JPH03223632A - Light pulse tester - Google Patents

Light pulse tester

Info

Publication number
JPH03223632A
JPH03223632A JP2017856A JP1785690A JPH03223632A JP H03223632 A JPH03223632 A JP H03223632A JP 2017856 A JP2017856 A JP 2017856A JP 1785690 A JP1785690 A JP 1785690A JP H03223632 A JPH03223632 A JP H03223632A
Authority
JP
Japan
Prior art keywords
optical fiber
temperature
optical
fiber
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017856A
Other languages
Japanese (ja)
Inventor
Naoto Bando
直人 坂東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2017856A priority Critical patent/JPH03223632A/en
Publication of JPH03223632A publication Critical patent/JPH03223632A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Radiation Pyrometers (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PURPOSE:To improve reliability by covering the element wire of optical fiber with a specified resin. CONSTITUTION:Glass fiber 1 is represented by the SM fiber having a core diameter of 10mum and a clad diameter of 125mum or the GI fiber having a core diameter of 50mum and a clad diameter 125mum or a core diameter of 100mum and a clad diameter of 140mum. The glass fiber 1 is covered with a polyimide resin 2. It is preferable to have a constitution wherein the temperature of an element wire becomes equal to the temperature of external environment as quickly as possible. It is preferable that a gap 3 is as narrow as possible and a thin metal tube 4 is made of a material having excellent heat conductivity such as copper, gold, aluminum and their alloys. The optical fiber is not in direct contact with the external environment at low temperature or high tempera ture and can be isolated from the external environment. Thus, the reliability in measurement can be improved.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は分布型光ファイバー温度センサ等の光パルス試
験器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an optical pulse tester such as a distributed optical fiber temperature sensor.

[従来の技術] 光ファイバーの温度分布、破断点等を0TDR法により
測定する光パルス試験器の1種である分布型光ファイバ
ー温度センサは、接続する被測定光ファイバー自体なセ
ンサ体とし、その長手方向の温度分布をリアルタイムに
検出するものである。その原理は一種の0TDRであり
、センサとして用いる被測定光ファイバーにレーザパル
スを入射し、その伝搬に伴いファイバー各点で発生する
ラマン散乱現象を捕捉し、ストークス光強度と反ストー
クス光強度の比が温度の関数であることと、パルス入射
から、ラマン散乱光検出迄の遅れ時間が距離の情報であ
ることを利用し、距離と温度のデータを得るものである
[Prior Art] A distributed optical fiber temperature sensor, which is a type of optical pulse tester that measures the temperature distribution, break point, etc. of an optical fiber using the 0TDR method, uses the optical fiber to be measured itself as the sensor body, and It detects temperature distribution in real time. The principle is a type of 0TDR, in which a laser pulse is input into an optical fiber to be measured used as a sensor, and the Raman scattering phenomenon that occurs at each point of the fiber as it propagates is captured, and the ratio of Stokes light intensity to anti-Stokes light intensity is calculated. Distance and temperature data is obtained by utilizing the fact that it is a function of temperature and that the delay time from pulse input to detection of Raman scattered light is distance information.

従来の分布型光ファイバー温度センサのブロック図を第
3図に示す。
A block diagram of a conventional distributed optical fiber temperature sensor is shown in FIG.

LD等の光源部13から発振したレーザパルスは、光フ
ァイバーカプラーや音響光学素子等の光方向性結合器1
4を通過し、被測定用の光ファイバー15へ入射される
。光ファイバー15からのラマン敗乱光の一部は逆戻り
して光方向性結合器14により測定装置へ導光される。
A laser pulse oscillated from a light source unit 13 such as an LD is transmitted to an optical directional coupler 1 such as an optical fiber coupler or an acousto-optic device.
4 and enters the optical fiber 15 to be measured. A part of the Raman scattered light from the optical fiber 15 returns and is guided to the measuring device by the optical directional coupler 14.

測定装置では以下の処理がなされる。ラマン敗乱光に含
まれるストークス光と反ストークス光は光学フィルター
等の分光器J6で分離されて、各々光電変換器17.1
8で検出される。更に増幅器19.20で増幅された後
、信号処理部21で平均化処理あるいはストークス光と
反ストークス光の強度比から1品度分布を算出する等の
処理がなされる。
The following processing is performed in the measuring device. Stokes light and anti-Stokes light contained in the Raman scattered light are separated by a spectrometer J6 such as an optical filter, and each is separated by a photoelectric converter 17.1.
Detected at 8. After being further amplified by amplifiers 19 and 20, the signal processing unit 21 performs processing such as averaging processing or calculating a one-quality distribution from the intensity ratio of Stokes light and anti-Stokes light.

