JP3342844B2 - Operation control device for oxygen concentrator and operation control method for oxygen concentrator - Google Patents

Operation control device for oxygen concentrator and operation control method for oxygen concentrator

Info

Publication number
JP3342844B2
JP3342844B2 JP01616899A JP1616899A JP3342844B2 JP 3342844 B2 JP3342844 B2 JP 3342844B2 JP 01616899 A JP01616899 A JP 01616899A JP 1616899 A JP1616899 A JP 1616899A JP 3342844 B2 JP3342844 B2 JP 3342844B2
Authority
JP
Japan
Prior art keywords
oxygen
flow rate
air
valve
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01616899A
Other languages
Japanese (ja)
Other versions
JP2000210525A (en
Inventor
博文 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ikiken Co Ltd
Original Assignee
Ikiken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ikiken Co Ltd filed Critical Ikiken Co Ltd
Priority to JP01616899A priority Critical patent/JP3342844B2/en
Publication of JP2000210525A publication Critical patent/JP2000210525A/en
Application granted granted Critical
Publication of JP3342844B2 publication Critical patent/JP3342844B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、酸素濃縮装置(圧
力変動吸着型酸素濃縮器)の運転制御装置及び運 転制御
方法に関する。
BACKGROUND OF THE INVENTION The present invention is the operation control device and OPERATION control of the oxygen concentrator (pressure swing adsorption-type oxygen concentrator)
About the method .

【0002】[0002]

【従来の技術】従来の酸素濃縮装置としては、酸素選択
透過膜を用いた膜式酸素濃縮器と、窒素ガスを優先的に
吸着する吸着剤を使用した圧力変動吸着型酸素濃縮器が
ある。後者の圧力変動吸着型酸素濃縮器は、窒素ガスを
優先的に吸着する吸着剤を充填した吸着塔にコンプレッ
サで加圧した空気を導入して、吸着剤に窒素ガスを吸着
させて酸素濃縮空気を得るものである(吸着工程)。こ
の圧力変動吸着型酸素濃縮器では、この吸着工程におい
て吸着剤が窒素ガスを充分吸着すると、以後窒素ガスの
吸着能が低下するので、吸着塔内の圧力を減じて吸着剤
の再生を行う脱着工程を行っている。そして、必要な酸
素量は呼吸用気体供給手段により調整している。
2. Description of the Related Art Conventional oxygen concentrators include a membrane oxygen concentrator using an oxygen selective permeable membrane and a pressure fluctuation adsorption type oxygen concentrator using an adsorbent that preferentially adsorbs nitrogen gas. The latter is a pressure fluctuation adsorption type oxygen concentrator that introduces air pressurized by a compressor into an adsorption tower filled with an adsorbent that preferentially adsorbs nitrogen gas, adsorbs nitrogen gas on the adsorbent, and enriches oxygen-enriched air. (Adsorption step). In this pressure fluctuation adsorption type oxygen concentrator, if the adsorbent adsorbs nitrogen gas sufficiently in this adsorption step, the adsorbing ability of nitrogen gas will decrease thereafter, so the desorption in which the pressure in the adsorption tower is reduced to regenerate the adsorbent Process. The required amount of oxygen is adjusted by the respiratory gas supply means.

【0003】[0003]

【発明が解決しようとする課題】しかし、前記圧力変動
吸着型酸素濃縮器は、患者によって必要な酸素量が異な
るにもかかわらず最大量を基準に調整しており、使用す
る酸素量(消費酸素量)が少ない場合に、酸素濃度が低
下する。例えば最大発生毎分3リットルのものの酸素
濃度は、消費酸素量が毎分3リットルの場合に92%、
毎分1リットルの場合に93%であるが、0.25リッ
トルの場合には87%になってしまう。
However, the above-mentioned pressure fluctuation adsorption type oxygen concentrator is adjusted based on the maximum amount although the required oxygen amount differs depending on the patient, and the amount of oxygen used (consumed oxygen) When the amount is small, the oxygen concentration decreases. For example, the maximum oxygen concentration of those emissions per content of 3 liters, 92% when consumed oxygen amount per minute 3 liters
It is 93% at 1 liter per minute , but 87% at 0.25 liter.

