JPH03224203A - Manufacture of anisotropical sintered magnet - Google Patents

Manufacture of anisotropical sintered magnet

Info

Publication number
JPH03224203A
JPH03224203A JP1058277A JP5827789A JPH03224203A JP H03224203 A JPH03224203 A JP H03224203A JP 1058277 A JP1058277 A JP 1058277A JP 5827789 A JP5827789 A JP 5827789A JP H03224203 A JPH03224203 A JP H03224203A
Authority
JP
Japan
Prior art keywords
organic binder
stearate
material powder
binder
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1058277A
Other languages
Japanese (ja)
Other versions
JP2545603B2 (en
Inventor
Michio Yamashita
三千雄 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP1058277A priority Critical patent/JP2545603B2/en
Publication of JPH03224203A publication Critical patent/JPH03224203A/en
Application granted granted Critical
Publication of JP2545603B2 publication Critical patent/JP2545603B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture the title anisotropical sintered magnet in high density and high orientation degree by a method wherein a fine powdery organic binder suitable for the pressure-molding of fine material powder such as rare earth base magnet, ferrite base magnet etc., is used. CONSTITUTION:100wt.% of material powder for rare earth base or ferrite base magnet is scatter-mixed with 1-30wt.% of fine powdery stearic acid or fine powdery stearate or fine powdery wax using a sublime organic binder. Next, 0.1-5wt.% of fine powdery binder in the mean particle size not exceeding 100mum is added to 100wt.% of said material powder to be pressure-molded in the magnetic field and then sintered after the mixation process. As for the sublimate organic binder, camphor, borneol, paradichlorobenzene, naphthalene etc., are applicable while as for a metallic soap to be mixed with the binder, Ca stearate, Al stearate, Zn stearate, etc., are applicable. Through these precedures, the workability can be enhanced to be optimum for the mass-production.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は、希土類系磁石、フェライト系磁石等の異方性
焼結磁石の製造方法に係り、特に有機バインダーとして
を機溶剤で溶解したり、乾燥工程や粉砕工程を必要とせ
ず、そのまま原料粉末と混合して使用できる成形性の優
れた微粉末状の有機バインダーを用いることにより、高
密度でかつ配向度の高い異方性焼結磁石の製造を可能と
する異方性焼結磁石の製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing anisotropic sintered magnets such as rare earth magnets and ferrite magnets, and particularly relates to a method for producing anisotropic sintered magnets such as rare earth magnets and ferrite magnets, in particular by dissolving an organic binder with a organic solvent. Anisotropic sintered magnets with high density and high degree of orientation are created by using a finely powdered organic binder with excellent moldability that can be mixed with raw material powder and used as is without the need for drying or pulverization processes. The present invention relates to a method of manufacturing an anisotropic sintered magnet that enables the production of.

〔従来の技術] 希土類系磁石、フェライト系磁石等の異方性焼結磁石は
、通常これらの磁石用原料粉末を配合、混合後磁界中に
て加圧成形し、焼結工程を経て製造される。この場合、
上記原料粉末には加圧成形に際して潤滑性や結合力を付
与するためのバインダーを混和するのが通例になってい
る。そして、このバインダーの種類や形状、分散状態は
成形性や磁石特性に重要な影響を与える。
[Prior Art] Anisotropic sintered magnets such as rare earth magnets and ferrite magnets are usually produced by blending raw material powders for these magnets, mixing them, pressing them in a magnetic field, and going through a sintering process. Ru. in this case,
It is customary to mix a binder into the raw material powder to impart lubricity and bonding strength during pressure molding. The type, shape, and dispersion state of this binder have important effects on moldability and magnetic properties.

上記異方性焼結磁石の製造に際して多用されているバイ
ンダーは昇華性有機バインダーである。
The binder often used in manufacturing the above-mentioned anisotropic sintered magnet is a sublimable organic binder.

このバインダーとしてはカンファー、ボルネオール、バ
ラジクロールベンゼン、ナフタリン、チモール等がある
Examples of the binder include camphor, borneol, valadiclorbenzene, naphthalene, and thymol.