そのセンサ用の被測定光ファイバーは素線がガラスであ
り、特に通信用ファイバーの場合、石英系ガラスであり
、原理的には液体ヘリウム温度(4,2K)といった極
低温から1000℃以上の高温まで温度測定可能と考え
られるが、ガラス素線の状態では強度、信頼性の点で実
用不能である。そこで従来、通信用ファイバーと全く同
様の保護処理を行なっていた。即ち、素線上にジノコン
樹脂をバッファ層として使用し、ナイロン、ETFEと
いった樹脂で被覆していた(芯線と呼ばれる)、更に、
一般的に使用するためには、ケブラー等のテンションメ
ンバで補強し、PvCシースで保護をしている(コード
と呼ばれる)。この様な実用ファイバーでは被覆材の耐
熱性から、高温側の環境温度として、100℃程度が限
界である。
The optical fiber to be measured for the sensor is made of glass, especially in the case of communication fiber, it is silica-based glass, and in principle it can be used at temperatures ranging from extremely low temperatures such as liquid helium temperature (4.2K) to high temperatures of over 1000 degrees Celsius. Although it is considered possible to measure temperature, it is impractical in terms of strength and reliability in the state of glass wire. Therefore, in the past, the same protection treatment as for communication fibers was applied. That is, Zinocon resin was used as a buffer layer on the wire, and the wire was coated with a resin such as nylon or ETFE (called a core wire).
For general use, it is reinforced with a tension member such as Kevlar and protected with a PvC sheath (called a cord). Due to the heat resistance of the coating material, the upper limit of the environmental temperature for such practical fibers is about 100°C.

又、低温側では、被覆材の冷却収縮により、ガラス素線
にマイクロベンディングが発生し、それによる伝送損失
が顕著に現われ、−20℃程度が実用使用環境の下限で
ある。
Furthermore, on the low temperature side, microbending occurs in the glass wire due to cooling shrinkage of the coating material, resulting in significant transmission loss, and about -20°C is the lower limit of the practical usage environment.

[発明の解決しようとする問題点] 本発明の目的は5広い温度範囲で使用可能なポリイミド
樹脂被覆ファイバーあるいはその強度を上げる耐熱性細
管を用い実用敷設可能とし、超低温及び高温環境の温度
分布測定可能な光パルス試験器を提供するものである。
[Problems to be Solved by the Invention] The purpose of the present invention is to enable practical installation using polyimide resin-coated fibers that can be used in a wide temperature range or heat-resistant thin tubes that increase their strength, and to measure temperature distribution in ultra-low and high-temperature environments. The present invention provides a possible optical pulse tester.

E問題点を解決するための手段] 本発明は、被測定光ファイバーヘレーザパルスを入射す
る光源部と、被測定光ファイバーからの戻り光を測定装
置へ光路変換する光方向性結合器と、該戻り光を検出し
被測定光ファイバーの温度分布等の物理量を測定する測
定装置とからなる光パルス試験器において、該被測定光
ファイバーは素線をポリイミド樹脂で被覆してなること
を特徴とする光パルス試験器を提供するものである。
Means for Solving Problem E] The present invention provides a light source unit that inputs a laser pulse into an optical fiber to be measured, an optical directional coupler that converts the optical path of the return light from the optical fiber to be measured to a measuring device, and An optical pulse tester comprising a measuring device for detecting light and measuring physical quantities such as temperature distribution of an optical fiber to be measured, characterized in that the optical fiber to be measured is made of a bare wire coated with polyimide resin. It provides equipment.

本発明の光パルス試験器に用いるセンサ用被測定光ファ
イバーの断面図を第1図に示す。lはガラス素線、2は
ポリイミド樹脂層、3は空隙、4は保護用の金属細管を
示す。金属細管4は使用しなくても素線のままでも低温
で低損失に測定できるが、強度の点で用いた方が好まし
い。ガラス素線としては、コア径10μm、クラツド径
125μmの3Mファイバー、コア径50μm、クラツ
ド径125μm、コア径100μm、クラツド径140
μmのGIファイバーを代表例とするあらゆるガラスフ
ァイバーで良い。
FIG. 1 shows a cross-sectional view of an optical fiber to be measured for a sensor used in the optical pulse tester of the present invention. 1 is a glass wire, 2 is a polyimide resin layer, 3 is a void, and 4 is a protective metal capillary. Although measurements can be made at low temperatures and with low loss even if the metal thin tube 4 is not used or is left as a wire, it is preferable to use it in terms of strength. The glass wires include 3M fiber with a core diameter of 10 μm and a cladding diameter of 125 μm, a core diameter of 50 μm, a cladding diameter of 125 μm, a core diameter of 100 μm, and a cladding diameter of 140 μm.
Any type of glass fiber may be used, including a μm GI fiber as a typical example.

