JPH03221761A - Refrigerant circuit for air conditioner - Google Patents
Refrigerant circuit for air conditionerInfo
- Publication number
- JPH03221761A JPH03221761A JP2015271A JP1527190A JPH03221761A JP H03221761 A JPH03221761 A JP H03221761A JP 2015271 A JP2015271 A JP 2015271A JP 1527190 A JP1527190 A JP 1527190A JP H03221761 A JPH03221761 A JP H03221761A
- Authority
- JP
- Japan
- Prior art keywords
- refrigerant
- valve body
- spring
- valve
- compressor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003507 refrigerant Substances 0.000 title claims abstract description 38
- 229910001285 shape-memory alloy Inorganic materials 0.000 claims abstract description 7
- 230000008020 evaporation Effects 0.000 abstract description 6
- 238000001704 evaporation Methods 0.000 abstract description 6
- 230000009466 transformation Effects 0.000 abstract description 3
- 239000006200 vaporizer Substances 0.000 abstract 2
- 238000010586 diagram Methods 0.000 description 8
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910000734 martensite Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000029052 metamorphosis Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/20—Disposition of valves, e.g. of on-off valves or flow control valves
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Temperature-Responsive Valves (AREA)
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野1
この発明は空気調和機の圧縮機の吸入側と吐出側の間に
バイパス弁を有する冷媒回路に間するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field 1] The present invention relates to a refrigerant circuit having a bypass valve between the suction side and the discharge side of a compressor of an air conditioner.
[従来の技術]
第4図及び第5図は、例えば実開昭59−9259号公
報に示された従来の空気調和機の冷媒回路を示す図で、
第4図は冷媒回路図、第5図はバイパス弁の縦断面図で
ある。[Prior Art] FIGS. 4 and 5 are diagrams showing a refrigerant circuit of a conventional air conditioner disclosed in, for example, Japanese Utility Model Application Publication No. 59-9259.
FIG. 4 is a refrigerant circuit diagram, and FIG. 5 is a longitudinal sectional view of the bypass valve.
図中、(1)は圧縮機、 (2)は凝縮器、 (3)は
蒸発器、 (4)は毛細管、 (5)はバイパス弁で、
高圧側配管(6)で圧縮機(1)の吐出側に接続され、
低圧側配管(7)で同じく吸入側に接続されている。In the figure, (1) is the compressor, (2) is the condenser, (3) is the evaporator, (4) is the capillary tube, and (5) is the bypass valve.
Connected to the discharge side of the compressor (1) with a high pressure side pipe (6),
It is also connected to the suction side by a low pressure side pipe (7).
(8)は配管(61(7)の流路中に設けられた弁座、
(9)は弁座(8)に透通され上記流路を開閉する弁体
、(lO)は弁体(9)に結合され冷媒の圧力差により
動作するダイヤフラム、(Illはダイヤフラム(lO
)の動作を補助する押ばねである。(8) is a valve seat provided in the flow path of the piping (61 (7));
(9) is a valve element that passes through the valve seat (8) and opens and closes the flow path, (lO) is a diaphragm that is connected to the valve element (9) and operates based on the pressure difference of the refrigerant, (Ill is a diaphragm (lO
) is a push spring that assists in the operation of the
従来の空気調和機の冷媒回路は上記のように構成され、
運転開始時、圧縮機(目の吸入側と吐出側の圧力は平衡
しており2ダイヤフラム(101は第5図の状態にあり
、弁体(9)は弁座(8)の流路を開いた状態になって
いる。The refrigerant circuit of a conventional air conditioner is configured as described above.
At the start of operation, the pressure on the suction side and the discharge side of the compressor are balanced, the two diaphragms (101 are in the state shown in Figure 5), and the valve body (9) opens the flow path of the valve seat (8). It is in a state of
圧縮機(1)が起動すると、高圧側配管(6)内が高圧
となり、低圧側配管(7)との差圧が、ダイヤフラム(
10)と押ばね(11)によって定まる条件に達すると
、ダイヤフラム(lO)は押圧されて動作し、弁体(9
)は弁座(8)の流路を閉塞し、通常の運転に移行する
。When the compressor (1) starts, the pressure inside the high-pressure side pipe (6) becomes high, and the differential pressure between it and the low-pressure side pipe (7) increases through the diaphragm (
10) and the pressure spring (11), the diaphragm (lO) is pressed and operated, and the valve body (9)
) closes the flow path of the valve seat (8) and shifts to normal operation.
