JPH0322455B2 - - Google Patents

Info

Publication number
JPH0322455B2
JPH0322455B2 JP60250459A JP25045985A JPH0322455B2 JP H0322455 B2 JPH0322455 B2 JP H0322455B2 JP 60250459 A JP60250459 A JP 60250459A JP 25045985 A JP25045985 A JP 25045985A JP H0322455 B2 JPH0322455 B2 JP H0322455B2
Authority
JP
Japan
Prior art keywords
nitriding
present
nitrided
metal
materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60250459A
Other languages
Japanese (ja)
Other versions
JPS62109939A (en
Inventor
Fukuhisa Matsuda
Kazuhiro Nakada
Takashi Makishi
Shigeru Kitani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Stainless Steel Co Ltd
Original Assignee
Nippon Stainless Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Stainless Steel Co Ltd filed Critical Nippon Stainless Steel Co Ltd
Priority to JP25045985A priority Critical patent/JPS62109939A/en
Publication of JPS62109939A publication Critical patent/JPS62109939A/en
Publication of JPH0322455B2 publication Critical patent/JPH0322455B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、窒化処理用Ni金属材料、特に窒化
物形成元素を積極的に添加した窒化処理用Ni金
属材料に関する。 (従来の技術) 従来より、各種の機械部品や工具類は硬さや耐
摩耗性が要求される事が多く、このような要求に
対応して材料の研究が行われている。しかし、一
般に硬くて耐摩耗性の良い材料は加工が困難であ
るため、加工後に表面硬化処理を施すことも研究
されている。例えば、窒化鋼と呼ばれる特殊鋼を
所定形状に成形後、窒化処理して表面硬化させる
ことにより耐摩耗性を向上させた機械部品が作ら
れている。また、ステンレス鋼を窒化させること
によつて、表面が著しく硬化することも知られて
いる。 これらは、窒化鋼やステンレス鋼に含有されて
いるCrやAlが窒化処理によつて窒化物となり、
表層部に硬い窒化層を形成するためである。しか
し、窒化鋼やステンレス鋼のような鉄を主成分と
する合金の場合には、合金中のCrが窒化物とな
つて失われることにより、窒化層直下の地金中の
Cr濃度が著しく減少するため、耐食性が劣化し、
鉄さびが発生しやすくなる。 なお、窒化鋼およびステンレス鋼、特にステン
レス鋼は成形が困難であるため機械部品の用途と
してその形状によつて制限される場合がある。 ところで、金属ニツケルは鉄に比べてはるかに
耐食性が優れており、大気、淡水および海水中で
は殆ど腐食しない。また、加工性も比較的良好で
あり、板、棒、線などの形に容易に加工すること
ができる。しかし、金属ニツケルそれ自体は窒化
がきわめて困難であるため、通常の方法では表面
に窒化物層を形成させることはできないといわれ
ている。 一方、上述の窒化鋼およびステンレス鋼のうち
特にステンレス鋼は成形性が充分でなく、また窒
化処理した窒化鋼またはステンレス鋼の耐食性の
劣化も、使用環境がますます腐食性のものとなり
つつある今日、大きな問題となつている。 (発明が解決しようとする問題点) かくして、そのすぐれた加工性ばかりでなく、
Ni金属材料が本来的に有する優れた耐食性が着
目され、そのように優れた耐食性とともに表面耐
摩耗性を要求されるようになり、それらを満足す
るNi金属材料の出現が望まれている。 したがつて、本発明の目的は、窒化処理が可能
な耐食性にすぐれたNi金属材料を提供すること
である。 (問題点を解決するための手段) かかる問題を解決すべく本発明者らが種々検討
を重ねたところ、Ni金属に他の合金元素を添加
した材料として、Ti、Nb、さらには、Cr、Alを
金属Niに添加したNi金属材料がすぐれた耐食性
を有するとともに、窒化処理により表面硬化しや
すいことを見いだし、本発明を完成した。 ここに、本発明の要旨とするところは、重量%
で、 Ti:4〜15%および/またはNb:5〜20%、 さらに必要に応じ、Cr:1〜12%および/ま
たはAl:0.7〜15を含み、 残部Niおよび不可避不純物 から成る窒化処理用Ni金属材料である。 さらに別の面からは、本発明は、重量%で、 Ti:4〜15%および/またはNb:5〜20%、 さらに応じ、Cr:1〜12%および/または
Al:0.7〜15%、 を配合させることを特徴とする金属Niの窒化処
理法である。 さらに本発明の別の好適態様にあつては、Ti、
Nb、Cr、Alの合計添加料は、得られるNi金属材
料の加工性を考えると、10%以下に抑えるのが好
ましい。 したがつて、本発明によれば、従来の窒化鋼や
ステンレス鋼などと異なつて、金属Niの本来持
つ耐食性その他の特性を損なうことなく、窒化処
理によつて硬さや耐摩耗性を向上させることが可
能となつたのである。しかも、従来Fe系合金に
おいて考えられていたAlやCrばかりでなく、む
しろTi、Nbがより有効な窒化物層形成元素であ
ることが判明し、これによりNi金属材料の窒化
処理がさらに一層効果的に行われるようになるの
である。 (作 用) 次に、本発明において上述のように合金組成を
限定した理由を以下詳述する。 なお、Ti、Nb、CrおよびAlはいずれも窒化物
形成元素であり、その限りにおいて均等物である
が、その添加量および窒化物としての作用には多
少差違があるため、それぞれ共通する種類毎にそ
の作用効果について説明する。特に、Tiおよ
び/またはNbの添加によりその窒化能力は著し
く改善される。 Ti: TiはNi金属材料を著しく窒化されやすくする
働きをする元素である。添加量が多いほどその効
果は大きいが、15%超で合金の加工性の劣化が著
しくなる。好ましくは10%以下である。4%未満