これらの昇華性有機バインダーはプレス特性に優れ、か
つ焼結に際して、その昇華性のために残留しないという
利点を有するが、その性質上4を縮するために通常は比
較的大きな粒状やフレーク状あるいはブロック状をなし
ている。
These sublimable organic binders have excellent press properties and have the advantage that they do not remain during sintering due to their sublimation properties, but due to their nature, they are usually formed into relatively large particles, flakes, or It is block-shaped.

このため、フェライト系、希土類系等の異方性焼結磁石
のように原料粉末が特番こ微細な微粉末である場合、か
かる微粉末原料と上記昇華性有機バインダーとを混和す
るには、従来■昇華性有機バインダーを原料粉末に直接
添加し、混合、粉砕するか、または■昇華性有機バイン
ダーを有機溶剤に溶解し、原料粉末と混練した後乾燥さ
せて粉砕するかの方法が行われていた。
For this reason, when the raw material powder is a special fine powder such as an anisotropic sintered magnet of ferrite type, rare earth type, etc., it is difficult to mix the fine powder raw material and the above-mentioned sublimable organic binder using conventional methods. The methods used are: ■ directly adding a sublimable organic binder to the raw material powder, mixing and pulverizing; or ■ dissolving the sublimable organic binder in an organic solvent, kneading it with the raw material powder, drying and pulverizing. Ta.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、■の場合には昇華性有機バインダーが十分微粉
砕されないため焼結後学孔が残り、密度の低い磁石とな
りやすい問題があり、■の場合には有機溶剤による溶解
工程、乾燥工程を必要とするほか、乾燥によって昇華性
有機バインダーが昇華しやすい等の問題があった。
However, in the case of (■), the sublimable organic binder is not sufficiently pulverized, resulting in pores remaining after sintering, which tends to result in a magnet with low density.In the case of (■), a dissolution process using an organic solvent and a drying process are required. In addition, there were other problems such as the sublimable organic binder being easily sublimated by drying.

また、この種の磁石の原料粉末に有機溶剤を用いて昇華
性有機バインダーと混練する場合、乾燥後粉砕された個
々の原料粉末は完全に分離解砕されず、従って、磁界中
で加圧成形する際、個々の原料粉末は完全に磁場の方向
に配向することが不可能であり、配向度に限界があった
In addition, when the raw material powder for this type of magnet is kneaded with an organic solvent and a sublimable organic binder, the individual raw material powders that are ground after drying are not completely separated and crushed, so they are press-formed in a magnetic field. When doing so, it was impossible to completely orient each raw material powder in the direction of the magnetic field, and there was a limit to the degree of orientation.

一方、上記昇華性有機バインダーの他には、ステアリン
酸Ca、ステアリン酸AIV、、ステアリンサ酸Zn、
ステアリン酸Mg等微粉末状ステアリン酸塩の所謂、金
属石鹸、あるいは微粉末状ステアリン酸、微粉末状ワッ
クスもバインダーとして広く用いられている。然しなか
ら、これらのバインダーは焼結時にCや酸化物が製品に
残留したり、分解生成物が焼結炉を汚染したりする問題
があった。
On the other hand, in addition to the above-mentioned sublimable organic binder, Ca stearate, AIV stearate, Zn stearate,
So-called metal soaps such as finely powdered stearates such as Mg stearate, finely powdered stearic acid, and finely powdered waxes are also widely used as binders. However, these binders have problems in that carbon and oxides remain in the product during sintering, and decomposition products contaminate the sintering furnace.

本発明は、上記問題点を全て解決するもので、特に希土
類系磁石、フェライト系磁石等の微細な原料粉末の加圧
形成に適した微粉末状有機バインダーを用いることによ
り、高密度でかつ配向度の高い異方性焼結磁石の製造を
可能とする異方性焼結磁石の製造方法を提供すること目
的とする。
The present invention solves all of the above problems, and uses a fine powder organic binder suitable for pressure forming fine raw material powder such as rare earth magnets and ferrite magnets. It is an object of the present invention to provide a method for manufacturing an anisotropic sintered magnet that enables manufacturing of a highly anisotropic sintered magnet.

