスを複数の配管より同時に吸着槽
へ還流させることにより吸着槽内の全域に製品ガスを供
給し、還流したガスの吸着槽内における通過時間を長く
してより高純度の製品ガスを生成しうる。
By simultaneously refluxing the product gas in the product tank to the adsorption tank through multiple pipes, the product gas is supplied to the entire area inside the adsorption tank, and the passage time of the refluxed gas in the adsorption tank is lengthened, resulting in higher purity. Can produce product gas.

実施例 第1図は本発明になる気体分離装置の第1実施例として
の窒素発生装置の概略構成図である。
Embodiment FIG. 1 is a schematic diagram of a nitrogen generator as a first embodiment of the gas separation apparatus according to the present invention.

第1図中、1,2は第1、第2の吸着槽で、各吸着槽1
,2内にはそれぞれ分子ふるいカーボンIA、2Aが充
填されている。
In Figure 1, 1 and 2 are the first and second adsorption tanks, and each adsorption tank 1
, 2 are filled with molecular sieves IA and 2A, respectively.

3は圧縮空気供給源となるコンプレッサで、コンプレッ
サ3からの圧縮空気は、タンク3aに貯溜され、冷凍式
ドライヤ4.配管6.7を介して吸着槽1.2にそれぞ
れ交互に供給されるようになっており、このため該配管
6.7の途中にt、tそれぞれ電磁弁からなる空気供給
用弁8,9が設けられている。
3 is a compressor serving as a compressed air supply source, and the compressed air from the compressor 3 is stored in a tank 3a, and is sent to a refrigeration dryer 4. The air is alternately supplied to the adsorption tank 1.2 through the piping 6.7, and for this reason, air supply valves 8 and 9 each consisting of a solenoid valve t and t are installed in the middle of the piping 6.7. is provided.

28は還流用配管で、一端が後述する製品タンク20に
接続され、他端が配管7に接続されている。この還流用
配管28には逆止弁29が配設されており、逆止弁29
はコンプレッサ3からの圧縮空気が製品タンク20へ供
給されることを阻止する。
Reference numeral 28 denotes a reflux pipe, one end of which is connected to a product tank 20, which will be described later, and the other end connected to the pipe 7. A check valve 29 is disposed in this reflux pipe 28.
prevents compressed air from the compressor 3 from being supplied to the product tank 20.

10.11は説肴時に吸着槽1.2からの気体を排出す
る配管で、排気音を下げるサイレンサ12に接続されて
いる。そして、前記配管10゜11の途中にはそれぞれ
吸着槽1.2内の脱着排ガスを半サイクル毎に交互に排
出する電磁弁からなる気体排出用弁13.14が設けら
れている。
10.11 is a pipe for discharging gas from the adsorption tank 1.2 during the serving, and is connected to a silencer 12 for reducing exhaust noise. Gas exhaust valves 13 and 14 are provided in the middle of the pipes 10 and 11, respectively, which are electromagnetic valves that alternately exhaust the desorbed exhaust gas in the adsorption tank 1.2 every half cycle.

15.16は吸着槽1,2からの製品ガスとしての窒素
をそれぞれ取出す取出配管、17は各配管i5.16と
連結した取出配管で、配管15゜16の途中には半サイ
クルの間だけ後述の制御の下に交互に開弁する電磁弁か
らなる取出用弁18゜19がそれぞれ設けられている。
Reference numerals 15 and 16 refer to take-out pipes for taking out nitrogen as product gas from adsorption tanks 1 and 2, and 17 refer to take-out pipes connected to each pipe i5 and 16. In the middle of pipes 15 and 16, there are pipes that will be described later for half a cycle. Take-out valves 18 and 19 are provided, respectively, consisting of electromagnetic valves that open alternately under the control of.

また前記取出配管17は製品タンク20と接続されてい
る。
Further, the extraction pipe 17 is connected to a product tank 20.