では耐食性および耐摩耗性改善効果が十分ではな
い。 Nb: Nbは窒化による効果はTiほど大きくないが、
5%以上で効果が見られるが、一方20%超で加工
性が著しく劣化する。15%以下が好ましい。 Al: Alは0.7%以上の添加を必要とする。一方、15
%超では加工性が著しく劣化する。10%以下が好
ましい。 Cr: Crは1.0%未満ではその効果が認められず、1.0
%以上の添加を必要とする。その場合、表面に明
瞭な窒化物層を形成して表面硬化する。ただし、
Crにる窒化物層はTiなどの添加によるそれに比
較して薄くて脆い傾向があるので、12%以下とし
て、他のTi、Nb、Alなどの添加割合を増加させ
て硬化させるのがよい。 なお、不可避不純物としては、鋳塊の気孔(ブ
ローホール)発生防止の目的で加えられるAlや
Siが酸化物などの非金属介在物の形で微量に残存
する場合や、原材料、炉材などの中に含まれる不
純物元素(例えばP、S、C)が混入する場合が
ある。 本発明において「窒化処理用」との用語は、窒
化処理によつて窒化されやすいことを意味するも
のであつて、単に表面が窒化されて硬くなること
だけでなく、窒素が表面から内部へ拡散し、その
結果として材料の硬度や強度が上昇することも包
含するものである。また、本発明の以下に示す実
施例では、窒化処理の方法としてイオン窒化法の
みを開示しているが、本発明に係る窒化処理用合
金は、慣用のガス窒化法や塩浴窒化法によつても
窒化されやすい性質を持つことは言うまでもな
い。これは、窒化反応が合金成分と窒素の反応で
あり、かつ、合金内部への窒素の拡散の速さもそ
の合金固有のものであるところから、窒化されや
すさはほとんどその合金の性質に依存するからで
ある。 なお、本発明に係るNi金属材料は加工性が良
好であり、板、棒、線の形に加工することができ
るのであつて、その形態によつて本発明が制限さ
れるものではない。 次に、実施例によつて本発明をさらに詳述す
る。 実施例 高周波誘導真空溶解法により第1表に示す組成
の合金を溶製し、鍛造により厚さ10mmの板とした
のち、900℃で15分間熱処理し空冷した。これよ
り2t×10×20mmの試験片を切り出して、処理温度
600℃で3時間、圧力6Torr.の窒素と水素の混合
ガス(窒素50Vol.%)雰囲気中でイオン窒化し
た。イオン窒化後の表面硬さをマイクロヴイツカ
−ス硬度計で測定した結果を同じく第1表に示
す。 窒化物形成元素としてTiおよび/またはNb、
さらにはCrおよび/またはAlを添加した本発明
材料(No.1〜11)は純Niやこれに少量のTi、Nb
やFeを添加した比較用材料(No.12〜17)に比べ
て表面硬さが大きい。表面硬さは、添加元素の量
にほぼ比例して増加するが、その程度は元素によ
つて大きく異なることは第1表の試験結果からも
明らかであり、これらの関係をグラフで一般的に
示すと添付図面のようになる。すなわち、Tiが
最も効果が大きく、次いでNbであり、これは従
来の窒化鋼やステンレス鋼においても知られるこ
とのなかつたことであり、次いでさらにAlそし
てCrの順で硬化能は小さくなる。一方、Si、
Mo、Feの硬度上昇に対する寄与は小さく、これ
らの元素の添加量を増すことは硬度上昇にとつて
はあまり有効ではない。 第1表には本例により得られた各供試材の塩水
噴霧試験(JIS Z 2371)の結果も併せて示す。 次に、第1表には、窒化層の有無や厚さもを併
せて示している。これによれば、Tiは窒化層を
厚くする働きが強く、Alは明瞭な窒化層を作ら
なくてもかなり硬度上昇を起こさせる。一方、
Crを添加すると明瞭な窒化層が生成する傾向が
強くなるが、生成した窒化層は比較的脆く、地金
との間で剥離しやすい。このような意味から、
Crの添加量を制限して、TiもしくはAlを増すこ
とは、窒化層の剥離防止の上から有効である。 さらに、第1表には鍛造によつて試験片に生じ
た耳割れの程度をも示している。本発明材料はい
ずれも加工性が良好である。
(Industrial Application Field) The present invention relates to a Ni metal material for nitriding, particularly to a Ni metal material for nitriding to which a nitride-forming element is actively added. (Prior Art) Conventionally, various mechanical parts and tools have often been required to have hardness and wear resistance, and research on materials has been conducted to meet these requirements. However, since materials that are hard and have good wear resistance are generally difficult to process, research is also being conducted into applying surface hardening treatment after processing. For example, mechanical parts with improved wear resistance are made by forming special steel called nitriding steel into a predetermined shape and then subjecting it to nitriding to harden the surface. It is also known that nitriding stainless steel significantly hardens its surface. These are caused by the Cr and Al contained in nitriding steel and stainless steel becoming nitrides through nitriding treatment.
This is to form a hard nitrided layer on the surface layer. However, in the case of iron-based alloys such as nitriding steel and stainless steel, Cr in the alloy becomes nitrides and is lost, resulting in the loss of chromium in the base metal directly below the nitride layer.