[課題を解決するための手段] 本発明者らは、上記目的を達成する為に種々の実験、研
究を行った結果、前記昇華性有機バインダーに少量の微
粉末状ステアリン酸、金属石鹸、微粉末状ワックスを添
加、混合して粉砕した微粉末バインダーは、再び凝縮す
ることがなく、分散した微粉末状態を保持することを知
見した。
[Means for Solving the Problems] In order to achieve the above object, the present inventors conducted various experiments and research, and found that a small amount of finely powdered stearic acid, a metal soap, and a small amount of finely powdered stearic acid, a metal soap, and a It has been found that a fine powder binder obtained by adding and mixing powder wax and pulverizing it does not condense again and maintains a dispersed fine powder state.

そして、この微粉末状有機バインダーを微粉末状の希土
類系又はフェライト系磁石用原料粉末と混和し、磁界中
で加圧形成、焼結して得られた異方性焼結磁石は従来の
バインダーを使用した異方性焼結磁石に比しはるかに高
密度であることが確認された。
This finely powdered organic binder is then mixed with finely powdered raw material powder for rare earth or ferrite magnets, formed under pressure in a magnetic field, and sintered to produce an anisotropic sintered magnet that is similar to the conventional binder. It was confirmed that the density is much higher than that of anisotropic sintered magnets using magnets.

また、この微粉末状有機バインダーを使用すると、配向
度が著しく向上することも確認された。
It was also confirmed that the degree of orientation was significantly improved when this finely powdered organic binder was used.

すなわち、上記微粉末状有機バインダーはこの種磁石の
原料粉末と簡単に混合し、均一化するため、個々の原料
粉末は完全に分離解砕され、磁界中での加圧形成の際、
個々の原料粉末は略々完全に磁場の方向に配向する。
That is, the above-mentioned fine powder organic binder easily mixes with the raw material powder of this type of magnet and makes it homogenized, so that the individual raw material powders are completely separated and crushed, and when formed under pressure in a magnetic field,
The individual raw powders are almost completely oriented in the direction of the magnetic field.

本発明は以上の知見に基づくもので、希土類系又はフェ
ライト系磁石用原料粉末に、昇華性有機バインダーに該
昇華性有機バインダー100%に対して1wt%〜3Q
wt%の微粉末状ステアリン酸、又は微粉末状ステアリ
ン酸塩(以下金属石鹸)、あるいは微粉末状ワックスを
分散、混合し、100μm以下の平均粒度を有する微粉
末有機バインダーを、前記原料粉末100%に対して0
.1wt%〜5wt%添加、混合後、磁界中にて加圧形
成し、焼結することを特徴とする異方性焼結磁石の製造
方法を要旨とする。
The present invention is based on the above knowledge, and includes adding a sublimable organic binder to raw material powder for rare earth or ferrite magnets, and adding 1wt% to 3Q of sublimable organic binder to 100% of the sublimable organic binder.
By dispersing and mixing wt% of finely powdered stearic acid, finely powdered stearate (hereinafter referred to as metal soap), or finely powdered wax, a finely powdered organic binder having an average particle size of 100 μm or less is added to the raw material powder 100. 0 for %
.. The gist of the present invention is a method for producing an anisotropic sintered magnet, which comprises adding 1 wt% to 5 wt%, mixing, forming under pressure in a magnetic field, and sintering.

本発明の製造方法は後述する実施例に示すSmCo磁石
、5rO16FezOi磁石に限らず、磁界中にて加圧
成形し磁石原料粉末を磁界の方向に配向することによっ
て異方性を付与するいわゆる希土類系磁石、フェライト
系の異方性焼結磁石であればいずれの組成の磁石にも適
用可能である。
The manufacturing method of the present invention is not limited to SmCo magnets and 5rO16FezOi magnets shown in the examples described later, but also so-called rare earth magnets that are pressure-molded in a magnetic field and oriented magnet raw material powder in the direction of the magnetic field to impart anisotropy. It is applicable to magnets of any composition as long as they are ferrite-based anisotropic sintered magnets.