また、圧縮機(1)の停止時は、毛細管(4)によって
高圧側冷媒が低圧側に流入し、圧縮機mの吸入側と吐出
側の差圧は小さくなる。これが、ダイヤフラム(lO)
と押ばね[11)により定まる圧力条件に達すると、ダ
イヤフラム(lotは動作して、弁体(9)は弁座(8
)の流路を開放する。これにより、圧縮機(1)の吸入
側と吐出側の圧力が平衡し1次回の圧縮!’1(1)の
再起動は円滑に行なわれることになる。Furthermore, when the compressor (1) is stopped, the high-pressure side refrigerant flows into the low-pressure side through the capillary tube (4), and the differential pressure between the suction side and the discharge side of the compressor m becomes small. This is the diaphragm (lO)
When the pressure condition determined by the pressure spring [11] is reached, the diaphragm (lot) operates and the valve body (9) presses against the valve seat (8).
) to open the flow path. As a result, the pressures on the suction side and discharge side of the compressor (1) are balanced and the first compression is performed! '1(1) will be restarted smoothly.
[発明が解決しようとする課題]
上記のような従来の空気調和機の冷媒回路では、バイパ
ス弁(5)にダイヤフラム(1o)を用いているため、
ダイヤフラム(lO)の信頼性を考慮する必要があると
共に、部品点数が多く、コスト高になるという問題点が
ある。また、運転前冷媒が蒸発R3(3)側に寝込んで
いることがあり、起動時これが蒸発して発生する騒音が
防止できないという問題点がある。[Problems to be Solved by the Invention] In the refrigerant circuit of the conventional air conditioner as described above, the diaphragm (1o) is used for the bypass valve (5).
There are problems in that it is necessary to consider the reliability of the diaphragm (IO), and the number of parts is large, resulting in high cost. Further, there is a problem that the pre-operation refrigerant may be trapped on the evaporator R3 (3) side, and the noise generated by evaporation during startup cannot be prevented.
この発明は上記問題点を解決するためになされたもので
、バイパス弁を簡易な構成にすることができ、信頼性及
び製作性を改善できると共に、起動時の蒸発器の冷媒騒
音を防止できるようにした空気調和機の冷媒回路を提供
することを目的とする。This invention was made to solve the above problems, and it is possible to simplify the structure of the bypass valve, improve reliability and manufacturability, and prevent refrigerant noise from the evaporator at startup. The purpose of this invention is to provide a refrigerant circuit for an air conditioner.
[課題を解決するための手段]
この発明に係る空気調和機の冷媒回路は、バイパス弁を
、圧縮機の吸入側と吐出側との間の流路な開放及び閉塞
する弁体と、起動時弁体な上記開放位置に付勢する第1
のばねと、冷媒の温度が上昇すると弁体な上記閉塞位置
に付勢する形状記憶合金製の第2のばねとで構成したも
のである。[Means for Solving the Problems] A refrigerant circuit for an air conditioner according to the present invention includes a bypass valve, a valve body that opens and closes a flow path between the suction side and the discharge side of the compressor, and a valve body that opens and closes the flow path between the suction side and the discharge side of the compressor, and a valve body that opens and closes the flow path between the suction side and the discharge side of the compressor. The first valve body is biased to the open position.
and a second spring made of a shape memory alloy that urges the valve body to the closed position when the temperature of the refrigerant rises.
〔作 ml
この発明においては、弁体と、第1のばねと、形状記憶
合金製の第2のばねとで横取したため、起動時弁体は第
1のばねにより圧縮機の吸入側と吐出側の間の流路を開
放しているが、圧縮機吐出ガス温度が上昇すると第2の
ばねが動作して弁体は流路を閉塞し、バイパス回路の閉
塞に遅延時間が与えられ、蒸発器内の冷媒の蒸発は抑制
される。[Production ml] In this invention, since the valve body, the first spring, and the second spring made of shape memory alloy are used, the valve body at startup is connected to the suction side and the discharge side of the compressor by the first spring. However, when the compressor discharge gas temperature rises, the second spring operates and the valve body closes the flow path, giving a delay time for the bypass circuit to close, and preventing evaporation. Evaporation of the refrigerant inside the container is suppressed.
[実施例]
第1図〜第3図はこの発明の一実施例を示す図で、第1
図はバイパス弁の縦断面図、第2図は動作説明図、第3
図は弁体の斜視図であり、従来装置と同様の部分は同一
符号で示す。なお、第4図はこの実施例にも共用される
。[Example] Figures 1 to 3 are diagrams showing an example of the present invention.