又、素線の温度が可能な限り速やかに、外部環境の温度
と等しくなる様な構成が望ましく、空隙は可能な限り狭
く、かつ、金属細管は熱伝導性の良い材質を用いるのが
望ましい。例えば銅、金、アルミニウム、更には合金で
も良い。
Further, it is desirable that the temperature of the wire becomes equal to the temperature of the external environment as quickly as possible, that the gap be as narrow as possible, and that the metal tube be made of a material with good thermal conductivity. For example, copper, gold, aluminum, or even an alloy may be used.

又、その他の金属でも肉厚を薄くすることにより、使用
可能である。耐熱性細管は金属、フッ素樹脂、シリコン
樹脂、ガラス、セラミック等が使用できるが、金属が伝
熱性が良くまた耐熱性も高いので好ましい。
Also, other metals can be used by reducing the wall thickness. The heat-resistant thin tube can be made of metal, fluororesin, silicone resin, glass, ceramic, etc., but metal is preferred because it has good heat conductivity and high heat resistance.

[作 用J 本発明において、金属細管等の耐熱性細管がセンサ用被
測定光ファイバーを保護し、その強度を保証し、実使用
においても金属細管は針金を扱うのと同等の容易さで敷
設が可能となる。
[Function J] In the present invention, a heat-resistant thin tube such as a metal thin tube protects the optical fiber to be measured for the sensor and guarantees its strength, and in actual use, the metal thin tube can be laid with the same ease as handling wire. It becomes possible.

[実施例] (実施例1) コア径100μm、クラツド径140μmの石英系GI
ファイバーにポリイミド樹脂を厚み50μm被覆し、更
に内径0.8++on 、外径1,2闘のステンレス(
SUS304)の細管に挿入し、保護した被測定光ファ
イバーを使用した場合の温度分布測定の測定データを第
2図に示す。
[Example] (Example 1) Quartz-based GI with core diameter of 100 μm and cladding diameter of 140 μm
The fiber is coated with polyimide resin to a thickness of 50 μm, and is made of stainless steel (with an inner diameter of 0.8++ on and an outer diameter of 1.2 mm).
Figure 2 shows measurement data for temperature distribution measurement using a protected optical fiber inserted into a thin tube made of SUS304.

光源からの距離が約60〜130 rr:の部分に温度
が約−100℃の低温部があり、また距離的260〜3
40mの部分には温度が約200℃の高温部があるが、
従来このような−100℃の低温状態から200℃の高
温状態の気体、液体、固体等の温度を、光ファイバーな
センサとしたl)T D II法で測定不能であったも
のが、本発明により高い信頼性をもって可能となった。
There is a low temperature part with a temperature of about -100°C at a distance of about 60 to 130 rr from the light source, and a part with a distance of about 260 to 3 rr from the light source.
There is a high temperature part of 40m with a temperature of about 200℃,
Conventionally, it was impossible to measure the temperature of gases, liquids, solids, etc. from a low temperature of -100℃ to a high temperature of 200℃ using an optical fiber sensor. This has been made possible with high reliability.

また、本発明の光パルス試験器の基本構成は第3図と同
様であり、光ファイバー15を上述の構成としたもので
ある。
The basic configuration of the optical pulse tester of the present invention is the same as that shown in FIG. 3, and the optical fiber 15 has the above-described configuration.

(実施例2) 実施例1のステンレスの細管の代わりにセラミックスの
細管を用いて、実施例1と同様にして分布型光ファイバ
ー温度センサを作成したところ、実施例1と同様に効果
が得もi]た。
(Example 2) A distributed optical fiber temperature sensor was created in the same manner as in Example 1 using a ceramic thin tube instead of the stainless steel tube in Example 1. ]Ta.

[発明の効果] 不発明け、光ファイバーが低温及び高温の外界に直接触
tすることなく、外界から隔離できるので高い信頼性を
もって測定でき、外力による破断の可能性をも軽減する
という優れた効果を有する。更に、液中、気体中に光フ
ァイバーを設置可能にする。
[Effects of the invention] The optical fiber can be isolated from the outside world at low and high temperatures without directly coming into contact with it, allowing for highly reliable measurements and reducing the possibility of breakage due to external force. have Furthermore, it is possible to install optical fibers in liquid or gas.

