JPH03224257A - Cooling equipment for semiconductor device - Google Patents

Cooling equipment for semiconductor device

Info

Publication number
JPH03224257A
JPH03224257A JP16946290A JP16946290A JPH03224257A JP H03224257 A JPH03224257 A JP H03224257A JP 16946290 A JP16946290 A JP 16946290A JP 16946290 A JP16946290 A JP 16946290A JP H03224257 A JPH03224257 A JP H03224257A
Authority
JP
Japan
Prior art keywords
cooling
metal plate
plate
semiconductor device
semiconductor devices
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16946290A
Other languages
Japanese (ja)
Inventor
Izumi Aoki
青木 泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Publication of JPH03224257A publication Critical patent/JPH03224257A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE:To improve cooling effect and obtain a small-sized apparatus, by installing penetrating holes, grooves the rear, and the junction of grooves, on a cooling plate on which semiconductor devices are fixed directly or via a metal plate and the like, and making cooling medium flow directly or by using means like pipe burying. CONSTITUTION:A pair of semiconductor devices Q1, Q2 are laterally arranged on a cooling plate 22 via a common metal plate 53 and a series metal plate 54, and electrically connected in series. Since both end parts of an upper metal plate 55 are in contact with the plane 54 via an insulating sheet 52d, thermal conduction from the upper surface to the cooling plate is promoted. Grooves formed in the rear of the cooling plate 22 are made to face each other, and a liquid cooling pipe 3 is fixed on the plate 22 with embedded bolts 51, 56. Thermal conduction distance is shortened by the depth of the groove, and three surfaces contact, so that cooling performance is increased. By preventing the leak of liquid with penetrating holes or packing except the pipe 3, the performance is further improved. Since semiconductor devices can be arranged on both surfaces of a cooling plate, miniaturization is enabled.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は半導体装置の冷却構造に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a cooling structure for a semiconductor device.

〔従来の技術〕[Conventional technology]

従来例の半導体装置の冷却構造は、第7図又は第8図に
示すように角形の1又は複数の液冷パイプ3を溝付の止
め板4で冷却板2に押し当″て、冷却板2を介して半導
体装置1を冷却する構造となっている。第8図はFET
 (電界効果トランジスタ)の場合で、ソース端子Sを
ねじ1sを介して電線1aで、ドレン端子りを冷却板2
とねじ1dを介して電線1bで引出す。
In the conventional cooling structure for semiconductor devices, as shown in FIG. 7 or 8, one or more rectangular liquid cooling pipes 3 are pressed against the cooling plate 2 with a grooved stop plate 4, and the cooling plate is closed. The structure is such that the semiconductor device 1 is cooled through the FET 2.
(field effect transistor), the source terminal S is connected to the electric wire 1a through the screw 1s, and the drain terminal is connected to the cooling plate 2.
and the electric wire 1b through the screw 1d.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の半導体装置の冷却構造においては、半導体装置l
の冷却性能は以下に示す項目で決定される。
In the conventional semiconductor device cooling structure, the semiconductor device l
The cooling performance of is determined by the following items.

A)半導体装置1と冷却板2との接触熱抵抗B)冷却板
2の厚さによる熱抵抗 C)冷却板2と液冷パイプ3との接触熱抵抗そして従来
の半導体装置の冷却構造は、冷却板2の厚さによる熱抵
抗及び冷却板2と液冷パイプ3との接触熱抵抗が大きい
という問題があった。
A) Contact thermal resistance between the semiconductor device 1 and the cooling plate 2 B) Thermal resistance due to the thickness of the cooling plate 2 C) Contact thermal resistance between the cooling plate 2 and the liquid cooling pipe 3 and the cooling structure of the conventional semiconductor device. There is a problem in that the thermal resistance due to the thickness of the cooling plate 2 and the contact thermal resistance between the cooling plate 2 and the liquid cooling pipe 3 are large.

そこでこの発明の目的は、半導体装置の冷却性能を向上
させる構造を提供するものである。
Therefore, an object of the present invention is to provide a structure that improves the cooling performance of a semiconductor device.