21は吸着槽1.2間を連通する配管、22は配管21
の途中に設けられた電磁弁からなる均圧用弁で、均圧用
弁22は吸着槽1゜2による半サイクルの終了時に所定
の短時間だけ開弁し、吸着槽1.2間を均圧にする。
21 is a pipe communicating between adsorption tanks 1 and 2, 22 is a pipe 21
The pressure equalizing valve 22 is a pressure equalizing valve consisting of a solenoid valve installed in the middle of the adsorption tank 1. The pressure equalizing valve 22 opens for a predetermined short time at the end of a half cycle by the adsorption tank 1.2, and equalizes the pressure between the adsorption tanks 1 and 2. do.

23は製品タンク20に接続された取出配管で、その途
中には電磁弁からなる取出用弁24が設けられている。
23 is a take-out pipe connected to the product tank 20, and a take-out valve 24 made of a solenoid valve is provided in the middle of the take-out pipe.

25は濃度計で、取出配管23より分岐する分岐配管2
6に接続されている。又濃度計25には酸素センサが使
用されており、濃度計25は取出配管23を介して製品
タンク20より取出された気体の酸素濃度を測定する。
25 is a concentration meter, and a branch pipe 2 branches from the take-out pipe 23.
6. Further, an oxygen sensor is used in the concentration meter 25, and the concentration meter 25 measures the oxygen concentration of the gas taken out from the product tank 20 via the takeout pipe 23.

即ち、濃度計25は製品タンク20より取出された窒素
ガス中に含まれている酸素濃度を監視しており、酸素濃
度に比例した電流値の信号を出力する。即ち、製品タン
ク20内に蓄圧されたガスの窒素濃度が下ると、必然的
に酸素濃度が高まるため、濃度計25は製品タンク20
内の窒素濃度が低濃度となったことを検出できる。又、
濃度計25からの酸素濃度測定信号は後述する制御回路
27に入力される。
That is, the concentration meter 25 monitors the oxygen concentration contained in the nitrogen gas taken out from the product tank 20, and outputs a signal with a current value proportional to the oxygen concentration. That is, when the nitrogen concentration of the gas accumulated in the product tank 20 decreases, the oxygen concentration inevitably increases.
It can be detected that the nitrogen concentration in the tank has become low. or,
The oxygen concentration measurement signal from the concentration meter 25 is input to a control circuit 27, which will be described later.

なお、濃度計25に使用される酸素センサとしては酸素
分子の常磁性を利用した磁気式酸素センサ、酸素が透過
膜を介して電解液に入ると電極で酸化還元反応が起き電
流が流れるのを利用した電磁式酸素センサ、ジルコニア
磁気の内外面に電極を設け、酸素濃度によって起電力が
発生するのを利用したジルコニア式酸素センサ等が用い
られる。
The oxygen sensor used in the concentration meter 25 is a magnetic oxygen sensor that utilizes the paramagnetism of oxygen molecules.When oxygen enters the electrolyte through a permeable membrane, a redox reaction occurs at the electrodes, causing a current to flow. Electromagnetic oxygen sensors are used, and zirconia oxygen sensors are used that utilize the fact that electrodes are provided on the inner and outer surfaces of zirconia magnetism and electromotive force is generated depending on the oxygen concentration.

また、制御回路27は例えばマイクロコンピュータ等に
よって構成される弁制御手段で、所定のプログラムに基
づいて、空気供給用弁8.9、気体排出用弁13,14
、取出用弁18.19、均圧用弁22、取出用弁24を
開閉制御する。
The control circuit 27 is a valve control means constituted by, for example, a microcomputer, and controls the air supply valves 8.9, gas discharge valves 13, 14, etc. based on a predetermined program.
, the opening/closing control of the extraction valves 18 and 19, the pressure equalization valve 22, and the extraction valve 24.

尚、上記Il制御回路27により開閉制御される各電磁
弁は、開弁信号の供給により励磁されたとき開弁し、励
磁されないときにはバネ力で閉弁するようになっている
Each electromagnetic valve, which is controlled to open and close by the Il control circuit 27, opens when it is energized by the supply of a valve opening signal, and closes by spring force when it is not energized.

次に、上記のように構成された窒素発生装置の動作につ
き説明する。
Next, the operation of the nitrogen generator configured as described above will be explained.