本発明の製造方法において、昇華性有機バインダーとし
ては前記の如く、カンファー、ボルネオール、パラジク
ロールベンゼン、ナフタリン、チモール等の公知の材料
のいずれをも採用できる。
In the production method of the present invention, any of the known materials such as camphor, borneol, paradichlorobenzene, naphthalene, and thymol can be used as the sublimable organic binder, as described above.

又、昇華性有機バインダーに混合する金属石鹸としても
同様にステアリン酸Ca:、ステアリン酸Al、ステア
リン酸Zn、ステアリン酸Mgの公知の微粉末状ステア
リン酸塩が採用できる。
Further, as the metal soap to be mixed with the sublimable organic binder, known finely powdered stearates such as Ca stearate, Al stearate, Zn stearate, and Mg stearate can be similarly employed.

以下にこれらの添加量について詳述する。The amounts added will be explained in detail below.

昇華性有機バインダーに混合する微粉末ステアリン酸、
又は金属石鹸、あるいは微粉末状ワックスの量はIwt
%〜3Qwt%(昇華性有機バインダー100%に対し
て)とする。すなわち、1wt%末矯では微粉砕した昇
華性有機バインダーの凝縮防止に効果がなく、30wt
%を超えると昇華性有機バインダーの結合剤としての特
性が低下するからである。
Finely powdered stearic acid mixed with sublimable organic binder,
Or the amount of metal soap or finely powdered wax is Iwt
% to 3Qwt% (based on 100% of the sublimable organic binder). In other words, 1wt% powdering is not effective in preventing condensation of the finely ground sublimable organic binder;
%, the properties of the sublimable organic binder as a binder will deteriorate.

本発明の製造方法において昇華性有機バインダーに混合
する微粉末状ステンレス酸、金属石鹸、微粉末状ワ・7
クスはいずれも同様な効果を有することから、通常1種
の添加で目的を達成することができるが、各々の一部を
上記範囲内で互いに置換しても目的とする効果を得るこ
とが可能である。
Finely powdered stainless acid, metal soap, and finely powdered wax 7 to be mixed with the sublimable organic binder in the production method of the present invention.
Since all of the sugars have similar effects, the objective can usually be achieved by adding one type, but it is also possible to obtain the desired effect even if a part of each is substituted with each other within the above range. It is.

・希土類系又はフェライト系磁石用原料粉末への上記バ
インダーの添加量は0.1 w t%〜5wt%(原料
粉末100%に対して)とする。すなわち、0、1 w
 t%未満ではバインター効果が少なく、又5wt%を
超えると得られる焼結磁石の密度が低下するから好まし
くない。特に好ましい範囲は0゜5wt%〜3wt%で
ある。また微粉末有機バインダーの平均粒度が100μ
mを超えると得られる焼結磁石の外貌が悪化し、且つ空
孔を生成するので好ましくない。好ましい平均粒度とし
ては50μm以下で微細である程よい。
- The amount of the binder added to the raw material powder for rare earth or ferrite magnets is 0.1 wt% to 5 wt% (based on 100% of the raw material powder). i.e. 0, 1 w
If it is less than t%, the Binter effect will be small, and if it exceeds 5wt%, the density of the obtained sintered magnet will decrease, which is not preferable. A particularly preferred range is 0.5 wt% to 3 wt%. In addition, the average particle size of the fine powder organic binder is 100μ
If it exceeds m, the appearance of the obtained sintered magnet deteriorates and pores are generated, which is not preferable. The preferred average particle size is 50 μm or less, and the finer the better.

本発明に採用する微粉末昇華性有機バインダーが凝縮せ
ずに分散状態を維持するためには微粉末昇華性有機バイ
ンダーが微粉末状ステアリン酸、又は金属石鹸あるいは
微粉末状ワックスと均一に混合されていることが必要で
あるが、そのための混合および粉砕工程は通常O′C以
下の低温で行なう方が好ましい。然し、粉砕方法によっ
ては室温で行うことも可能である。
In order for the fine powder sublimable organic binder employed in the present invention to maintain a dispersed state without condensation, the fine powder sublimable organic binder is uniformly mixed with fine powder stearic acid, metal soap, or fine powder wax. However, it is preferable that the mixing and pulverizing steps for this purpose be carried out at a low temperature, usually below O'C. However, depending on the pulverization method, it is also possible to carry out the pulverization at room temperature.