Corrosion resistance deteriorates due to a significant decrease in Cr concentration,
Iron rust is more likely to occur. Note that nitriding steel and stainless steel, particularly stainless steel, are difficult to form, so their use as mechanical parts may be limited depending on their shape. By the way, the metal nickel has much better corrosion resistance than iron, and hardly corrodes in the atmosphere, fresh water, and seawater. In addition, it has relatively good workability and can be easily processed into shapes such as plates, rods, and wires. However, since nickel metal itself is extremely difficult to nitride, it is said that it is impossible to form a nitride layer on its surface using normal methods. On the other hand, among the above-mentioned nitriding steels and stainless steels, stainless steel in particular does not have sufficient formability, and the corrosion resistance of nitrided steels or stainless steels deteriorates as the environments in which they are used are becoming increasingly corrosive. , has become a big problem. (Problem to be solved by the invention) Thus, not only its excellent workability but also
The excellent corrosion resistance inherently possessed by Ni metal materials has attracted attention, and in addition to such excellent corrosion resistance, surface wear resistance has also been required, and the emergence of Ni metal materials that satisfy these requirements has been desired. Therefore, an object of the present invention is to provide a Ni metal material that can be nitrided and has excellent corrosion resistance. (Means for Solving the Problems) In order to solve the problems, the present inventors have made various studies and found that materials made by adding other alloying elements to Ni metal include Ti, Nb, Cr, The present invention was completed based on the discovery that a Ni metal material obtained by adding Al to Ni metal has excellent corrosion resistance and is easily surface hardened by nitriding treatment. Here, the gist of the present invention is that the weight%
For nitriding, it contains Ti: 4-15% and/or Nb: 5-20%, and if necessary, Cr: 1-12% and/or Al: 0.7-15, with the balance being Ni and unavoidable impurities. Ni metal material. In yet another aspect, the present invention provides, in weight percent, Ti: 4-15% and/or Nb: 5-20%, and Cr: 1-12% and/or
This is a nitriding method for metallic Ni, characterized by blending Al: 0.7 to 15%. Furthermore, in another preferred embodiment of the present invention, Ti,