〔課題を解決するための手段〕[Means to solve the problem]

上記の課題を解決するためにこの第1から第4までの発
明は、半導体装置を取り付けた冷却板の裏面に溝を設け
、この溝に液冷パイプを埋め込む構造とするか、もしく
は半導体装置を取り付けた冷却板の裏面同志を接合させ
て一対とし、この接合面に相対する溝を設け、この溝に
液冷パイプを埋め込む構造とする。さらにまた、半導体
装置を取り付けた冷却板に貫通穴を設け、この貫通穴に
冷却媒体を流すか、もしくは半導体装置を取り付けた冷
却板の裏面同志を接合させて一対とし、この接合面に相
対する溝を設け、この溝に冷却媒体を流すものである。
In order to solve the above problems, the first to fourth inventions provide a structure in which a groove is provided on the back surface of a cooling plate to which a semiconductor device is attached, and a liquid cooling pipe is embedded in this groove, or a structure is adopted in which a liquid cooling pipe is embedded in the groove. The back surfaces of the attached cooling plates are joined together to form a pair, and opposing grooves are provided on this joint surface, and a liquid cooling pipe is embedded in this groove. Furthermore, a through-hole is provided in the cooling plate to which the semiconductor device is attached, and a cooling medium is allowed to flow through the through-hole, or the back sides of the cooling plate to which the semiconductor device is attached are joined together to form a pair, and the cooling plate is placed opposite to this bonded surface. A groove is provided in which the cooling medium flows.

そして第5の発明の半導体装置の冷却装置は、冷却板に
共通絶縁シートを介して接合する共通金属板と、この共
通金属板の上に横並びに配置され上面と下面とに端子を
備える一対2個の半導体装置と、この一方の半導体装置
の上面と他方の半導体装置の下面とに連続して配置され
るクランク状の直列金属板と、前記一対の半導体装置の
上面と両側を覆い前記共通金属板に平行な両端部を備え
る上面金属板と、前記一方の半導体装置の上方の領域の
前記直列金属板と前記上面金属板との間、前記他方の半
導体装置の下方の領域の前記直列金属板と前記共通金属
板との間及び前記上面金属板の前記両端部と前記共通金
属板との間にそれぞれ介装される絶縁シートと、前記両
端部を前記冷却板に固定する絶縁ボルトとからなるもの
である。
A cooling device for a semiconductor device according to a fifth aspect of the present invention includes a common metal plate joined to a cooling plate via a common insulating sheet, and a pair of two that are arranged side by side on the common metal plate and have terminals on an upper surface and a lower surface. a pair of semiconductor devices, a crank-shaped series metal plate disposed continuously on the top surface of one of the semiconductor devices and the bottom surface of the other semiconductor device, and a crank-shaped series metal plate that covers the top surface and both sides of the pair of semiconductor devices, and the common metal plate that covers the top surface and both sides of the pair of semiconductor devices. a top metal plate having both ends parallel to the plate; a series metal plate in a region above the one semiconductor device between the series metal plate and the top metal plate; and a series metal plate in a region below the other semiconductor device. and the common metal plate and between the both ends of the upper metal plate and the common metal plate, and an insulating bolt that fixes the both ends to the cooling plate. It is something.

もっとも第5の発明のものを上下背中合せにしたり、同
一平面に複数個を並べたり第1から第4までの発明の手
段を付加してもよいし、冷却板は液冷パイプがなくフィ
ンを備えたものでもよく、金属配線基板でもよい。
However, the fifth invention may be placed back to back, a plurality of them may be arranged on the same plane, or the means of the first to fourth inventions may be added, and the cooling plate may have fins instead of liquid cooling pipes. or a metal wiring board.