The figure is a vertical cross-sectional view of the bypass valve, the second figure is an explanatory diagram of the operation, and the third figure is a longitudinal cross-sectional view of the bypass valve.
The figure is a perspective view of the valve body, and parts similar to those of the conventional device are designated by the same reference numerals. Note that FIG. 4 is also used in this embodiment.
図中、(15)は低圧側配管(7)に接続され弁座を兼
用するケース、(16)は高圧側配管(6)に接続され
ケース(15)に固定されたふた、(17)はケース(
15)内に設けられ、図の上下方向へ移動可能に収納さ
れた弁体で、ケース(15)の弁座と当接するテーパ面
(17alを有し、ガス流路となる切欠きf17bl〜
(17dlが形成されている。 (18)は弁体(17
)を高圧側配管[6) II+へ押圧する第1のばね、
(19)は形状記憶合金により作られ高温時に弁体(1
7)を低圧側配管(7)側へ押圧する第2のばねである
。In the figure, (15) is a case that is connected to the low pressure side pipe (7) and also serves as a valve seat, (16) is a lid that is connected to the high pressure side pipe (6) and fixed to the case (15), and (17) is a case that is connected to the low pressure side pipe (7) and serves as a valve seat. Case(
15) is a valve body that is housed movably in the vertical direction in the figure, and has a tapered surface (17al) that comes into contact with the valve seat of the case (15), and has a notch f17bl~ that becomes a gas flow path.
(17dl is formed. (18) is the valve body (17dl).
) to the high pressure side pipe [6) II+,
(19) is made of shape memory alloy and the valve body (1
7) toward the low pressure side pipe (7).
上記のように構成された空気調和機の冷媒回路において
、空気調和機の運転前は、圧縮機(1)の吸入側と吐出
側の圧力は平衡しており、弁体(17)は第1のばね(
18)の力でふた(16)側に位置しており、高圧側配
管(6)と低圧側配管(7)とは弁体(9)の切欠き+
17b)〜(17dlを介して通過している。また、運
転前、冷媒回路内は圧力において平衡しているが、室外
気温が高い状態では、室内ユニット(図示しない)の蒸
発器(3)側に冷媒が寝込んでいる。In the refrigerant circuit of the air conditioner configured as described above, before the air conditioner is operated, the pressures on the suction side and the discharge side of the compressor (1) are balanced, and the valve body (17) is in the first position. Spring (
18) is located on the lid (16) side, and the high pressure side pipe (6) and low pressure side pipe (7) are connected to the notch + of the valve body (9).
17b) to (17dl). Also, before operation, the pressure inside the refrigerant circuit is balanced, but when the outdoor temperature is high, the evaporator (3) side of the indoor unit (not shown) The refrigerant is trapped in the
運転が指令され、圧縮機(1)が起動すると、冷媒は高
圧側配管(6)からバイパス弁(5)内に流入する。こ
の流入した冷媒は、弁体(17)の切欠き(17cl
−= (17b) ” (17d)の順に通過して、低
圧側配管(7)へ流れる。この際、運転開始直後であ゛
るため、冷媒は周囲に熱を奪われ、温度は低い状態にあ
る。このため、第2のばね(19)は熱変態前の状態に
あり、第1のばね(18)により、バイパス弁(5)は
開放状態にある。When operation is commanded and the compressor (1) is started, refrigerant flows into the bypass valve (5) from the high pressure side pipe (6). This inflowing refrigerant flows through the notch (17cl) of the valve body (17).
- = (17b) " (17d) and flows to the low pressure side pipe (7). At this time, since the operation has just started, the refrigerant loses heat to the surroundings and the temperature remains low. Therefore, the second spring (19) is in a state before thermal transformation, and the bypass valve (5) is in an open state due to the first spring (18).
起動から運転時間が経過し、バイパス弁(5)に流入す
る冷媒の温度が第2のばね(19)の熱変態温度に達す
ると、第2のばね(19)は伸長し、第2図に示すよう
に、弁体(17)は冷媒の力によってケース(15)の
弁座に密着し、バイパス弁(5)は閉塞される。その後
は、弁体(9)の高圧側に作用する背圧で、弁体(17
)の上記弁座への密着が安定し、通常の運転状態となる
。When the operating time elapses from startup and the temperature of the refrigerant flowing into the bypass valve (5) reaches the thermal transformation temperature of the second spring (19), the second spring (19) expands and the temperature shown in FIG. As shown, the valve body (17) is brought into close contact with the valve seat of the case (15) by the force of the refrigerant, and the bypass valve (5) is closed. After that, the back pressure acting on the high pressure side of the valve body (9) causes the valve body (17
) is in stable contact with the valve seat, and normal operation is achieved.