さらに、本発明に採用する微粉末昇華性有機バインダー
の分散状態:よ、昇華性有機バインダーの表面を微粉末
状ステアリン酸、又は金属石鹸、あるいは微粉末状ワッ
クスにてコーティングした状態であっても、あるいは昇
華性有機バインダーと微粉末状ステアリン酸、又は金属
石鹸、あるいは微粉末状ワックスとを単に均一に分散さ
せた状態であってもよい。
Furthermore, the dispersion state of the fine powder sublimable organic binder employed in the present invention: Even if the surface of the sublimable organic binder is coated with fine powder stearic acid, metal soap, or fine powder wax. Alternatively, the sublimable organic binder and finely powdered stearic acid, metal soap, or finely powdered wax may simply be uniformly dispersed.

;実施例] 、次に実施例について記載する。;Example] , Next, examples will be described.

実施例1 カンファーにステアリン酸Ca 5wt%を添加し、−
20°Cで混合、粉砕した平均粒度20μmの微粉末有
機バインダーを、平均粒度5μmに粉砕したSm (N
 io、 l 5、Fe0.2、Co0.55、Cu0
.1)0.7なる組成の合金微粉末原料に2WL%添加
、混合した微粉末を12kOeの磁界中にて37 ON
 / cdの圧力で成形し、該成形体を500°Cで1
時間の脱バインダー後、1150°Cで1時間焼結し、
続いて800°Cで2時間の時効処理を行った結果、得
られた磁石特性は配向度98%、残留磁石密度(Br)
10.8kC;であった。
Example 1 5 wt% of Ca stearate was added to camphor, and -
A finely powdered organic binder with an average particle size of 20 μm mixed and crushed at 20°C was mixed with Sm (N
io, l 5, Fe0.2, Co0.55, Cu0
.. 1) 2WL% was added to the alloy fine powder raw material with a composition of 0.7, and the mixed fine powder was heated at 37 ON in a magnetic field of 12 kOe.
/ cd pressure, and the molded body was heated at 500°C for 1
After debinding for 1 hour, sintering at 1150°C for 1 hour,
Subsequently, as a result of aging treatment at 800°C for 2 hours, the obtained magnetic properties were 98% orientation and residual magnet density (Br).
It was 10.8kC;

比較例としてカンファーを有機溶剤(エチルエーテル)
で溶解し、上記同様の組成の合金微粉末原料と混練、乾
燥後これを解砕して微粉末となし、上記同様の工程を経
て磁石化した結果、得られた磁石特性は配向度89%、
残留磁石密度Br1O2kGであった。
As a comparative example, camphor was used as an organic solvent (ethyl ether).
The resulting magnetic properties were 89% orientation degree. ,
The residual magnet density was Br1O2kG.

なお、配向度はCuKα特性X線の回折強度より次式で
計算した。
The degree of orientation was calculated using the following formula from the diffraction intensity of CuKα characteristic X-rays.

但、I (OOL):C軸方向のX線回折強度1 (h
KA):各面のX線回折強度 実施例2 カンファーにステアリン酸Zn 10wt%を添加し、
−20°Cで混合、粉砕した平均粒度15μmの微粉末
有機バインダーを、平均粒度1μmに粉砕したSr0・
6Fe203なる組成の微粉末原料に1wt%添加、混
合した微粉末を12kOeの磁界中にて37 ON /
 cdの圧力で成形し、該成形体を500℃で1時間の
脱バインダー後、1250°Cで1時間焼結した結果、
得られた磁石の特性は配向度90%、焼結密度4.8g
/cdであった。
However, I (OOL): X-ray diffraction intensity 1 (h
KA): X-ray diffraction intensity of each surface Example 2 10 wt% of Zn stearate was added to camphor,
A finely powdered organic binder with an average particle size of 15 μm mixed and crushed at -20°C was mixed with Sr0, which was crushed to an average particle size of 1 μm.
A fine powder obtained by adding 1 wt% to a fine powder raw material having a composition of 6Fe203 and mixing it was heated at 37 ON / 1 in a magnetic field of 12 kOe.
As a result of molding at a pressure of CD, the molded body was debinding at 500°C for 1 hour, and then sintered at 1250°C for 1 hour.
The characteristics of the obtained magnet are that the degree of orientation is 90% and the sintered density is 4.8g.
/cd.