〔作用〕[Effect]

第1から第4までの発明において、半導体装置が発生す
る熱量を伝達する冷却板は、溝の深さだけ熱伝達の距離
が減少すること、及び液冷パイプの少な(とも3面が冷
却板と接触して熱伝達面積が増加することによって冷却
性能が向上する。また液冷パイプの削除により、上記作
用に加えて冷却板と液冷パイプとの接触熱抵抗も無くな
り冷却性能が更に向上する。
In the first to fourth inventions, the cooling plate that transfers the amount of heat generated by the semiconductor device has such features that the heat transfer distance is reduced by the depth of the groove, and that the number of liquid cooling pipes is small (all three sides are the cooling plate). Cooling performance is improved by increasing the heat transfer area through contact with the liquid cooling pipe.In addition to the above effect, by eliminating the liquid cooling pipe, the contact thermal resistance between the cooling plate and the liquid cooling pipe is also eliminated, further improving cooling performance. .

第5の発明において、一対の半導体装置は横並びに冷却
板上に配置されて各半導体装置の下面が冷却板上に位置
するので下面からの冷却がよい。
In the fifth invention, since the pair of semiconductor devices are arranged side by side on the cooling plate and the lower surface of each semiconductor device is located on the cooling plate, cooling from the lower surface is preferable.

横並びされたにもかかわらず、クランク状の直列金属板
により2個の半導体装置は電気的に直列接続される。直
列金属板と上面金属板とは当然に薄板状であって表面積
が大きく、この部分からの冷却が促進される。特に上面
金属板の両端部は絶縁シートを介して共通金属板に接す
るので、上面から冷却板への熱伝導があって冷却が促進
される。
Even though they are arranged side by side, the two semiconductor devices are electrically connected in series by the crank-shaped series metal plates. Naturally, the series metal plate and the upper metal plate are thin plates and have a large surface area, and cooling from these parts is promoted. In particular, since both ends of the top metal plate are in contact with the common metal plate via the insulating sheet, heat conduction from the top surface to the cooling plate facilitates cooling.

一対の半導体装置を直列金属板で接続する以外の部分は
共通絶縁シート及びそれぞれの絶縁シートで電気的に絶
縁されて一対の半導体装置の直列接続が成立する。接続
はコンパクトであるからインダクタンスが小さくなり電
子回路の特性が向上する。
The portions other than those where the pair of semiconductor devices are connected by the series metal plate are electrically insulated by the common insulating sheet and each insulating sheet, thereby establishing the series connection of the pair of semiconductor devices. Since the connection is compact, the inductance is reduced and the characteristics of the electronic circuit are improved.

〔実施例〕〔Example〕

第1図はこの発明の第1の実施例を示し、従来例と同一
の部分には同一の符号を付している。
FIG. 1 shows a first embodiment of the present invention, in which the same parts as in the conventional example are given the same reference numerals.

半導体装置1は冷却板21に止めネジで固定される。角
形の液冷パイプ3は冷却板21に設けた溝21aに完全
に埋め込まれる。液冷パイプ3の固定は、止め板41を
冷却板21にネジ止めする。半導体装置1と冷却板21
との接触面及び冷却板21と液冷バイブ3との接触面に
は伝熱効果を高めるために、放熱グリースを塗布する。
The semiconductor device 1 is fixed to the cooling plate 21 with set screws. The rectangular liquid cooling pipe 3 is completely embedded in the groove 21a provided in the cooling plate 21. The liquid cooling pipe 3 is fixed by screwing the stop plate 41 to the cooling plate 21. Semiconductor device 1 and cooling plate 21
The contact surface between the cooling plate 21 and the liquid-cooled vibrator 3 is coated with heat dissipation grease in order to enhance the heat transfer effect.

従来例との冷却性能を比較すると、まず冷却板2と21
の熱抵抗が大きく異なる。
Comparing the cooling performance with the conventional example, firstly, cooling plates 2 and 21
The thermal resistance of the two is significantly different.

従来例の場合には、冷却板2の熱抵抗をθl(℃/W)
、比熱抵抗をδ(℃・cIl/W)、液冷バイブ3から
半導体装置1までの距離をA (am) 、冷却板と液
冷バイブとの接触面積をS (cd)とするとθ、=δ
A/Sとなる。
In the case of the conventional example, the thermal resistance of the cooling plate 2 is θl (℃/W)
, the specific heat resistance is δ (℃・cIl/W), the distance from the liquid-cooled vibrator 3 to the semiconductor device 1 is A (am), and the contact area between the cooling plate and the liquid-cooled vibrator is S (cd), then θ, = δ
It will be A/S.