Considering the workability of the obtained Ni metal material, the total additive content of Nb, Cr, and Al is preferably suppressed to 10% or less. Therefore, according to the present invention, unlike conventional nitrided steels and stainless steels, the hardness and wear resistance can be improved through nitriding treatment without impairing the inherent corrosion resistance and other properties of metal Ni. became possible. Furthermore, it has been found that Ti and Nb are more effective elements for forming nitride layers than just Al and Cr, which were conventionally thought of in Fe-based alloys, making nitriding treatment of Ni metal materials even more effective. This means that it will be carried out on a regular basis. (Function) Next, the reason why the alloy composition is limited as described above in the present invention will be explained in detail below. Note that Ti, Nb, Cr, and Al are all nitride-forming elements, and to that extent they are equivalent; however, there are some differences in the amounts added and their actions as nitrides, so they are different for each common type. The action and effect will be explained below. In particular, the addition of Ti and/or Nb significantly improves its nitriding ability. Ti: Ti is an element that makes Ni metal materials extremely susceptible to nitridation. The larger the amount added, the greater the effect, but if it exceeds 15%, the workability of the alloy will deteriorate significantly. Preferably it is 10% or less. If it is less than 4%, the effect of improving corrosion resistance and wear resistance will not be sufficient. Nb: The effect of nitriding on Nb is not as great as on Ti, but
At 5% or more, the effect is seen, but at more than 20%, the workability deteriorates significantly. 15% or less is preferable. Al: Al requires addition of 0.7% or more. On the other hand, 15
If it exceeds %, the workability will be significantly deteriorated. 10% or less is preferable. Cr: The effect is not recognized when Cr is less than 1.0%;
% or more is required. In that case, a clear nitride layer is formed on the surface and the surface is hardened. however,
Nitride layers made of Cr tend to be thinner and more brittle than those made by adding Ti, etc., so it is best to keep the nitride layer at 12% or less and increase the proportion of other Ti, Nb, Al, etc. added before hardening. Incidentally, unavoidable impurities include Al and other substances added to prevent the formation of pores (blowholes) in the ingot.
There are cases where a trace amount of Si remains in the form of non-metallic inclusions such as oxides, or impurity elements (for example, P, S, C) contained in raw materials, furnace materials, etc. are mixed. In the present invention, the term "for nitriding" means that the surface is easily nitrided by nitriding, and it means that the surface is not only nitrided and hardened, but also that nitrogen diffuses from the surface into the interior. However, it also includes an increase in the hardness and strength of the material as a result. In addition, in the following embodiments of the present invention, only the ion nitriding method is disclosed as a nitriding method, but the nitriding alloy according to the present invention can be processed by a conventional gas nitriding method or a salt bath nitriding method. Needless to say, it has the property of being easily nitrided. This is