【0004】本発明は、上記欠点を解決し、使用する酸
素量にかかわらず酸素濃度が所定の範囲内(常時濃度が
90%以上)である装置を提供すること、及び使用する
酸素量にかかわらず酸素濃度が所定の範囲内(常時濃度
が90%以上)である方法を提供することを目的とす
る。
[0004] The present invention is to solve the above drawbacks, the oxygen concentration regardless of the amount of oxygen to be used to provide a device which is within a predetermined range (normally the concentration of 90% or more), and used
The oxygen concentration is within the specified range regardless of the oxygen amount (constant concentration
Is 90% or more) .

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に本発明装置は、窒素ガスを優先的に吸着する吸着材を
充填した吸着塔を2基設け、該吸着塔に圧縮機より交互
に空気を送り込み、空気中の窒素を吸着して酸素濃縮空
気を製造して、これを製品タンクに蓄え、製品タンク内
より所定量の酸素濃縮空気を供給する酸素濃縮器におい
て、前記2基の吸着塔を、圧等化弁を有する配管で連結
する。そして、前記圧等化弁を2基の吸着塔への空気
送り込みの切換直前に開き、切換った後に閉じるととも
に、該流量測定手段からの流量信号を受けて、消費酸素
流量が多いときには圧等化弁の開時間を短く、消費酸素
流量が少ないときには前記圧等化弁の開時間を長くする
制御手段と、を備えることを特徴とする。また、本発明
方法は、酸素濃縮機において、2基の吸着塔を、圧等化
弁を有する配管で連結し、前記圧等化弁を2基の吸着
塔への空気送り込みの切換直前に開き、切換った後に閉
じるとともに、流量測定手段で製品タンクより排出する
酸素濃縮空気の量(消費酸素)を測定し、流量が多いと
きには圧等化弁の開時間を短く、流量が少ないときには
前記圧等化弁の開時間を長くすることを特徴とする。
In order to achieve the above object, the apparatus of the present invention is provided with two adsorption towers filled with an adsorbent for preferentially adsorbing nitrogen gas, and the adsorption towers are alternately supplied to the adsorption towers by a compressor. Injecting air, adsorbing nitrogen in the air to produce oxygen-enriched air, storing the oxygen-enriched air in a product tank, and supplying a predetermined amount of oxygen-enriched air from the product tank to the oxygen concentrator, the two oxygen enriched air The towers are connected by piping with pressure equalization valves. Then, said pressure and the like of valve, open before switching straight air feeding into the adsorption tower of the 2 groups, the <br/> both the closed after Tsu switching, receiving the flow signal from the flow rate measuring means, A control means for shortening the opening time of the pressure equalizing valve when the flow rate of the consumed oxygen is large, and lengthening the opening time of the pressure equalizing valve when the flow rate of the consumed oxygen is small. Further, the method of the present invention, in an oxygen concentrator, a 2 group adsorption tower, connected by a pipe having a pressure and the like of valve, the pressure, etc. of valve, the air fed to the adsorption tower 2 group switching straight before -out opening, closed in after Tsu switching
At the same time, the flow rate measuring means measures the amount of oxygen-enriched air (consumed oxygen) discharged from the product tank. When the flow rate is high, the opening time of the pressure equalization valve is short. It is characterized in that the opening time is lengthened.

【0006】[0006]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面を参照して説明する。図1は、酸素濃縮装置を模
式的に示した図である。1は圧縮機で、その吸込み側に
空気取入口を設け、空気取入口には除塵フイルタ2と除
湿器3を設ける。また、圧縮機1の吐出側には2方バル
ブマニホールド4に連結する。この2方バルブマニホー
ルド4には、並列に2本の吸着塔5,6を接続し、吸着
塔5,6にはそれぞれ窒素ガスを優先的に吸着する吸着
材7を充填する。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram schematically showing an oxygen concentrator. Reference numeral 1 denotes a compressor, which is provided with an air inlet on its suction side, and provided with a dust filter 2 and a dehumidifier 3 at the air inlet. Further, the compressor 1 is connected to a two-way valve manifold 4 on the discharge side. Two adsorption towers 5 and 6 are connected in parallel to the two-way valve manifold 4, and each of the adsorption towers 5 and 6 is filled with an adsorbent 7 that preferentially adsorbs nitrogen gas.