第1図の場合の冷却板21の熱抵抗は、液冷バイブ3か
ら半導体装置1までの距離Bが従来例のA寸法に比較し
て小さいので熱抵抗もそれに比例して小さくなって冷却
性能が向上し、さらに液冷バイブの側面部も上記熱抵抗
の低下に効くので効果はより高まる。
The thermal resistance of the cooling plate 21 in the case of FIG. 1 is that since the distance B from the liquid-cooled vibrator 3 to the semiconductor device 1 is smaller than the dimension A of the conventional example, the thermal resistance is proportionally smaller, resulting in cooling performance. Furthermore, the side surface of the liquid-cooled vibrator is also effective in reducing the thermal resistance, further increasing the effect.

第2図は第2の実施例を示すもので、第1図と異なる点
は溝付の冷却板22を2個用意して一対とし、液冷バイ
ブ3を挟み込むようにし、各々の冷却板22に半導体装
置1及び5を取り付けた両面形にすることである。この
場合には液冷バイブ3の全ての面が半導体装置1及び5
の冷却に利用され無駄がなく、止め板も不要となる。
FIG. 2 shows a second embodiment, and the difference from FIG. 1 is that two grooved cooling plates 22 are prepared as a pair, and the liquid cooling vibe 3 is sandwiched between each cooling plate 22. The purpose is to make it a double-sided type with semiconductor devices 1 and 5 attached to it. In this case, all surfaces of the liquid cooling vibrator 3 are exposed to the semiconductor devices 1 and 5.
It is used for cooling, eliminating waste and eliminating the need for a stop plate.

なお、いずれの実施例も液冷バイブと溝は角形と限らず
、例えば第1の実施例では逆U字状のもの第2の実施例
では円形でもよい。
In any of the embodiments, the liquid cooling vibrator and the groove are not limited to square shapes; for example, the first embodiment may have an inverted U-shape, and the second embodiment may have a circular shape.

第3図は第3の実施例を示し、冷却板23には貫通穴2
3aが設けられていてこの中を冷却媒体が流れる。冷却
板230貫通穴23aの両端部には図示していないが冷
却媒体を流すパイプを接続するためのニップルを設けて
いる。この方式では液冷バイブが無いので冷却板と液冷
バイブとの間の接触熱抵抗が無くさらに冷却性能がよい
FIG. 3 shows a third embodiment, in which the cooling plate 23 has through holes 2.
3a, through which a cooling medium flows. Although not shown, nipples are provided at both ends of the through hole 23a of the cooling plate 230 to connect a pipe through which a cooling medium flows. In this method, there is no liquid-cooled vibrator, so there is no contact thermal resistance between the cooling plate and the liquid-cooled vibrator, and the cooling performance is further improved.

第4図は第4の実施例を示し、第3の実施例と異なる点
は溝付の冷却板24を2枚対向させて一対とし、その溝
24aを冷却媒体の通路としたものである。この構造の
場合は冷却媒体の液漏れ防止用のパツキン7を備えてい
る。
FIG. 4 shows a fourth embodiment, which differs from the third embodiment in that two grooved cooling plates 24 are arranged in a pair facing each other, and the grooves 24a are used as cooling medium passages. In this structure, a gasket 7 is provided to prevent leakage of the cooling medium.

なお、第3の実施例の貫通穴23aは角形でもよく、ま
た第4の実施例の溝24aは円形でもよい。
Note that the through hole 23a in the third embodiment may be square, and the groove 24a in the fourth embodiment may be circular.

第5図は第5の実施例の拡散分解断面図、第6図はその
回路図を示す。図において一対の冷却板22の裏面同志
を接合させ、接合部分に相対する溝を設けて複数の液冷
バイブ3が放熱グリースを塗布して埋め込まれ、複数の
止めねじ51で固定される。
FIG. 5 shows a diffusion exploded sectional view of the fifth embodiment, and FIG. 6 shows its circuit diagram. In the figure, the back surfaces of a pair of cooling plates 22 are joined together, opposing grooves are provided in the joined parts, and a plurality of liquid cooling vibes 3 are embedded with heat dissipation grease applied thereto, and fixed with a plurality of setscrews 51.