まず、窒素発生装置としての基本動作について、第2図
、第3図を参照しながら述べる。
First, the basic operation of the nitrogen generator will be described with reference to FIGS. 2 and 3.

いま、窒素発生装置を始動すると、制御回路27の制蓼
の下に、各電磁弁が作動し、窒素(製品ガス)発生が行
われる。
Now, when the nitrogen generator is started, each electromagnetic valve is operated under the control of the control circuit 27, and nitrogen (product gas) is generated.

まず、第2図、第3図に示すように■、■、■の動作が
実行される。第2図中の■は、空気供給用弁9.取出用
弁19と気体排出用弁13が開弁し、第2の吸着槽2に
原料気体としての圧縮空気がコンプレッサ3より供給さ
れる。
First, as shown in FIGS. 2 and 3, operations ①, ②, and ② are executed. ■ in Figure 2 indicates air supply valve 9. The take-out valve 19 and the gas discharge valve 13 are opened, and compressed air as a raw material gas is supplied from the compressor 3 to the second adsorption tank 2 .

同時に、製品タンク20の製品ガスは還流用配管28よ
り配管7を介して下部(上流側)より吸着槽2内に還流
する。さらに製品ガスは取出し配管17.16を逆流し
て上部(下流側)より吸着槽2内に還流する。従って、
吸着槽1,2においては第1図中破線矢印で示すように
上、下流側より同時に製品ガスが還流するため、吸着槽
1.2の内部全体に高純度の窒素ガスを短時間で供給す
ることができる。従って第2の吸着槽2はコンプレッサ
3からの圧縮空気と上、下方向より還流したガスにより
昇圧状態にあり、分子ふるいカーボン2Aに酸素が吸着
され、一方策1の吸着槽1は気体排出用弁13の開弁に
より減圧状態にあり、吸着していた酸素が脱着して排出
されている状態を示している。
At the same time, the product gas in the product tank 20 flows back into the adsorption tank 2 from the lower part (upstream side) via the reflux pipe 28 and the pipe 7. Further, the product gas flows backward through the take-out pipes 17 and 16 and flows back into the adsorption tank 2 from the upper part (downstream side). Therefore,
In the adsorption tanks 1 and 2, product gas is simultaneously refluxed from the upper and downstream sides as shown by the broken line arrows in Figure 1, so high-purity nitrogen gas is supplied to the entire interior of the adsorption tanks 1 and 2 in a short time. be able to. Therefore, the second adsorption tank 2 is in a pressurized state due to the compressed air from the compressor 3 and the gas refluxed from above and below, and oxygen is adsorbed to the molecular sieve carbon 2A. This shows a state in which the pressure is reduced due to the opening of the valve 13, and the adsorbed oxygen is desorbed and discharged.

次に、第2図中の■は空気供給用弁9を閉弁し、取出用
弁19を開弁した状態として第2の吸着槽2内の窒素ガ
スを取出している状態を示している。
Next, ■ in FIG. 2 shows a state in which the air supply valve 9 is closed and the extraction valve 19 is opened, and the nitrogen gas in the second adsorption tank 2 is being taken out.

このとき、第1の@看槽1は減圧状態のままである。At this time, the first @ nursing tank 1 remains in a reduced pressure state.

次に、第2図中の■は均圧操作で、均圧用弁22を開弁
すると共に各取出用弁18,19、空気供給用弁9、気
体排出用弁13を閉弁する。これにより、第2の吸着槽
2内に残存する窒素富化ガスは第1の吸着槽1に回収さ
れ、各吸着槽1゜2は均圧となる。なお、前記均圧操作
は通常1〜3秒である。
Next, ▪ in FIG. 2 is a pressure equalization operation in which the pressure equalization valve 22 is opened, and the respective extraction valves 18 and 19, the air supply valve 9, and the gas discharge valve 13 are closed. As a result, the nitrogen-enriched gas remaining in the second adsorption tank 2 is recovered to the first adsorption tank 1, and each adsorption tank 1.degree. 2 becomes equal in pressure. Note that the pressure equalization operation usually takes 1 to 3 seconds.