このように、運転開始から弁体(17)が冷媒の温度上
品により作動するまでの間、圧縮機(1)の吸入側と吐
出側はバイパスされており、圧縮機CI+の吸入側の急
激な圧力低下は緩和される。そのため、上記室内ユニッ
トの蒸発器(3)に寝込んでいた冷媒の急激な蒸発は抑
制され、蒸発器(3)から発生する音を緩和することが
でき、室内ユニットは低騒音となる。In this way, from the start of operation until the valve body (17) is activated due to the temperature of the refrigerant, the suction side and discharge side of the compressor (1) are bypassed, and a sudden change on the suction side of the compressor CI+ is prevented. The pressure drop is alleviated. Therefore, rapid evaporation of the refrigerant that has been trapped in the evaporator (3) of the indoor unit is suppressed, and the noise generated from the evaporator (3) can be reduced, making the indoor unit low-noise.
空気調和機の停止時は2第2図に示すように、バイパス
弁(5)は閉塞状態にある。運転中バイパス弁(5)に
は高温ガスの流入がなく、配管(6) [7)からの熱
伝導により、第2のばね(19)の素材である形状記憶
合金が低温のマルテンサイト相に変態する温度よりも低
温になっている。したがって、第2のばね(19)は小
さい力で容易にに復元し得る状態となっている。空気調
和機の停止に伴い;毛細管(4)により高圧側の冷媒が
低圧側へ流入し、圧縮機(1)の吸入側と吐出側の圧力
差が、弁体(17)を押し上げる力とつり合うと、第1
のばね(18)によって弁体(17)は上記弁座から浮
き上がって移動し、バイパス弁(5)は開放状態となり
、冷媒回路の圧力は速やかに平衡状態となる。When the air conditioner is stopped, the bypass valve (5) is in a closed state, as shown in FIG. 2. During operation, no high-temperature gas flows into the bypass valve (5), and due to heat conduction from the piping (6) [7], the shape memory alloy that is the material of the second spring (19) changes to a low-temperature martensitic phase. The temperature is lower than the temperature at which it undergoes metamorphosis. Therefore, the second spring (19) is in a state where it can be easily restored with a small force. When the air conditioner stops; the refrigerant on the high pressure side flows into the low pressure side through the capillary tube (4), and the pressure difference between the suction side and the discharge side of the compressor (1) balances the force pushing up the valve body (17). and the first
The valve body (17) is lifted up from the valve seat by the spring (18), the bypass valve (5) becomes open, and the pressure in the refrigerant circuit quickly reaches an equilibrium state.
[発明の効果]
以上説明したとおり、この発明では、バイパス弁の弁体
を、空気調和機の起動時第1のばねにより、圧1tfI
etの吸入側と吐出側の間の流路を開放する位置に付勢
し、圧縮機吐出ガス温度が上昇すると、形状記憶合金で
形成した第2のばねにより閉塞位置に付勢するようにし
たので、起動時バイパス回路の閉塞に遅延時間が与えら
れ、蒸発器内の冷媒の蒸発は抑制され騒音を低減するこ
とができると共に、バイパス弁を簡単な構成にして信頼
性を向上することができる効果がある。[Effects of the Invention] As explained above, in this invention, the valve body of the bypass valve is set to a pressure of 1tfI by the first spring when the air conditioner is started.
The flow path between the suction side and the discharge side of the ET is biased to the open position, and when the compressor discharge gas temperature rises, the second spring made of shape memory alloy is biased to the closed position. Therefore, a delay time is given to blockage of the bypass circuit at startup, and evaporation of the refrigerant in the evaporator is suppressed, reducing noise. At the same time, reliability can be improved by simplifying the configuration of the bypass valve. effective.
第1図〜第3図はこの発明による空気調和機の冷媒回路
の一実施例を示す図で、第1図はバイパス弁の縦断−図
、第2図は第1図の動作説明図、第3図は弁体の斜視図
、第4図及び第5図は従来の空気調和機の冷媒回路を示
す図で、第4図は冷媒回路図、第5図はバイパス弁の縦
断面図である。
図中、 (1)は圧縮機、 (2)は凝縮器、 (3)
は蒸発器、 (5)はバイパス弁、(17)は弁体、(
18)は第1のばね、(19)は第2のばねである。
なお、図中同一符号は同一または相当部分を示す。1 to 3 are diagrams showing an embodiment of the refrigerant circuit of an air conditioner according to the present invention, in which FIG. 1 is a vertical cross-sectional view of the bypass valve, FIG. Figure 3 is a perspective view of the valve body, Figures 4 and 5 are diagrams showing the refrigerant circuit of a conventional air conditioner, Figure 4 is a refrigerant circuit diagram, and Figure 5 is a longitudinal sectional view of the bypass valve. . In the diagram, (1) is the compressor, (2) is the condenser, (3)
is the evaporator, (5) is the bypass valve, (17) is the valve body, (
18) is the first spring, and (19) is the second spring. Note that the same reference numerals in the figures indicate the same or corresponding parts.