さて上方の前記冷却板22に絶縁シート52を介して接
合する薄銅板等の共通金属板53が設けられ、この共通
金属板の上に横並びに上面と下面とに端子S及びDを備
える一対2個の半導体装置Q1゜Q2が配置される。こ
の一方の半導体装置Q、の上面と他方の半導体装置Q2
の下面とに連続してクランク状の直列金属vi54が配
置され、更に前記一対の半導体装置Q s 、 Q z
の上面と両側を覆うように前記共通金属板53に平行な
両端部55aを備える上面金属板55が配置される。
Now, a common metal plate 53 such as a thin copper plate is provided to be joined to the upper cooling plate 22 via an insulating sheet 52, and a pair of terminals S and D are provided on the common metal plate horizontally and on the upper and lower surfaces. Semiconductor devices Q1°Q2 are arranged. The top surface of this one semiconductor device Q and the other semiconductor device Q2
A crank-shaped series metal vi54 is disposed continuously on the lower surface of the semiconductor device Q s , Q z
An upper surface metal plate 55 having both ends 55a parallel to the common metal plate 53 is arranged so as to cover the upper surface and both sides of the common metal plate 53.

前記一方の半導体装置Q1の上方の領域の前記直列金属
板54と前記上面金属板55との間、前記他方の半導体
装置Q2の下方の領域の前記直列金属板54と前記共通
金属板53との間及び前記上面金属板55の前記両端部
55aと前記共通金属板53との間にそれぞれシリコン
シート等の絶縁シート52a。
Between the series metal plate 54 and the top metal plate 55 in the area above the one semiconductor device Q1, and between the series metal plate 54 and the common metal plate 53 in the area below the other semiconductor device Q2. and an insulating sheet 52a such as a silicone sheet between the ends 55a of the upper metal plate 55 and the common metal plate 53.

52b 、 52c 、 52dが介装される。そして
前記両端部55aを前記冷却板22に2本の絶縁ボルト
56で固定する。
52b, 52c, and 52d are interposed. Then, both ends 55a are fixed to the cooling plate 22 with two insulating bolts 56.

この絶縁ボルト56は冷却板22に挟まれたナツト57
に上下からねじ込まれ、ナツト58が前記両端部55a
を締め付ける。そして絶縁ボルト56の先端のダブルナ
ツト59が板ばね60と絶縁三角柱61を介して半導体
装置Q 、Q zの端子Sの上方で前記上面金属板54
を締め付ける。力W、Rを調節するようにするとよい。
This insulating bolt 56 is connected to a nut 57 sandwiched between the cooling plate 22.
The nut 58 is screwed into the both ends 55a from above and below.
Tighten. Then, the double nut 59 at the tip of the insulating bolt 56 is connected to the upper metal plate 54 above the terminal S of the semiconductor devices Q, Qz via the leaf spring 60 and the insulating triangular prism 61.
Tighten. It is preferable to adjust the forces W and R.

コンデンサCI+C!は、絶縁シート52c + 52
dをコンデンサ端子の間に挟むようにして、各端子がそ
れぞれ両端部55aと共通金属板53とに接触して接続
される。
Capacitor CI+C! is insulation sheet 52c + 52
d is sandwiched between the capacitor terminals, and each terminal is connected by contacting both ends 55a and the common metal plate 53, respectively.

以上は上方の冷却板22に半導体装置Q + 、Q z
、コンデンサC+、Ctを取り付ける構造であるが、下
方の冷却板22に半導体装W Q s * Q 4 、
コンデンサC,,Cやを取付ける構造は上下が逆になっ
ているだけである。この構造のものは第6図に示すFE
Tを使用した直流電源回路であるが、回路図におけるP
t、NR,G端子は構造図のものから容易に引出せる。
In the above, semiconductor devices Q + and Q z are placed on the upper cooling plate 22.
, capacitors C+ and Ct are attached, but semiconductor devices W Q s * Q 4 ,
The structure for attaching capacitors C and C is simply upside down. The one with this structure is the FE shown in Figure 6.
This is a DC power supply circuit using T, but P in the circuit diagram
The t, NR, and G terminals can be easily extracted from the structure diagram.