because the nitriding reaction is a reaction between alloy components and nitrogen, and the rate of nitrogen diffusion into the alloy is also unique to that alloy, so the ease with which it is nitrided depends mostly on the properties of the alloy. It is from. Note that the Ni metal material according to the present invention has good workability and can be processed into the shape of a plate, rod, or wire, and the present invention is not limited by the shape. Next, the present invention will be explained in further detail with reference to Examples. Example An alloy having the composition shown in Table 1 was melted using a high frequency induction vacuum melting method, forged into a plate with a thickness of 10 mm, and then heat treated at 900°C for 15 minutes and cooled in air. A 2t x 10 x 20mm test piece was cut out from this and the treatment temperature was
Ionic nitriding was carried out at 600°C for 3 hours in an atmosphere of a mixed gas of nitrogen and hydrogen (50 vol.% nitrogen) at a pressure of 6 Torr. Table 1 also shows the results of measuring the surface hardness after ion nitriding using a micro-Vitskas hardness meter. Ti and/or Nb as nitride-forming elements,
Furthermore, the materials of the present invention (Nos. 1 to 11) to which Cr and/or Al have been added include pure Ni and a small amount of Ti and Nb.
The surface hardness is greater than that of comparative materials (Nos. 12 to 17) containing Fe and Fe. Surface hardness increases almost in proportion to the amount of added elements, but it is clear from the test results in Table 1 that the degree of increase varies greatly depending on the element, and these relationships can be generally expressed graphically. It will look like the attached drawing. That is, Ti has the greatest effect, followed by Nb, which was unknown even in conventional nitriding steels and stainless steels, followed by Al and then Cr, which have the lowest hardenability. On the other hand, Si,
The contribution of Mo and Fe to the increase in hardness is small, and increasing the amount of these elements added is not very effective in increasing the hardness. Table 1 also shows the results of the salt spray test (JIS Z 2371) for each sample material obtained in this example. Next, Table 1 also shows the presence or absence of a nitrided layer and its thickness. According to this, Ti has a strong effect of thickening the nitrided layer, and Al causes a considerable increase in hardness without forming a clear nitrided layer. on the other hand,
When Cr is added, a clear nitrided layer tends to form, but the formed nitrided layer is relatively brittle and easily peels off from the base metal. In this sense,
Limiting the amount of Cr added and increasing Ti or Al is effective in preventing peeling of the nitride layer. Furthermore, Table 1 also shows the degree of edge cracking that occurred in the test pieces due to forging. All of the materials of the present invention have good processability.