また、測定可能な温度は、液体窒素温度の77Kから3
00〜350℃まで可能である。
In addition, the measurable temperature ranges from 77K to 3K, which is the liquid nitrogen temperature.
Temperatures from 00 to 350°C are possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図と第2図は本発明の実施例を示し5、第1図は被
測定光ファイバーの断面図であり、第2図は一101′
N“”C,−= 200℃の低温部から高温部までを測
定したデータのグラフであり、第3図は従来の分布型光
ファイバー温度センサのプロ・ツク図である。 l・・・ガラス素線   2・・・ポリイミド樹脂3・
・・空隙      4・・・金属細管第 図
1 and 2 show an embodiment of the present invention5, FIG. 1 is a cross-sectional view of an optical fiber to be measured, and FIG. 2 is a 1101'
This is a graph of data measured from a low temperature part to a high temperature part of N""C,-=200 DEG C., and FIG. 3 is a diagram of a conventional distributed optical fiber temperature sensor. l...Glass wire 2...Polyimide resin 3.
...Gap 4...Metal capillary diagram

Claims (3)

【特許請求の範囲】[Claims] (1)被測定光ファイバーへレーザパルスを入射する光
源部と、被測定光ファイバーからの戻り光を測定装置へ
光路変換する光方向性結合器と、該戻り光を検出し被測
定光ファイバーの温度分布等の物理量を測定する測定装
置とからなる光パルス試験器において、該被測定光ファ
イバーは素線をポリイミド樹脂で被覆してなることを特
徴とする光パルス試験器。
(1) A light source unit that injects a laser pulse into the optical fiber to be measured, an optical directional coupler that converts the optical path of the return light from the optical fiber to the measurement device, and a temperature distribution of the optical fiber to be measured that detects the returned light. 1. An optical pulse tester comprising a measuring device for measuring a physical quantity, wherein the optical fiber to be measured is a wire coated with a polyimide resin.
(2)該被測定光ファイバーは素線をポリイミド樹脂で
被覆し、さらに該素線を耐熱性細管内に挿入してなる請
求項1記載の光パルス試験器。
(2) The optical pulse tester according to claim 1, wherein the optical fiber to be measured is a wire coated with a polyimide resin, and the wire is further inserted into a heat-resistant capillary tube.
(3)請求項1又2いずれか1項記載の光パルス試験器
を用いた分布型光ファイバー温度センサ。
(3) A distributed optical fiber temperature sensor using the optical pulse tester according to claim 1 or 2.
JP2017856A 1990-01-30 1990-01-30 Light pulse tester Pending JPH03223632A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017856A JPH03223632A (en) 1990-01-30 1990-01-30 Light pulse tester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017856A JPH03223632A (en) 1990-01-30 1990-01-30 Light pulse tester

Publications (1)

Publication Number Publication Date
JPH03223632A true JPH03223632A (en) 1991-10-02

Family

ID=11955301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017856A Pending JPH03223632A (en) 1990-01-30 1990-01-30 Light pulse tester

Country Status (1)

Country Link
JP (1) JPH03223632A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014211406A (en) * 2013-04-22 2014-11-13 アンリツ株式会社 Optical pulse testing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014211406A (en) * 2013-04-22 2014-11-13 アンリツ株式会社 Optical pulse testing device

Similar Documents

Publication Publication Date Title
CA2964508C (en) Array temperature sensing method and system
WO2007037366A1 (en) Sensor and external turbulence measuring method using the same
KR100567887B1 (en) Apparatus and Method for Analysis of Electric Power Transmission Link Status Having Function of Real-Time Evaluating Thermal Parameters Outside the Link
KR20120012426A (en) Fiber optic carbon dioxide purity sensor package and system
CA2028352A1 (en) High temperature sensor
JPH03223632A (en) Light pulse tester
US5839830A (en) Passivated diamond film temperature sensing probe and measuring system employing same
US6513972B1 (en) Optical temperature probe, monitoring system, and related methods
JP2786811B2 (en) Temperature measurement method
JP2962452B2 (en) Cryogenic equipment abnormality detection method
CN115452196A (en) Device and method for testing high-precision temperature sensitivity coefficient of optical fiber sensing ring
CN210774419U (en) Sapphire fiber grating high temperature sensor
JPH03223633A (en) Light pulse tester
CN114216585A (en) Distributed optical fiber temperature measurement algorithm for petroleum horizontal well
JPH05264370A (en) System for measuring temperature distribution in optical fiber
US3954508A (en) High temperature thermocouple probe
JPH0380252B2 (en)
JPH03180731A (en) Heat medium leakage detecting method for piping for heat medium transportation
JP2010271254A (en) Optical fiber temperature measuring instrument
CN207396805U (en) A kind of integrated temperature measurement system optical cable
KR20100011094U (en) Distributed temperature sensor cable using thermally conductive thermoplastic as sensor cable jacket
JPH11237287A (en) Temperature distribution measuring apparatus
CN212515129U (en) Single-mode high-temperature optical waveguide sensing head and distributed optical fiber sensing system thereof
JPH10319241A (en) Interference type optical fiber sensor
JPH03158728A (en) Temperature detecting optical cable