またこの構造のものはインバータのトランジスタを三相
ブリフジ回路に組む場合にも利用できる。
This structure can also be used when inverter transistors are assembled into a three-phase bridge circuit.

前記実施例によれば、一対の半導体装置は横並びに冷却
板上に配置されて各半導体装置の下面が冷却板上に位置
するので下面からの冷却がよい。
According to the embodiment, the pair of semiconductor devices are arranged side by side on the cooling plate, and the lower surface of each semiconductor device is located on the cooling plate, so that cooling from the lower surface is preferable.

横並びされたにもかかわらず、クランク状の直列金属板
により2個の半導体装置は電気的に直列接続される。直
列金属板と上面金属板とは当然に薄板状であって表面積
が大きく、この部分からの冷却が促進される。特に上面
金属板の両端部は絶縁シートを介して共通金属板に接す
るので、上面から冷却板への熱伝導があって冷却が促進
される。
Even though they are arranged side by side, the two semiconductor devices are electrically connected in series by the crank-shaped series metal plates. Naturally, the series metal plate and the upper metal plate are thin plates and have a large surface area, and cooling from these parts is promoted. In particular, since both ends of the top metal plate are in contact with the common metal plate via the insulating sheet, heat conduction from the top surface to the cooling plate facilitates cooling.

一対の半導体装置を直列金属板で接続する以外の部分は
共通絶縁シート及びそれぞれの絶縁シートで電気的に絶
縁されて一対の半導体装置の直列接続が成立する。接続
はコンパクトであるからインダクタンスが小さくなり電
子回路の特性が向上する。
The portions other than those where the pair of semiconductor devices are connected by the series metal plate are electrically insulated by the common insulating sheet and each insulating sheet, thereby establishing the series connection of the pair of semiconductor devices. Since the connection is compact, the inductance is reduced and the characteristics of the electronic circuit are improved.

〔発明の効果〕〔Effect of the invention〕

この発明群によれば、第1及び第2の発明では液冷パイ
プを冷却板の溝に埋め込む構造としたために液冷バイブ
と半導体装置との距離が小さくなって冷却性能が向上し
、更に液冷バイブの外面の大部分の面積を利用して半導
体装置の発生熱を伝達することができるので冷却装置を
小型化することができるという効果がある。
According to this group of inventions, in the first and second inventions, since the liquid cooling pipe is embedded in the groove of the cooling plate, the distance between the liquid cooling vibrator and the semiconductor device is shortened, and the cooling performance is improved. Since the heat generated by the semiconductor device can be transferred using most of the area of the outer surface of the cold vibrator, there is an effect that the cooling device can be made smaller.

第3及び第4の発明では液冷パイプが無いので液冷パイ
プと冷却板との接触熱抵抗が無(なり、より冷却性能が
向上する。
In the third and fourth inventions, since there is no liquid cooling pipe, there is no contact thermal resistance between the liquid cooling pipe and the cooling plate, and the cooling performance is further improved.

また両面形の場合には2個の半導体装置を冷却板の両面
に取り付けるようにしたので、さらに小型化できるとい
う効果がある。
Furthermore, in the case of a double-sided type, two semiconductor devices are attached to both sides of the cooling plate, which has the effect of further miniaturizing the cooling plate.