【0007】2方バルブマニホールド4は、図に示すよ
うに、4個の2方バルブSV1、SV2、SV3、SV
4から構成され、4個の2方バルブをリング状に連結
し、隣合う2方バルブの間からそれぞれ配管を引出した
形で構成する。圧縮機1からの配管を2方バルブSV2
とSV3の間の配管に、2方バルブSV2とSV1との
間の配管を吸着塔5に、さらに2方バルブSV3とSV
4との間の配管を吸着塔6にそれぞれ連結する。また、
2方バルブSV1とSV4の間の配管を消音器8に連結
し、さらにこの消音器8を排気口9に連結する。そし
て、2本の吸着塔5,6は、その一方が吸着工程にある
ときは、他方を吸着材の再生に当て、そのサイクルごと
に2方バルブマニホールド4の4つの2方バルブSV1
〜SV4を切換えて、連続して高い酸素濃度の酸素濃縮
空気を供給する。
The two-way valve manifold 4 includes four two-way valves SV1, SV2, SV3, and SV, as shown in FIG.
4, two four-way valves are connected in a ring shape, and a pipe is drawn out from between two adjacent two-way valves. Pipe from compressor 1 to two-way valve SV2
A pipe between the two-way valves SV2 and SV1 to the adsorption tower 5, and a two-way valve SV3 to the SV3.
4 are connected to the adsorption tower 6, respectively. Also,
A pipe between the two-way valves SV1 and SV4 is connected to a silencer 8, and the silencer 8 is further connected to an exhaust port 9. When one of the two adsorption towers 5 and 6 is in the adsorption step, the other is used for regeneration of the adsorbent, and the four two-way valves SV1 of the two-way valve manifold 4 are provided for each cycle.
To SV4 to continuously supply oxygen-enriched air having a high oxygen concentration.

【0008】2本の吸着塔5,6の出口に、それぞれチ
ェックバルブ10,11を接続する。また、2本の吸着
塔5,6の出口間にはパージオリフィス12を有する配
管20と、圧等化弁(2方バルブ)SV5を有する配管
13を並列に接続する。さらに、2本の吸着塔5,6の
出口をそれぞれのチェックバルブ10,11を介して製
品タンク14に連結し、製品タンク14内の酸素濃縮空
気を圧力センサ15、圧力調整器16、エアフィルタ1
7、流量調節器18を介して患者に供給する。19は流
量計であり、患者が使用する酸素濃縮空気の量を測定す
る。
Check valves 10 and 11 are connected to the outlets of the two adsorption towers 5 and 6, respectively. A pipe 20 having a purge orifice 12 and a pipe 13 having a pressure equalizing valve (two-way valve) SV5 are connected in parallel between the outlets of the two adsorption towers 5, 6. Further, the outlets of the two adsorption towers 5 and 6 are connected to a product tank 14 via respective check valves 10 and 11, and the oxygen-enriched air in the product tank 14 is supplied to a pressure sensor 15, a pressure regulator 16, and an air filter. 1
7. Supply to the patient via the flow controller 18. A flow meter 19 measures the amount of oxygen-enriched air used by the patient.