比較例として上記同様の組成の微粉末原料に、粒状カン
ファー1wt%を添加、混合した後粉砕した微粉末を上
記同様の工程を経て磁石化した結果、得られた磁石の特
性は配向度88%、焼結密度4.3g/c−であった。
As a comparative example, 1 wt % of granular camphor was added to a fine powder raw material having the same composition as above, mixed, and the resulting fine powder was magnetized through the same process as above, and the obtained magnet had an orientation degree of 88%. , the sintered density was 4.3 g/c-.

ただし、配向度は実施例1と同様な方法にて求めた。However, the degree of orientation was determined by the same method as in Example 1.

[発明の効果] 以上に示す如く、本発明によれば焼結密度、配向度、残
留磁束密度等の異方性焼結磁石の全般的な特性を著しく
向上させることが可能となる。しかも、本発明に採用す
る微粉末有機バインダーは従来の如く有機溶剤により溶
解したり、乾燥工程や粉砕工程を必要とせず、そのまま
微細な原料粉末と混合して使用することができるため、
本発明によって作業性が向上し、工業的規模の量産に際
しても効率良く、高特性の異方性焼結磁石を製造するこ
とが可能となる。
[Effects of the Invention] As described above, according to the present invention, it is possible to significantly improve the overall properties of an anisotropic sintered magnet, such as sintering density, degree of orientation, and residual magnetic flux density. Furthermore, the fine powder organic binder employed in the present invention does not require dissolving with an organic solvent, drying process, or pulverization process as in the past, and can be used as is by mixing with fine raw material powder.
The present invention improves workability and makes it possible to efficiently manufacture anisotropic sintered magnets with high characteristics even during industrial scale mass production.

Claims (1)

【特許請求の範囲】[Claims] 1.希土類系又はフェライト系磁石用原料粉末に、昇華
性有機バインダーに該昇華性有機バインダー100%に
対して1wt%〜30wt%の微粉末状ステアリン酸、
又は微粉末状ステアリン酸塩、あるいは微粉末状ワック
スを分散、混合し、100μm以下の平均粒度を有する
微粉末有機バインダーを、前記原料粉末100%に対し
て0.1wt%〜5wt%添加、混合後、磁界中にて加
圧成形し、焼結することを特徴とする異方性焼結磁石の
製造方法。
1. In the rare earth or ferrite magnet raw material powder, in the sublimable organic binder, 1 wt % to 30 wt % of fine powder stearic acid is added to the sublimable organic binder, based on 100% of the sublimable organic binder.
Alternatively, finely powdered stearate or finely powdered wax is dispersed and mixed, and a finely powdered organic binder having an average particle size of 100 μm or less is added and mixed in an amount of 0.1 wt% to 5 wt% based on 100% of the raw material powder. A method for producing an anisotropic sintered magnet, which is then pressure-formed in a magnetic field and sintered.
JP1058277A 1989-03-10 1989-03-10 Method for manufacturing anisotropic sintered magnet Expired - Lifetime JP2545603B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1058277A JP2545603B2 (en) 1989-03-10 1989-03-10 Method for manufacturing anisotropic sintered magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1058277A JP2545603B2 (en) 1989-03-10 1989-03-10 Method for manufacturing anisotropic sintered magnet

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP58016629A Division JPS59143002A (en) 1983-02-02 1983-02-02 Organic binder of fine pulverous powder for powder metallurgy

Publications (2)

Publication Number Publication Date
JPH03224203A true JPH03224203A (en) 1991-10-03
JP2545603B2 JP2545603B2 (en) 1996-10-23

Family

ID=13079693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1058277A Expired - Lifetime JP2545603B2 (en) 1989-03-10 1989-03-10 Method for manufacturing anisotropic sintered magnet