【表】【table】

【表】 (発明の効果) 以上説明したところからも明らかなように、本
発明にかかるNi金属材料は非常に窒化されやす
い性質を持つと同時に、加工性や耐食性にも優れ
ており、各種の機械部品や工具のみならず、色々
の用途に利用される可能性を有する。
[Table] (Effects of the Invention) As is clear from the above explanation, the Ni metal material according to the present invention has the property of being very easily nitrided, and at the same time has excellent workability and corrosion resistance, and can be used in various ways. It has the potential to be used not only for machine parts and tools, but also for a variety of other purposes.

【図面の簡単な説明】[Brief explanation of the drawing]

添付図面は、本発明の実施例のデータをまとめ
たグラフである。
The accompanying drawings are graphs summarizing data of embodiments of the present invention.

Claims (1)

【特許請求の範囲】 1 重量%で、 Ti:4〜15%および/またはNb:5〜20%、 残部Niおよび不可避不純物 から成る窒化処理用Ni金属材料。 2 重量%で、 Ti:4〜15%および/またはNb:5〜20%、 Cr:1〜12%および/またはAl:0.7〜15%、 残部Niおよび不可避不純物 から成る窒化処理用Ni金属材料。[Claims] 1% by weight, Ti: 4-15% and/or Nb: 5-20%, Remaining Ni and unavoidable impurities Ni metal material for nitriding treatment consisting of. 2% by weight, Ti: 4-15% and/or Nb: 5-20%, Cr: 1-12% and/or Al: 0.7-15%, Remaining Ni and unavoidable impurities Ni metal material for nitriding treatment consisting of.
JP25045985A 1985-11-08 1985-11-08 Ni metallic material for nitriding treatment Granted JPS62109939A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25045985A JPS62109939A (en) 1985-11-08 1985-11-08 Ni metallic material for nitriding treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25045985A JPS62109939A (en) 1985-11-08 1985-11-08 Ni metallic material for nitriding treatment

Publications (2)

Publication Number Publication Date
JPS62109939A JPS62109939A (en) 1987-05-21
JPH0322455B2 true JPH0322455B2 (en) 1991-03-26

Family

ID=17208189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25045985A Granted JPS62109939A (en) 1985-11-08 1985-11-08 Ni metallic material for nitriding treatment

Country Status (1)

Country Link
JP (1) JPS62109939A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS586953A (en) * 1981-07-07 1983-01-14 Alps Electric Co Ltd High permeability fe-ni alloy
JPS61124560A (en) * 1984-11-19 1986-06-12 オリン コ−ポレ−シヨン Formation of composite material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS586953A (en) * 1981-07-07 1983-01-14 Alps Electric Co Ltd High permeability fe-ni alloy
JPS61124560A (en) * 1984-11-19 1986-06-12 オリン コ−ポレ−シヨン Formation of composite material

Also Published As

Publication number Publication date
JPS62109939A (en) 1987-05-21

Similar Documents

Publication Publication Date Title
JP2500162B2 (en) High strength duplex stainless steel with excellent corrosion resistance
US4465525A (en) Ferritic stainless steel having excellent formability
JPH0593246A (en) Highly corrosion resistant duplex stainless steel and its production
EP3315626B1 (en) Bolt
JPH08253846A (en) Iron-based alloy for mold for plastic
JPH07138713A (en) Production of fe-based alloy powder and high corrosion resistant sintered compact
JP3270498B2 (en) Duplex stainless steel with excellent crack and corrosion resistance
JPS6140750B2 (en)
CN112779453B (en) Fe-Ni-Cr-Mo-Cu alloy excellent in corrosion resistance
KR101014699B1 (en) Screw or tapping screw
JPH02301541A (en) Spring steel excellent in corrosion resistance and corrosion fatigue strength
JPH08134595A (en) High strength stainless steel sheet excellent in stress corrosion cracking resistance
JPH0322455B2 (en)
JP3383099B2 (en) High corrosion resistant sintered products
JPH08158035A (en) Carburizing treatment for austenitic metal and austenitic metal product using the same
JPS62120453A (en) Ni-metal material for nitriding
JP2623124B2 (en) Steel material for nitriding
JP3064909B2 (en) Carburized hardware and its manufacturing method
JPS5916948A (en) Soft-nitriding steel
JPH1150203A (en) Martensitic stainless steel having surface high hardness, high corrosion resistance and high toughness
KR970009523B1 (en) High strength & high corrosion resistance of martensite stainless steel
JP3779043B2 (en) Duplex stainless steel
JP2021088740A (en) Austenitic stainless steel
JP2600174B2 (en) Low alloy nitrocarburized steel
JPH11181552A (en) Austenitic stainless steel for nitriding