【0009】このような装置では、2方バルブマニホー
ルド4の2方バルブSV2を開き2方バルブSV3を閉
じると、吸着塔5に加圧した空気が送り込まれ、吸着塔
5内で空気中の窒素を吸着材7に吸着させ、酸素濃縮空
気をチェックバルブ10を介して製品タンク14に送
る。製品タンク14に至る管路および製品タンク14の
圧力が上ると、酸素濃縮空気の一部をパージオリフィス
12を通して吸着筒6に放出し、吸着塔6内の吸着材7
が吸着している窒素を脱着させ、2方バルブSV4及び
消音器8を介して排気口9より放出する。
In such an apparatus, when the two-way valve SV2 of the two-way valve manifold 4 is opened and the two-way valve SV3 is closed, pressurized air is sent to the adsorption tower 5, and nitrogen in the air is introduced into the adsorption tower 5. Is adsorbed by the adsorbent 7, and oxygen-enriched air is sent to the product tank 14 via the check valve 10. When the pressure in the pipeline to the product tank 14 and the pressure in the product tank 14 rises, a part of the oxygen-enriched air is discharged to the adsorption column 6 through the purge orifice 12 and the adsorbent 7 in the adsorption tower 6 is discharged.
Desorbs the adsorbed nitrogen and discharges it from the exhaust port 9 via the two-way valve SV4 and the silencer 8.

【0010】次に、2方バルブSV2と2方バルブSV
4を閉じ、2方バルブSV3と2方バルブSV1を開く
と、吸着塔6に加圧した空気が送り込まれ、吸着塔6内
で空気中の窒素が吸着材7に吸着させる。こうして製造
された酸素濃縮空気を、チェックバルブ11を介して製
品タンク14に送る。製品タンク14に至る管路および
製品タンク14の圧力が上ると、酸素濃縮空気の一部を
パージオリフィス12を通して吸着筒5に放出し、吸着
塔5内の吸着材7が吸着している窒素を脱着させ、2方
バルブSV1及び消音器8を介して排気口9より放出す
る。圧等化弁SV5は、2方バルブマニホールド4が切
り替わる直前に一瞬開きその後切り替わった直後に閉
じ、均圧オリフィス(図示せず)等で流量を制限しなが
ら、酸素濃縮空気を製造する側の吸着塔5または6に酸
素濃縮空気を吹き込み、その内部圧力を高めて、次のサ
イクルを高い内部圧力の下でスタートできるようにし
て、直ぐに酸素濃縮空気を製造できるようにする。
Next, the two-way valve SV2 and the two-way valve SV
When the valve 4 is closed and the two-way valve SV3 and the two-way valve SV1 are opened, the pressurized air is sent into the adsorption tower 6, and nitrogen in the air is adsorbed by the adsorbent 7 in the adsorption tower 6. The oxygen-enriched air thus produced is sent to the product tank 14 via the check valve 11. When the pressure of the pipeline to the product tank 14 and the pressure of the product tank 14 rises, a part of the oxygen-enriched air is discharged to the adsorption column 5 through the purge orifice 12, and the nitrogen adsorbed by the adsorbent 7 in the adsorption tower 5 is removed. It is detached and released from the exhaust port 9 via the two-way valve SV1 and the silencer 8. The pressure equalizing valve SV5 opens momentarily immediately before the two-way valve manifold 4 switches, and then closes immediately after the switching, and restricts the flow rate with a pressure equalizing orifice (not shown) or the like, and adsorbs the oxygen-enriched air on the side that produces oxygen-enriched air. Oxygen-enriched air is blown into column 5 or 6 and its internal pressure is increased so that the next cycle can be started under high internal pressure so that oxygen-enriched air can be produced immediately.

【0011】本発明では、流量計19からの情報を制御
装置(図示せず)に送り、患者の酸素濃縮空気の使用量
が3リットル/毎分程度の場合は、図2に示す如く圧等
化弁SV5が開いている時間を短くし、患者の酸素濃縮
空気の使用量が0.25リットル/毎分程度の場合は、
に示す如く圧等化弁SV5が開いている時間を長く
する。このように制御することにより、酸素濃縮空気の
消費量の多少にかかわらず、酸素濃縮空気の濃度が90
%以上と所定の範囲に納まる。
In the present invention, information from the flow meter 19 is sent to a control device (not shown), and when the amount of oxygen-enriched air used by the patient is about 3 liters / minute, the pressure and the like are as shown in FIG. If the time during which the valve SV5 is open is shortened and the amount of oxygen-enriched air used by the patient is about 0.25 liter / minute,
As shown in FIG. 3 , the time during which the pressure equalizing valve SV5 is open is increased. By controlling in this manner, the concentration of the oxygen-enriched air becomes 90% regardless of the consumption amount of the oxygen-enriched air.
% And within a predetermined range.