これにより、1サイクルのうちの前半の半サイクルが終
了したことになり、空気供給用弁8.取出用弁18.気
体排出用弁14を開弁することによって、第3図(B)
に示すように第2図中の■〜■に示す後半の半サイクル
を繰返す。かくして、1サイクルを120秒とすると、
吸着槽1,2からは各半サイクルの後半で窒素ガスを取
出し、製品タンク20に供給することができる。
This means that the first half cycle of one cycle has been completed, and the air supply valve 8. Take-out valve 18. By opening the gas discharge valve 14, as shown in FIG. 3(B).
As shown in FIG. 2, the latter half cycle shown by ■ to ■ in FIG. 2 is repeated. Thus, if one cycle is 120 seconds,
Nitrogen gas can be taken out from the adsorption tanks 1 and 2 in the latter half of each half cycle and supplied to the product tank 20.

尚、上記■の工程で、気体供給用弁9が開弁されるため
、コンプレッサ3からの圧縮気体とともに製品タンク2
0からの製品ガスが第2の吸着槽2に供給される。2回
目以降になると、すでに、第2の吸着槽2には前回の■
の均圧工程により通常の原料気体よりも窒素濃度の高い
ガスが供給されている。
In addition, since the gas supply valve 9 is opened in the step (■) above, the compressed gas from the compressor 3 and the product tank 2 are
Product gas from 0 is supplied to the second adsorption tank 2. From the second time onward, the previous ■
Due to the pressure equalization step, a gas with a higher nitrogen concentration than normal raw material gas is supplied.

そのため、均圧工程時に導入されたガスが吸着槽2の上
部から還流された製品ガスによりさらに吸着槽2の内部
へ押し込められる。よって、均圧化により導入されたガ
スは取出用弁19を介して製品タンク20へ取出される
まで長い時間吸着槽2に滞留することができ、それだけ
多くの酸素分子が吸着される。又、吸着槽2の下部より
還流された製品ガスは吸着槽2の下部から上部に移動し
て取出用弁19により取出されるまでの吸着槽2内にお
ける滞留時間が長くなるため、還流された製品ガス中に
含まれる酸素分子もより多く吸着される。このため、製
品タンク20より還流させる製品ガス量が従来と同じで
あっても吸着効率が高められ、分子ふるいカーボン2A
により高純度の窒素ガスが生成される。
Therefore, the gas introduced during the pressure equalization step is further forced into the interior of the adsorption tank 2 by the product gas refluxed from the upper part of the adsorption tank 2. Therefore, the gas introduced by pressure equalization can stay in the adsorption tank 2 for a long time until it is taken out to the product tank 20 via the take-out valve 19, and that much more oxygen molecules are adsorbed. In addition, the product gas refluxed from the lower part of the adsorption tank 2 moves from the lower part of the adsorption tank 2 to the upper part and stays in the adsorption tank 2 for a long time until it is taken out by the take-out valve 19. More oxygen molecules contained in the product gas are also adsorbed. Therefore, even if the amount of product gas refluxed from the product tank 20 is the same as before, the adsorption efficiency is increased and the molecular sieve carbon 2A
High purity nitrogen gas is produced.

従って、■の工程で取出用弁19が開弁されると、通常
よりも窒素濃度の高い窒素ガスが製品タンク20内に蓄
圧される。
Therefore, when the take-out valve 19 is opened in step (2), nitrogen gas with a higher nitrogen concentration than usual is accumulated in the product tank 20.

このような、上記■、■の工程における還流効果は吸着
槽1の■、■の工程でも同様に得られる。
Such reflux effects in the steps (1) and (2) described above can be similarly obtained in the steps (1) and (2) of the adsorption tank 1.