第5の発明では、半導体装置は横並びされて下面が直接
に共通金属板と共通絶縁シートを介して冷却板に接する
ので冷却が良好であり、更に直列金属板や上面金属板が
表面積が大きい点と上面金属板が両端部で冷却板に伝熱
する点でも冷却が向上するという効果がある。そしてク
ランク状の直列金属板は横並びの半導体装置をコンパク
トに直列接続しインダクタンスが小さくて回路特性が向
上するという効果がある。
In the fifth invention, the semiconductor devices are arranged side by side and the lower surfaces directly contact the cooling plate through the common metal plate and the common insulating sheet, so cooling is good, and furthermore, the series metal plate and the upper metal plate have a large surface area. Cooling is also improved in that the upper metal plate transfers heat to the cooling plate at both ends. The crank-shaped series metal plates have the effect of compactly connecting side-by-side semiconductor devices in series, reducing inductance, and improving circuit characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は第1の実施例を示す正面図、第2図は第2の実
施例を示す正面図、第3図は第3の実施例を示す正面図
、第4図は第4の実施例を示す正面図、第5図は第5の
実施例を示す拡散分解断面図、第6図は第5図の回路図
、第7図及び第8図はそれぞれ異る従来例を示す正面図
である。 1.5・・・半導体装置、2.21.22.23.24
・・・冷却板、3・・・液冷バイブ、4,41・・・止
め板、21a。 24a・・・溝、23a・・・貫通穴、7・・・パツキ
ン、52・・・共通絶縁シート、52a、52b、52
c、52d ・−絶縁シート、53・・・共通金属板、
54・・・直列金属板、55・・・上面金属板、55a
・・・両端部、56・・・絶縁ボルト、60・・・板ば
ね、61・・・絶縁三角柱、C+、Cz、C3,C4・
・・コンデンサ、ql、Qt、Q3. Qa・・・半導
体装置。 第 図 第 図 第 図
Fig. 1 is a front view showing the first embodiment, Fig. 2 is a front view showing the second embodiment, Fig. 3 is a front view showing the third embodiment, and Fig. 4 is a front view showing the fourth embodiment. A front view showing an example, FIG. 5 is a diffusion exploded sectional view showing the fifth embodiment, FIG. 6 is a circuit diagram of FIG. 5, and FIGS. 7 and 8 are front views showing different conventional examples. It is. 1.5...Semiconductor device, 2.21.22.23.24
...Cooling plate, 3...Liquid cooling vibrator, 4, 41...Stopping plate, 21a. 24a...Groove, 23a...Through hole, 7...Packing, 52...Common insulation sheet, 52a, 52b, 52
c, 52d - insulation sheet, 53... common metal plate,
54...Series metal plate, 55...Top surface metal plate, 55a
... Both ends, 56 ... Insulation bolt, 60 ... Leaf spring, 61 ... Insulation triangular prism, C+, Cz, C3, C4.
...Capacitor, ql, Qt, Q3. Qa...Semiconductor device. Figure Figure Figure Figure

Claims (1)