Country Status (1)

Country Link
JP (1) JP2545603B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006156743A (en) * 2004-11-30 2006-06-15 Tdk Corp Process for producing oxide magnetic body
US8545641B2 (en) 2004-07-01 2013-10-01 Intermetallics Co., Ltd. Method and system for manufacturing sintered rare-earth magnet having magnetic anisotropy

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4939796A (en) * 1972-08-28 1974-04-13
JPS4985594A (en) * 1972-12-25 1974-08-16
JPS5425496A (en) * 1977-07-27 1979-02-26 Tohoku Metal Ind Ltd Method of making oxide permanent magnet
JPS5466497A (en) * 1977-11-07 1979-05-29 Tohoku Metal Ind Ltd Preparation of oxide permanent magnet
JPS56122105A (en) * 1980-02-29 1981-09-25 Tohoku Metal Ind Ltd Manufacture of permanent magnet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4939796A (en) * 1972-08-28 1974-04-13
JPS4985594A (en) * 1972-12-25 1974-08-16
JPS5425496A (en) * 1977-07-27 1979-02-26 Tohoku Metal Ind Ltd Method of making oxide permanent magnet
JPS5466497A (en) * 1977-11-07 1979-05-29 Tohoku Metal Ind Ltd Preparation of oxide permanent magnet
JPS56122105A (en) * 1980-02-29 1981-09-25 Tohoku Metal Ind Ltd Manufacture of permanent magnet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8545641B2 (en) 2004-07-01 2013-10-01 Intermetallics Co., Ltd. Method and system for manufacturing sintered rare-earth magnet having magnetic anisotropy
JP2006156743A (en) * 2004-11-30 2006-06-15 Tdk Corp Process for producing oxide magnetic body

Also Published As

Publication number Publication date
JP2545603B2 (en) 1996-10-23

Similar Documents

Publication Publication Date Title
KR100374706B1 (en) Production method of Fine powder of Nd-Fe-B Alloy
EP2947664B1 (en) Magnetic material and method for producing magnetic material
KR100282317B1 (en) Process for the manufacture of molded bodies from hard ferrites
JPS59143002A (en) Organic binder of fine pulverous powder for powder metallurgy
JPH03224203A (en) Manufacture of anisotropical sintered magnet
CN110024056B (en) Rare earth sintered magnet
JP2015113481A (en) Manufacturing method of rare earth-transition metal-nitrogen alloy powder, rare earth-transition metal-nitrogen alloy powder obtained by the method, bond magnet composition using the same, and bond magnet
JP3331306B2 (en) Rare earth element / iron / boron permanent magnet alloy powder manufacturing method and rare earth / iron / boron permanent magnet alloy powder
JPS62173704A (en) Manufacture of permanent magnet
JP3201428B2 (en) Manufacturing method of powder for permanent magnet
JP2017098412A (en) Rare earth magnet, and manufacturing method thereof
JP4345588B2 (en) Rare earth-transition metal-nitrogen magnet powder, method for producing the same, and bonded magnet obtained
JPS6180805A (en) Permanent magnet material
JP6949414B2 (en) Magnet powder and method for manufacturing magnet powder
JP2001207201A (en) Sm-Fe-N SERIES COATED ALLOY POWDER FOR MAGNET AND PRODUCING METHOD THEREFOR
JPS6398107A (en) Manufacture of rare earth permanent magnet
JPH03291304A (en) Shape anisotropic and soft magnetic alloy powder and manufacture thereof
JPS6245684B2 (en)
Jang et al. Synthesis of Hard Magnetic Nd-Fe-B Powders by a Thermochemical Process
JPH02220412A (en) Rare earth alloy powder for bond magnet and bond magnet
JPH0543775B2 (en)
JPH06224018A (en) Manufacture of r-fe-b-based sintered magnet
JPS5848653A (en) Fe-cr-co alloy powder for magnet alloy
JPS6048884B2 (en) Manufacturing method of intermetallic compound magnet
JPH10125517A (en) Manufacture of raw material powder for permanent magnet