尚、上記のように高純度の製品ガスの生成が可能になる
ため、例えば製品ガスの純度を一定のレベルに保つよう
にした場合、従来の装置よりも多量のガスを生成するこ
とができる。従って、高純度の製品ガスを生成できるた
め、製品タンク20より取出される製品ガスの流量を増
加さゼることができる。又吸着槽1.2より1回の工程
で取出される製品ガスの純度が従来よりも高いため、製
品タンク20内の純度が高くなる時間が短縮される。す
なわち、立ち上がり時間の短縮の効果も得られる。
Note that, as described above, it is possible to generate a highly purified product gas, so for example, when the purity of the product gas is maintained at a constant level, a larger amount of gas can be generated than with conventional devices. Therefore, since a highly purified product gas can be generated, the flow rate of the product gas taken out from the product tank 20 can be increased. Furthermore, since the purity of the product gas taken out from the adsorption tank 1.2 in one process is higher than that of the conventional product, the time required for the purity in the product tank 20 to become high is shortened. That is, the effect of shortening the rise time can also be obtained.

尚、上記実施例では本来吸着槽1,2で生成された製品
ガスを製品タンク20へ供給するため取出配管17を還
流用配管としても使用しており、気体供給用弁8.9及
び取出用弁18,19を還流用弁として使用しているの
で構成の複雑化が防止されている。
In the above embodiment, the take-out pipe 17 is also used as a reflux pipe in order to supply the product gas originally generated in the adsorption tanks 1 and 2 to the product tank 20, and the gas supply valve 8.9 and the take-out valve 8. Since the valves 18 and 19 are used as reflux valves, the configuration is prevented from becoming complicated.

又、第1図中、破線で示すように還流用配管28とタン
ク3aとを配管36(配管途中に電磁弁37.逆止弁3
8が配設されている)で接続し、配管36上の電磁弁3
7を一時的に開弁することにより、タンク3aに略大気
温度近くまで冷却された高純度の製品ガスが供給される
ため、タンク3a内に蓄圧されたコンプレッサ3からの
高温の圧縮気体が熱交換により冷却される。しかもエア
ドライヤ4よりも温度、露点の低い状態の製品ガスがタ
ンク3aに還流することにより、タンク3a内の圧縮空
気は通常の原料気体よりも窒素純度が轟く、しかも温度
、露点が低くなっているため、より高純度の製品ガスが
得られる。
In addition, as shown by the broken line in FIG.
8), and the solenoid valve 3 on the pipe 36
By temporarily opening the valve 7, high-purity product gas cooled to approximately atmospheric temperature is supplied to the tank 3a, so that the high-temperature compressed gas from the compressor 3 accumulated in the tank 3a is heated. Cooled by exchange. Moreover, since the product gas with a lower temperature and dew point than the air dryer 4 is returned to the tank 3a, the compressed air in the tank 3a has higher nitrogen purity than the normal raw material gas, and has a lower temperature and dew point. Therefore, a product gas of higher purity can be obtained.

第4図に本発明の第2実施例を示す。第4図中、製品タ
ンク20の上部には別の還流用配管30が接続されてい
る。この還流用配管30の途中には逆止弁31が配設さ
れている。33.35は夫々還流用配管30より分岐し
た還流用配管で、還流用弁32.34が配設され第1の
吸着槽1.第2の吸着槽2の略中夫に接続されている。
FIG. 4 shows a second embodiment of the present invention. In FIG. 4, another reflux pipe 30 is connected to the upper part of the product tank 20. A check valve 31 is disposed in the middle of this reflux pipe 30. Reference numerals 33 and 35 indicate reflux pipes branched from the reflux pipe 30, and reflux valves 32 and 34 are provided to connect the first adsorption tank 1. It is connected to the substantially central part of the second adsorption tank 2.

従って、還流工程時においては前述の如く、■、■の工
程で気体供給用弁8,9及び取出用弁18.19を開弁
し、且つ還流用弁32.34を開弁する。これにより、
製品タンク20内の製品ガスは取出し配管17.配管1
5.16を介した第1の還流路と、還流用配管28.配
管6,7を介した第2の還流路と、別の還流用配管30
.33.35を介した第3の還流路より各吸着槽1.2
に供給される。
Therefore, during the reflux step, as described above, the gas supply valves 8 and 9 and the take-out valves 18 and 19 are opened, and the reflux valves 32 and 34 are opened in steps (1) and (2). This results in
The product gas in the product tank 20 is taken out from the pipe 17. Piping 1
5.16 and a first reflux path via reflux piping 28. A second reflux path via pipes 6 and 7 and another reflux pipe 30
.. From the third reflux path via 33.35 to each adsorption tank 1.2
is supplied to