【特許請求の範囲】 1)半導体装置を取り付けた冷却板の裏面に溝を設け、
この溝に液冷パイプを埋め込んだことを特徴とする半導
体装置の冷却装置。 2)半導体装置を取り付けた冷却板の裏面同志を接合さ
せて一対とし、この接合面に相対する溝を設け、この溝
に液冷パイプを埋め込んだことを特徴とする半導体装置
の冷却装置。 3)半導体装置を取り付けた冷却板に貫通穴を設け、こ
の貫通穴に冷却媒体を流すことを特徴とする半導体装置
の冷却装置。 4)半導体装置を取り付けた冷却板の裏面同志を接合さ
せて一対とし、この接合面に相対する溝を設け、この溝
に冷却媒体を流すことを特徴とする半導体装置の冷却装
置。 5)冷却板に共通絶縁シートを介して接合する共通金属
板と、この共通金属板の上に横並びに配置され上面と下
面とに端子を備える一対2個の半導体装置と、この一方
の半導体装置の上面と他方の半導体装置の下面とに連続
して配置されるクランク状の直列金属板と、前記一対の
半導体装置の上面と両側を覆い前記共通金属板に平行な
両端部を備える上面金属板と、前記一方の半導体装置の
上方の領域の前記直列金属板と前記上面金属板との間、
前記他方の半導体装置の下方の領域の前記直列金属板と
前記共通金属板との間及び前記上面金属板の前記両端部
と前記共通金属板との間にそれぞれ介装される絶縁シー
トと、前記両端部を前記冷却板に固定する絶縁ボルトと
からなることを特徴とする半導体装置の冷却装置。
[Claims] 1) A groove is provided on the back surface of the cooling plate to which the semiconductor device is attached,
A semiconductor device cooling device characterized by having a liquid cooling pipe embedded in this groove. 2) A cooling device for a semiconductor device, characterized in that the back surfaces of the cooling plates to which the semiconductor devices are attached are joined together to form a pair, grooves are provided facing each other on the joint surfaces, and liquid cooling pipes are embedded in the grooves. 3) A cooling device for a semiconductor device, characterized in that a cooling plate to which a semiconductor device is attached is provided with a through hole, and a cooling medium is allowed to flow through the through hole. 4) A cooling device for a semiconductor device, characterized in that the back surfaces of cooling plates to which semiconductor devices are attached are joined together to form a pair, opposing grooves are provided on the joined surfaces, and a cooling medium is allowed to flow through the grooves. 5) A common metal plate joined to the cooling plate via a common insulating sheet, a pair of two semiconductor devices arranged side by side on the common metal plate and having terminals on the top and bottom surfaces, and one of the semiconductor devices. a crank-shaped series metal plate disposed continuously on the top surface and the bottom surface of the other semiconductor device; and a top metal plate that covers the top surface and both sides of the pair of semiconductor devices and has both ends parallel to the common metal plate. and between the series metal plate and the top metal plate in a region above the one semiconductor device,
an insulating sheet interposed between the series metal plate and the common metal plate in a region below the other semiconductor device and between the both ends of the top metal plate and the common metal plate; A cooling device for a semiconductor device, comprising an insulating bolt that fixes both ends to the cooling plate.
JP16946290A 1989-06-28 1990-06-27 Cooling equipment for semiconductor device Pending JPH03224257A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP16623589 1989-06-28
JP1-166235 1989-06-28
JP1-336059 1989-12-25

Publications (1)

Publication Number Publication Date
JPH03224257A true JPH03224257A (en) 1991-10-03

Family

ID=15827619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16946290A Pending JPH03224257A (en) 1989-06-28 1990-06-27 Cooling equipment for semiconductor device

Country Status (1)

Country Link
JP (1) JPH03224257A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014064029A (en) * 2013-12-09 2014-04-10 Toshiba Mitsubishi-Electric Industrial System Corp Water-cooling fin and high-voltage device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014064029A (en) * 2013-12-09 2014-04-10 Toshiba Mitsubishi-Electric Industrial System Corp Water-cooling fin and high-voltage device

Similar Documents

Publication Publication Date Title
JP4292686B2 (en) Refrigerant cooling type double-sided cooling semiconductor device
JPS62502929A (en) Cooling stack of electrically insulated semiconductors
RU99110949A (en) THERMOELECTRIC DEVICE
JP2007165620A (en) Semiconductor cooling structure
JP2002083915A (en) Power semiconductor device
US4638404A (en) Clamping device for plate-shaped semiconductor components
US7960817B2 (en) Semiconductor power module with flexible circuit leadframe
JPH11274781A (en) Electronic device
JPWO2013145508A1 (en) Power converter
JP2004128099A (en) Water-cooled inverter
WO2024114220A1 (en) Metal substrate heat dissipation structure and photovoltaic power optimizer
JPH03224257A (en) Cooling equipment for semiconductor device
CN112888274A (en) Heat radiation structure and vehicle-mounted charger
US11869760B1 (en) Power electronic device assemblies having an electrically insulating layer
US20240063090A1 (en) Cold plates incorporating s-cells
JPWO2013080441A1 (en) Power converter
CN215121681U (en) Liquid cooling board and electronic equipment
JPH06827Y2 (en) Small stud type insulated heat sink for semiconductors
CN116581098B (en) Electric compressor controller
JPH01187840A (en) Semiconductor device
JPH07176796A (en) Thermoelectric converter
JPH07176797A (en) Thermoelectric converter
US20240130093A1 (en) Power electronics assemblies having embedded power electronics devices
US20240038624A1 (en) Power electronics assemblies having embedded power electronics devices
JPS5919423Y2 (en) Capacitor mounting structure