【0012】前記実施の形態では、流量測定手段とし
て、流量計19を使用したが、流量計の代りに製品タン
ク14の入口と出口の圧力差を検出する差圧センサと、
この差圧センサで検出した差圧より流量を求める流量算
出装置を使用してもよい。
In the above-described embodiment, the flow meter 19 is used as the flow measuring means. However, instead of the flow meter, a differential pressure sensor for detecting a pressure difference between the inlet and the outlet of the product tank 14 ;
A flow rate calculating device for obtaining a flow rate from the differential pressure detected by the differential pressure sensor may be used.

【0013】[0013]

【発明の効果】以上を要するに本発明装置は、2基の吸
着塔を圧等化弁を有する配管で連結し、前記製品タンク
より排出する酸素濃縮空気の量を測定する流量測定手段
と、前記圧等化弁を、2基の吸着塔への空気送り込みの
切換直前に開き、切換った後に閉じるとともに、該流量
測定手段からの流量信号を受けて、消費酸素流量が多い
ときには前記圧等化弁の開時間を短く、流量が少ないと
きには前記圧等化弁の開時間を長くする制御手段と、を
備えてなる。また、本発明方法は、2基の吸着塔を圧等
化弁を有する配管で連結し、前記圧等化弁を2基の吸着
塔への空気送り込みの切換直前に開き、切換った後に閉
じるとともに、流量測定手段で製品タンクより排出する
酸素濃縮空気の量を測定し、流量が多いときには圧等化
弁の開時間を短く、流量が少ないときには前記圧等化弁
の開時間を長くする。よって、酸素濃縮空気の消費量の
多少にかかわらず、酸素濃縮空気の濃度が所定の範囲に
納まる。
In summary the present invention apparatus above, according to the present invention, the adsorption tower of the 2 groups are connected by a pipe having a pressure and the like of valve, the flow rate measuring means for measuring the amount of oxygen-enriched air discharged from the product tank, the The pressure equalization valve is used to send air to the two adsorption towers.
Open immediately before switching, close after switching, and receive a flow rate signal from the flow rate measuring means, shorten the opening time of the pressure equalizing valve when the flow rate of the consumed oxygen is high, and reduce the pressure equalizing valve when the flow rate is low. And control means for lengthening the opening time of the device. Further, the present method, the adsorption tower of the 2 groups are connected by a pipe having a pressure and the like of valve, open the pressure and the like of valve before switching straight air feeding into the adsorption tower 2 group, after the Tsu switching Closed
At the same time, the amount of oxygen-enriched air discharged from the product tank is measured by the flow rate measuring means, and when the flow rate is high, the opening time of the pressure equalizing valve is short, and when the flow rate is low, the opening time of the pressure equalizing valve is lengthened. I do. Therefore, the concentration of the oxygen-enriched air falls within a predetermined range regardless of the consumption amount of the oxygen-enriched air.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を実施する酸素濃縮器の実施形態を模式
的に示した図である。
FIG. 1 is a diagram schematically showing an embodiment of an oxygen concentrator embodying the present invention.

【図2】酸素濃縮空気の消費量が多い場合の圧等化弁の
開閉状態及び製品タンクの内圧を示す図である。
FIG. 2 is a diagram showing the open / closed state of a pressure equalization valve and the internal pressure of a product tank when the consumption of oxygen-enriched air is large.

【図3】酸素濃縮空気の消費量が少ない場合の圧等化弁
の開閉状態及び製品タンクの内圧を示す図である。
FIG. 3 is a diagram showing the open / closed state of a pressure equalization valve and the internal pressure of a product tank when the consumption of oxygen-enriched air is small.