Claims (1)
が接続され、上記吸入側と吐出側の間に冷媒のバイパス
管路が設けられ、その途中に上記吸入側の圧力と吐出側
の圧力との差圧により開閉するバイパス弁が設けられた
ものにおいて、上記バイパス弁を、上記吸入側と吐出側
の間の流路を開放する位置と閉塞する位置とに移動する
弁体と、上記圧縮機の起動時上記弁体を上記開放位置に
付勢する第1のばねと、形状記憶合金で形成され上記圧
縮機の吐出ガス温度が上昇すると上記弁体を上記閉塞位
置に付勢する第2のばねとで構成したことを特徴とする
空気調和機の冷媒回路。An evaporator is connected to the suction side of the compressor, a condenser is connected to the discharge side, and a refrigerant bypass line is provided between the suction side and the discharge side, and the pressure on the suction side and the discharge side are connected in the middle. A valve body that moves the bypass valve to a position where the flow path between the suction side and the discharge side is opened and a position where it is closed; a first spring that biases the valve body to the open position when the compressor is started; and a first spring made of a shape memory alloy that biases the valve body to the closed position when the discharge gas temperature of the compressor rises; A refrigerant circuit for an air conditioner, comprising a second spring.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015271A JPH03221761A (en) | 1990-01-25 | 1990-01-25 | Refrigerant circuit for air conditioner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015271A JPH03221761A (en) | 1990-01-25 | 1990-01-25 | Refrigerant circuit for air conditioner |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03221761A true JPH03221761A (en) | 1991-09-30 |
Family
ID=11884199
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015271A Pending JPH03221761A (en) | 1990-01-25 | 1990-01-25 | Refrigerant circuit for air conditioner |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03221761A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007101054A (en) * | 2005-10-04 | 2007-04-19 | Fuji Koki Corp | Pressure control valve |
WO2018105102A1 (en) * | 2016-12-09 | 2018-06-14 | 三菱電機株式会社 | Heat pump device |
-
1990
- 1990-01-25 JP JP2015271A patent/JPH03221761A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007101054A (en) * | 2005-10-04 | 2007-04-19 | Fuji Koki Corp | Pressure control valve |
JP4509000B2 (en) * | 2005-10-04 | 2010-07-21 | 株式会社不二工機 | Pressure control valve |
WO2018105102A1 (en) * | 2016-12-09 | 2018-06-14 | 三菱電機株式会社 | Heat pump device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH03100768U (en) | ||
JPH11248272A (en) | Supercritical refrigeration cycle | |
JPH03221761A (en) | Refrigerant circuit for air conditioner | |
JPS58221078A (en) | Pressure operated valve | |
CN109163137A (en) | Loop heat pipe and thermal switch structure thereof | |
JPH1163739A (en) | Pressure control valve | |
JP3712828B2 (en) | Refrigeration system, refrigerant flow rate correction bypass valve and temperature expansion valve | |
JP3712827B2 (en) | Refrigeration system, refrigerant flow rate correction bypass valve and temperature expansion valve | |
JP2003207237A (en) | Refrigerator | |
JPH0539405Y2 (en) | ||
JPS6353463B2 (en) | ||
JP2001263865A (en) | Supercritical vapor compression refrigeration cycle and pressure control valve | |
JPH0144796Y2 (en) | ||
JPS5899671A (en) | Fluid control valve for refrigerator | |
JP2001074321A (en) | Supercritical vapor compressing cycle device and pressure control valve with release valve | |
JPH1137615A (en) | Pressure control valve | |
JPS6069461A (en) | Refrigeration cycle device | |
JPH11132602A (en) | Method for sealing refrigerant | |
KR940022035A (en) | Refrigerator freezer | |
JPH0138234B2 (en) | ||
JP2685293B2 (en) | Fluid control valve | |
JPS6016268A (en) | Cooling device | |
JPS6016269A (en) | Cooling device | |
JPS6329154A (en) | Air conditioner | |
JP2006275428A (en) | Temperature differential pressure sensing valve |