よって、第4図中破線で示すように、製品タンク20か
らの製品ガスが吸着槽1,2の上部、下部及び中間部の
3方向より還流されるため、本実施例のように縦長の吸
着槽1.2であっても短時間で吸着槽1,2内全体に製
品ガスを供給することができる。
Therefore, as shown by the broken line in FIG. 4, the product gas from the product tank 20 is refluxed from three directions: the upper, lower, and middle parts of the adsorption tanks 1 and 2. Even in tank 1.2, product gas can be supplied to the entire interior of adsorption tanks 1 and 2 in a short time.

又、上記実施例では円柱状の縦長形状の吸着槽を例に挙
げて説明したが、吸着槽の形状はこれに限らず他の形状
であってもその形状に応じて複数の還流用配管を適宜配
設するようにすれば良い。
Furthermore, in the above embodiment, a vertically elongated cylindrical adsorption tank was used as an example, but the shape of the adsorption tank is not limited to this, and even if the adsorption tank has other shapes, multiple reflux pipes may be installed depending on the shape. It may be arranged as appropriate.

又、還流用配管の数は3本以上に増やしても良いのは勿
論である。
Moreover, it goes without saying that the number of reflux pipes may be increased to three or more.

発明の効果 上述の如く、本発明になる気体分離装置は、複数の配管
を介して製品タンク内の製品ガスを吸着槽の複数個所よ
り吸着槽内に還流させることができるので、製品タンク
から吸着槽に還流させた製品ガスが長い時間吸着槽内で
滞留することができ、その分吸着効率が向上してより高
純度の製品ガスを生成することができる。又、高純度の
製品ガスを生成できるため、製品タンクから取出される
製品ガスの流量を増加させることができ、しかも吸着槽
より1回の工程で取出される製品ガスの純度が従来より
も高いため、製品タンク内の純度が高くなる時間が短縮
され、立ち上がり時間の短縮を図ることもできる。さら
に、従来と同じ量の製品ガスを還流させても複数の配管
により製品ガスを還流させるため充分な還流効果が得ら
れ、特に吸着槽の形状が縦長形状等の場合でも吸着槽の
内部全体に製品ガスを供給することができ、しがも従来
からの配管及び気体供給用弁、取出用弁を利用すること
により構成の簡略化を図ることもできる等の特長を有す
る。
Effects of the Invention As described above, the gas separation device according to the present invention is capable of refluxing the product gas in the product tank into the adsorption tank from multiple locations in the adsorption tank via a plurality of pipes. The product gas refluxed into the tank can stay in the adsorption tank for a long time, and the adsorption efficiency improves accordingly, making it possible to generate product gas with higher purity. In addition, since high-purity product gas can be generated, the flow rate of product gas taken out from the product tank can be increased, and the purity of the product gas taken out from the adsorption tank in one process is higher than before. Therefore, the time required for the purity in the product tank to increase is shortened, and the start-up time can also be shortened. Furthermore, even if the same amount of product gas as before is refluxed, a sufficient reflux effect can be obtained because the product gas is refluxed through multiple pipes, and even if the adsorption tank is vertically long, the entire interior of the adsorption tank can be It has the advantage of being able to supply product gas and also simplifying the configuration by using conventional piping, gas supply valves, and take-out valves.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明になる気体分離装置の第1実施例の概略
構成図、第2図及び第3図は各工程を説明するための工
程図、第4図は本発明の第2実施例の概略構成図である
。 1.2・・・吸着槽、1△、2A・・・分子ふるいカー
ボン、3・・・コンプレッサ、32.34・・・電磁弁
、20・・・製品タンク、2B、30.33.35・・
・還流用配管、29.31・・・逆止弁。
FIG. 1 is a schematic configuration diagram of a first embodiment of a gas separation device according to the present invention, FIGS. 2 and 3 are process diagrams for explaining each step, and FIG. 4 is a second embodiment of the present invention. FIG. 1.2... Adsorption tank, 1△, 2A... Molecular sieve carbon, 3... Compressor, 32.34... Solenoid valve, 20... Product tank, 2B, 30.33.35.・
・Recirculation piping, 29.31...Check valve.

Claims (1)

【特許請求の範囲】 内部に吸着剤が充填された吸着槽に圧縮した原料気体を
供給して前記吸着槽を昇圧状態にした後吸着槽の取出用
弁を開弁させて該吸着剤により生成された製品ガスを製
品タンク内に蓄圧する気体分離装置において、 前記製品タンクと前記吸着槽との間を接続する複数の配
管を設け、 前記吸着槽を昇圧させるとき開弁され前記複数の配管を
介して前記製品タンク内に製品ガスを前記吸着槽の複数
個所より吸着槽内に還流させる還流用弁を前記複数の配
管に設けてなることを特徴とする気体分離装置。
[Claims] After supplying compressed raw material gas to an adsorption tank filled with an adsorbent to raise the pressure of the adsorption tank, open the take-out valve of the adsorption tank to collect the gas produced by the adsorbent. A gas separation device for accumulating pressure of product gas in a product tank, wherein a plurality of pipes are provided to connect the product tank and the adsorption tank, and when the adsorption tank is pressurized, a valve is opened to connect the plurality of pipes. A gas separation device characterized in that the plurality of pipes are provided with reflux valves that allow product gas to flow back into the adsorption tank from a plurality of locations in the adsorption tank through the product tank.
JP2018441A 1990-01-29 1990-01-29 Gas separator Pending JPH03224613A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018441A JPH03224613A (en) 1990-01-29 1990-01-29 Gas separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018441A JPH03224613A (en) 1990-01-29 1990-01-29 Gas separator

Publications (1)

Publication Number Publication Date
JPH03224613A true JPH03224613A (en) 1991-10-03

Family

ID=11971728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018441A Pending JPH03224613A (en) 1990-01-29 1990-01-29 Gas separator

Country Status (1)

Country Link
JP (1) JPH03224613A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016509957A (en) * 2013-02-15 2016-04-04 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Oxygen separator and oxygen generation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016509957A (en) * 2013-02-15 2016-04-04 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Oxygen separator and oxygen generation method
US9873078B2 (en) 2013-02-15 2018-01-23 Koninklijke Philips N.V Oxygen separator and method of generating oxygen

Similar Documents

Publication Publication Date Title
EP0932439B1 (en) Closed-loop feedback control for oxygen concentrator
US7722700B2 (en) Apparatus and method of providing concentrated product gas
US4648888A (en) Oxygen concentrator
JP4365403B2 (en) Pressure swing adsorption gas generator
TWI401113B (en) Pressure swing adsorption gas generating device
KR20170046739A (en) Methods of operating pressure swing adsorption purifiers with electrochemical hydrogen compressors
JP4313087B2 (en) Oxygen concentrator
JPH03224613A (en) Gas separator
JP3342844B2 (en) Operation control device for oxygen concentrator and operation control method for oxygen concentrator
JP2008195556A (en) Oxygen condenser
JP2007054678A (en) Stabilization method for stabilizing concentration of gas and gas concentrator
JP6231363B2 (en) Gas separation apparatus and method
CN211111060U (en) High-efficient nitrogen generator
JPH062731Y2 (en) Gas separation device
CN209865695U (en) Gas flow distributor and nitrogen production equipment
JPH03188914A (en) Apparatus for separating gas
JP3565246B2 (en) Gas separation device
JPH04156912A (en) Gas separator
JP2741889B2 (en) Gas separation device
CN213537275U (en) Oxygen generator capable of automatically keeping oxygen concentration
JPH02307507A (en) Gas separator
JP2005343776A (en) Method and apparatus for producing gaseous nitrogen
JPH10118439A (en) Gas separating device based on psa process
JP2514044B2 (en) Gas separation device
JP3119659B2 (en) Gas separation device