【符号の説明】[Explanation of symbols]

1 圧縮機 5,6 吸着塔 7 吸着材 19 流量計 SV1〜SV4 2方バルブ SV5 圧等化弁 DESCRIPTION OF SYMBOLS 1 Compressor 5, 6 Adsorption tower 7 Adsorbent 19 Flow meter SV1-SV4 2-way valve SV5 Pressure equalization valve

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 窒素ガスを優先的に吸着する吸着材を充
填した吸着塔を2基設け、該吸着塔に圧縮機より交互に
空気を送り込み、空気中の窒素を吸着して酸素濃縮空気
を製造して、これを製品タンクに蓄え、製品タンク内よ
り所定量の酸素濃縮空気を供給する酸素濃縮器におい
て、 前記2基の吸着塔を、圧等化弁を有する配管で連結し、 前記製品タンクより排出する酸素濃縮空気の量を測定す
る流量測定手段と、 前記圧等化弁を2基の吸着塔への空気送り込みの切換
直前に開き、切換った後に閉じるとともに、該流量測定
手段からの流量信号を受けて、消費酸素流量が多いとき
には圧等化弁の開時間を短く、消費酸素流量が少ないと
きには前記圧等化弁の開時間を長くする制御手段と、 を備えることを特徴とする運転制御装置。
1. Two adsorption towers filled with an adsorbent for preferentially adsorbing nitrogen gas are provided, and air is alternately sent from the compressor to the adsorption tower to adsorb nitrogen in the air to produce oxygen-enriched air. Manufacturing, storing this in a product tank, and supplying a predetermined amount of oxygen-enriched air from inside the product tank, wherein the two adsorption towers are connected by a pipe having a pressure equalization valve; a flow rate measuring means for measuring the amount of oxygen-enriched air discharged from the tank, the pressure and the like of valve, open before switching straight air feeding into the adsorption tower of the 2 groups, together with the closing after Tsu switching, the flow rate measurement Control means for receiving a flow rate signal from the means, shortening the opening time of the pressure equalization valve when the consumed oxygen flow rate is large, and increasing the opening time of the pressure equalizing valve when the consumed oxygen flow rate is small. Operation control device characterized by the following.
【請求項2】 窒素ガスを優先的に吸着する吸着材を充
填した吸着塔を2基設け、該吸着塔に圧縮機より交互に
空気を送り込み、空気中の窒素を吸着して酸素濃縮空気
を製造して、これを製品タンクに蓄え、製品タンク内よ
り所定量の酸素濃縮空気を供給する酸素濃縮器におい
て、 前記2基の吸着塔を、圧等化弁を有する配管で連結し、
前記圧等化弁を2基の吸着塔への空気送り込みの切換
直前に開き、切換った後に閉じるとともに、流量測定手
段で製品タンクより排出する酸素濃縮空気の量を測定
し、 消費酸素流量が多いときには圧等化弁の開時間を短く、
消費酸素流量が少ないときには前記圧等化弁の開時間を
長くすることを特徴とする酸素濃縮器の運転制御方法。
2. An adsorption tower filled with an adsorbent that preferentially adsorbs nitrogen gas is provided, and air is alternately sent from the compressor to the adsorption tower to adsorb nitrogen in the air to produce oxygen-enriched air. Manufacture and store this in a product tank, and in an oxygen concentrator that supplies a predetermined amount of oxygen-enriched air from inside the product tank, the two adsorption towers are connected by a pipe having a pressure equalization valve,
The pressure or the like of valve, open before switching straight air feeding into the adsorption tower of the 2 groups, together with the closing after Tsu switching, measuring the amount of oxygen-enriched air discharged from the product tank at a flow rate measuring means, consumed oxygen When the flow rate is high, shorten the opening time of the pressure equalization valve,
An operation control method for an oxygen concentrator, wherein the opening time of the pressure equalizing valve is lengthened when the flow rate of consumed oxygen is small.
JP01616899A 1999-01-25 1999-01-25 Operation control device for oxygen concentrator and operation control method for oxygen concentrator Expired - Fee Related JP3342844B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01616899A JP3342844B2 (en) 1999-01-25 1999-01-25 Operation control device for oxygen concentrator and operation control method for oxygen concentrator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01616899A JP3342844B2 (en) 1999-01-25 1999-01-25 Operation control device for oxygen concentrator and operation control method for oxygen concentrator

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2002137982A Division JP2003040606A (en) 2002-05-14 2002-05-14 Oxygen enricher

Publications (2)

Publication Number Publication Date
JP2000210525A JP2000210525A (en) 2000-08-02
JP3342844B2 true JP3342844B2 (en) 2002-11-11

Family

ID=11908992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01616899A Expired - Fee Related JP3342844B2 (en) 1999-01-25 1999-01-25 Operation control device for oxygen concentrator and operation control method for oxygen concentrator

Country Status (1)

Country Link
JP (1) JP3342844B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100685983B1 (en) * 2000-09-21 2007-02-23 엘지전자 주식회사 Control device and control mathod in oxygen generator
KR100698169B1 (en) * 2000-11-16 2007-03-22 엘지전자 주식회사 Control mathod in oxygen generator
KR100450284B1 (en) * 2002-03-28 2004-10-02 희 철 장 Gas generator of absorption system
FR2858606B1 (en) * 2003-08-04 2006-01-20 Air Liquide AUTONOMOUS OXYGEN GENERATOR
JP5016845B2 (en) * 2006-05-01 2012-09-05 山陽電子工業株式会社 Medical oxygen concentrator and method of operating the same
CN105858610A (en) * 2016-03-25 2016-08-17 江苏嘉宇特种装备股份有限公司 Highly-efficient molecular sieve oxygen generator

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6379709A (en) * 1986-09-22 1988-04-09 Teijin Ltd Oxygen enricher
JP2954955B2 (en) * 1989-12-20 1999-09-27 トキコ株式会社 Gas separation device
FR2734171B1 (en) * 1995-05-18 1997-12-26 Air Liquide PROCESS FOR THE PRODUCTION OF PRESSURIZED OXYGEN BY ADSORPTION
FR2772637B1 (en) * 1997-12-18 2000-02-11 Air Liquide GAS SEPARATION PROCESS BY ADSORPTION WITH VARIABLE FLOW PRODUCTION, ESPECIALLY FOR OXYGEN PRODUCTION

Also Published As

Publication number Publication date
JP2000210525A (en) 2000-08-02

Similar Documents

Publication Publication Date Title
US7491261B2 (en) Process and apparatus for generating and delivering an enriched gas fraction
CN101522246B (en) Oxygen concentrator
CA2297590A1 (en) Single bed pressure swing adsorption process and system
JPH07745A (en) Gas separation
JPS6391119A (en) Psa method and apparatus using gas diffusion barrier
JP3342844B2 (en) Operation control device for oxygen concentrator and operation control method for oxygen concentrator
WO2021207909A1 (en) Method of movable pressure swing adsorption oxygen production device
CN208229602U (en) Energy saving nitrogen making machine
JP2007000340A (en) Pressure swing adsorption type oxygen concentrator
CN212450636U (en) Equipment capable of continuously keeping activity of molecular sieve of PSA nitrogen making machine
CN206328151U (en) Plasma cut special nitrogen making machine
CA1132918A (en) Pressure swing adsorption process and system for gas separation
JP2003040606A (en) Oxygen enricher
JP2007054678A (en) Stabilization method for stabilizing concentration of gas and gas concentrator
JP4274300B2 (en) Oxygen concentrator and operation control method for oxygen concentrator
JP2009006256A (en) Oxygen enricher
JPH01184016A (en) Apparatus for gas separation
CN101229469A (en) Secondary adsorption and pressure-swing adsorption air separation system
JPH0532087B2 (en)
JPH10194708A (en) Oxygen enricher
JPH06246001A (en) Oxygen concentrating apparatus
JPH0938443A (en) Gas separator
JPH09141038A (en) Gas separator
CN111362236A (en) Method and equipment capable of continuously keeping activity of molecular sieve of PSA nitrogen making machine
CN201120244Y (en) Secondary adsorption pressure swing adsorption air separation system

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020806

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080823

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090823

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100823

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100823

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110823

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120823

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130823

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees