JP2007101054A - Pressure control valve - Google Patents

Pressure control valve Download PDF

Info

Publication number
JP2007101054A
JP2007101054A JP2005291051A JP2005291051A JP2007101054A JP 2007101054 A JP2007101054 A JP 2007101054A JP 2005291051 A JP2005291051 A JP 2005291051A JP 2005291051 A JP2005291051 A JP 2005291051A JP 2007101054 A JP2007101054 A JP 2007101054A
Authority
JP
Japan
Prior art keywords
pressure
temperature
valve body
valve
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005291051A
Other languages
Japanese (ja)
Other versions
JP4509000B2 (en
Inventor
Sadatake Ise
貞武 伊勢
Hide Yanagisawa
秀 柳澤
Maki Tomaru
真樹 登丸
Toshiharu Katayama
俊治 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikoki Corp
Original Assignee
Fujikoki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikoki Corp filed Critical Fujikoki Corp
Priority to JP2005291051A priority Critical patent/JP4509000B2/en
Publication of JP2007101054A publication Critical patent/JP2007101054A/en
Application granted granted Critical
Publication of JP4509000B2 publication Critical patent/JP4509000B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves
    • F25B2341/068Expansion valves combined with a sensor
    • F25B2341/0683Expansion valves combined with a sensor the sensor is disposed in the suction line and influenced by the temperature or the pressure of the suction gas

Landscapes

  • Temperature-Responsive Valves (AREA)
  • Safety Valves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To positively prevent malfunction such as valve opening inability caused by rising of a pressure in an element due to heat from solar radiation, an engine, or the like. <P>SOLUTION: A relief mechanism is provided with a valve attaching passage 30 with a valve seat guiding a high pressure refrigerant to a low pressure refrigerant outlet 12, a relief valve element 40 fit in the valve attaching passage 30 with the valve seat, and a spring 50 made of shape memory alloy energizing the relief valve element 40 in a valve opening direction. The relief mechanism is provided in a valve body 10A. When a temperature of the high pressure refrigerant becomes a predetermined temperature or more, the spring 50 made of shape memory alloy senses it and lifts the relief valve element in the valve opening direction, and one part of the high pressure refrigerant is relieved to the low pressure refrigerant outlet 12. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、冷媒としてCOが用いられる蒸気圧縮式冷凍サイクル(COサイクル)に組み込まれ、ガスクーラ(放熱器)出口側の冷媒圧力をその冷媒温度に応じて調圧する圧力制御弁に係り、特に、蒸発器出口側の冷媒とガスクーラ出口側の冷媒との熱交換を行う内部熱交換器を備えたカーエアコン等に採用される蒸気圧縮式冷凍サイクルに好適な圧力制御弁に関する。 The present invention relates to a pressure control valve that is incorporated in a vapor compression refrigeration cycle (CO 2 cycle) in which CO 2 is used as a refrigerant, and regulates the refrigerant pressure on the gas cooler (radiator) outlet side according to the refrigerant temperature, More particularly, the present invention relates to a pressure control valve suitable for a vapor compression refrigeration cycle employed in a car air conditioner or the like provided with an internal heat exchanger that performs heat exchange between a refrigerant on an evaporator outlet side and a refrigerant on a gas cooler outlet side.

この種の圧力制御弁が組み込まれた蒸気圧縮式冷凍サイクルの一例を図8に示す。図示の冷凍サイクル100では、冷媒としてのCOを循環させるための圧縮機101と、この圧縮機101により圧縮された冷媒を冷却するガスクーラ(放熱器)102と、このガスクーラ102からの冷媒が導入される蒸発器104と、該蒸発器104の出口側の冷媒とガスクーラ102の出口側の冷媒との熱交換を行う内部熱交換器103と、蒸発器104からの冷媒を気相冷媒と液相冷媒とに分離して気相冷媒を熱交換器103を介して圧縮機101の吸入側に導くとともに、余剰冷媒を蓄えるアキュームレータ(気液分離器)105と、に加えて、ガスクーラ102から内部熱交換器103を介して導入される冷媒をガスクーラ102の出口側の冷媒温度に応じて調圧して蒸発器104に導出する圧力制御弁110を備える。 An example of a vapor compression refrigeration cycle incorporating this type of pressure control valve is shown in FIG. In the illustrated refrigeration cycle 100, a compressor 101 for circulating CO 2 as a refrigerant, a gas cooler (heat radiator) 102 for cooling the refrigerant compressed by the compressor 101, and a refrigerant from the gas cooler 102 are introduced. The evaporator 104, the internal heat exchanger 103 that performs heat exchange between the refrigerant on the outlet side of the evaporator 104 and the refrigerant on the outlet side of the gas cooler 102, and the refrigerant from the evaporator 104 as a gas phase refrigerant and a liquid phase In addition to the accumulator (gas-liquid separator) 105 that stores the surplus refrigerant, the vapor phase refrigerant is led to the suction side of the compressor 101 via the heat exchanger 103 and separated from the refrigerant, and the internal heat is supplied from the gas cooler 102. A pressure control valve 110 is provided that regulates the refrigerant introduced through the exchanger 103 according to the refrigerant temperature on the outlet side of the gas cooler 102 and leads the refrigerant to the evaporator 104.

前記圧力制御弁110は、冷凍サイクル100を効率良く運転するために設けられるもの、言い換えれば、ガスクーラ102の出口側の冷媒温度に対して最大成績係数が得られるようにガスクーラ102の出口側の冷媒圧力を調圧する(例えば、出口側の冷媒温度が40°Cであるとき、出口側の冷媒圧力を例えば10MPaとすれば成績係数が最大となる場合には、その出口側の冷媒圧力が10MPaとなるように制御する)ために設けられるもので、例えば下記特許文献1等に所載のように、ガスクーラ102からの冷媒を内部熱交換器103を介して導入するための高圧冷媒流入口111及びその冷媒をガスクーラ102の出口側の冷媒温度に応じて調圧して蒸発器104に導出するための低圧冷媒流出口112と、ガスクーラ102からの冷媒を導入するための感温用流入口113及びそれを内部熱交換器103に導出するための感温用流出口114と、それら感温用流入口113と流出口114との間に設けられた感温用導入室(以下の各部は図示せず)と、この感温用導入室に導入された冷媒の温度を感知する感温室を有し、該感温室の内圧の変化に応動して弁体を開閉方向に駆動する感温圧力応動エレメントと、このエレメントを内蔵する弁本体(図示制御弁全体)と、この弁本体内に配在されて弁開度を小さくする方向(閉弁方向)に弁体を付勢するばね部材と、を備え、弁開度(弁体のリフト量)は、前記感温室内外の差圧による開弁力と前記ばね部材による閉弁力との平衡関係により決まるようになっている。   The pressure control valve 110 is provided to efficiently operate the refrigeration cycle 100, in other words, the refrigerant on the outlet side of the gas cooler 102 so that the maximum coefficient of performance is obtained with respect to the refrigerant temperature on the outlet side of the gas cooler 102. The pressure is regulated (for example, when the refrigerant temperature on the outlet side is 40 ° C. and the refrigerant coefficient on the outlet side is, for example, 10 MPa, the coefficient of performance becomes maximum, the refrigerant pressure on the outlet side becomes 10 MPa. A high-pressure refrigerant inlet 111 for introducing the refrigerant from the gas cooler 102 via the internal heat exchanger 103, as described in, for example, the following Patent Document 1 and the like. A low-pressure refrigerant outlet 112 for adjusting the refrigerant according to the refrigerant temperature on the outlet side of the gas cooler 102 and leading the refrigerant to the evaporator 104; A temperature-sensitive inlet 113 for introducing the refrigerant, a temperature-sensitive outlet 114 for introducing the refrigerant to the internal heat exchanger 103, and between the temperature-sensitive inlet 113 and the outlet 114. It has a temperature-sensing chamber (not shown in the figure below) and a temperature-sensing greenhouse that senses the temperature of the refrigerant introduced into the temperature-sensing chamber, and responds to changes in the internal pressure of the temperature-sensing chamber. Temperature-sensitive pressure responsive element that drives the valve body in the opening and closing direction, a valve body that contains this element (the entire control valve shown in the figure), and a direction that is distributed within this valve body to reduce the valve opening (closed) A spring member that urges the valve body in the valve direction), and a valve opening degree (a lift amount of the valve body) is determined by a valve opening force due to a differential pressure inside and outside the greenhouse and a valve closing force due to the spring member. It is determined by the equilibrium relationship.

特開2001−81157号公報JP 2001-81157 A 特開平11−248272号公報JP-A-11-248272

前記した如くのカーエアコン等の蒸気圧縮式冷凍サイクル(COサイクル)に組み込まれて使用される圧力制御弁においては、外気温が高温であるとき、すなわち、日射やエンジン等からの熱により当該圧力制御弁が過熱される(通常は50°C以下であるとき、例えば、60°C以上になる)と、エレメント(感温室)内の圧力が上昇し、閉弁方向に過大な力が作用するため、圧縮機運転時(特に起動時)に開弁しなくなる等の動作不良を引き起こすことがあり、その結果、吐出圧力が異常に昇圧し、高圧側機器である内部熱交換器、ガスクーラ、圧縮機等が故障・破壊するおそれがある。 In the pressure control valve used by being incorporated in a vapor compression refrigeration cycle (CO 2 cycle) such as a car air conditioner as described above, when the outside air temperature is high, that is, by solar radiation or heat from an engine or the like. When the pressure control valve is overheated (usually, when it is 50 ° C or lower, for example, 60 ° C or higher), the pressure in the element (greenhouse) rises and excessive force acts in the valve closing direction. Therefore, it may cause malfunction such as the valve not opening during compressor operation (particularly at startup). As a result, the discharge pressure is increased abnormally, and the internal heat exchanger, gas cooler, There is a risk that the compressor will break down or break down.

これを回避すべく、通常のフロン系の圧力制御弁のように、MOP(最高作動圧力)付でエレメントにガスを封入、いわゆるGチャージが可能であれば、それがベストなのだが、COサイクルにおいては、Gチャージでの対応が不可能であるため、冷凍サイクルの高圧側が所定の圧力(又は温度)に達したら、高圧冷媒の一部を低圧側(蒸発器側)にリリーフすることが考えられている(上記特許文献2等を参照)。 In order to avoid this, gas is sealed in the element with MOP (maximum operating pressure) like a normal chlorofluorocarbon pressure control valve. If so-called G charge is possible, it is best, but it is the CO 2 cycle. In this case, since it is impossible to cope with G charge, a part of the high-pressure refrigerant may be relieved to the low-pressure side (evaporator side) when the high-pressure side of the refrigeration cycle reaches a predetermined pressure (or temperature). (See Patent Document 2 above).

ところで、前記した如くの圧力制御弁においても、近年ますますコストダウンの要求が厳しくなって来ており、構成の簡素化、部品点数の削減、加工組立コストの低減等が強く要望されている。   By the way, in the pressure control valve as described above, in recent years, the demand for cost reduction has become more and more severe, and there is a strong demand for simplification of the configuration, reduction of the number of parts, reduction of processing assembly cost, and the like.

本発明は、前記課題・要望に応えるべくなされたもので、その目的とするところは、ガスクーラの出口側の冷媒圧力をその出口側の冷媒温度に応じて適正に調圧することができるとともに、構成の簡素化、部品点数の削減、加工組立コストの低減等を効果的に図ることができ、しかも、日射やエンジン等からの熱によってエレメント内の圧力が上昇することに起因する開弁不能等の動作不良を確実に防止できるようにされた圧力制御弁を提供することにある。   The present invention has been made to meet the above-mentioned problems and demands, and the object of the present invention is to appropriately adjust the refrigerant pressure on the outlet side of the gas cooler according to the refrigerant temperature on the outlet side, and the configuration Simplification, reduction of the number of parts, reduction of processing and assembly costs, etc., and inability to open the valve due to the pressure in the element rising due to solar radiation and heat from the engine etc. It is an object of the present invention to provide a pressure control valve that can reliably prevent malfunction.

前記目的を達成すべく、本発明に係る圧力制御弁は、基本的には、冷媒としてのCOを循環させるための圧縮機と、該圧縮機により圧縮された高圧冷媒を冷却するガスクーラと、該ガスクーラからの冷媒が調圧されて導入される蒸発器と、該蒸発器の出口側の低圧冷媒と前記ガスクーラの出口側の高圧冷媒との熱交換を行う内部熱交換器と、を有する蒸気圧縮式冷凍サイクルに組み込まれ、前記ガスクーラから前記内部熱交換器を介して導入される高圧冷媒を前記ガスクーラの出口側の冷媒温度に応じて調圧して前記蒸発器に導出するための、主弁体及び該主弁体が接離する主弁座が設けられた主弁室を有し、
前記ガスクーラからの高圧冷媒を導入するための感温用流入口及びそれを前記内部熱交換器に導出するための感温用流出口、それら感温用流入口と流出口との間に設けられた感温用導入室、前記内部熱交換器からの高圧冷媒を前記主弁室に導入するための高圧冷媒流入口及び前記主弁体により低圧に調圧された冷媒を前記蒸発器に導出する低圧冷媒流出口、を有する弁本体と、前記感温用導入室に導入された高圧冷媒の温度を感知する感温室を有し、該感温室の内圧の変化に応動して前記主弁体を開閉方向に駆動する感温圧力応動エレメントと、を備える。
In order to achieve the above object, a pressure control valve according to the present invention basically includes a compressor for circulating CO 2 as a refrigerant, a gas cooler for cooling a high-pressure refrigerant compressed by the compressor, Steam having an evaporator into which refrigerant from the gas cooler is pressure-adjusted and introduced, and an internal heat exchanger for exchanging heat between the low-pressure refrigerant on the outlet side of the evaporator and the high-pressure refrigerant on the outlet side of the gas cooler A main valve that is incorporated in a compression refrigeration cycle and that regulates high-pressure refrigerant introduced from the gas cooler via the internal heat exchanger according to the refrigerant temperature on the outlet side of the gas cooler and leads it to the evaporator A main valve chamber provided with a main valve seat for contacting and separating the main valve body and
A temperature-sensitive inlet for introducing the high-pressure refrigerant from the gas cooler, a temperature-sensitive outlet for leading it to the internal heat exchanger, and provided between the temperature-sensitive inlet and the outlet. The temperature-sensing introduction chamber, the high-pressure refrigerant inlet for introducing the high-pressure refrigerant from the internal heat exchanger into the main valve chamber, and the refrigerant adjusted to a low pressure by the main valve body are led to the evaporator. A valve body having a low-pressure refrigerant outlet, and a temperature-sensing greenhouse for sensing the temperature of the high-pressure refrigerant introduced into the temperature-sensing introduction chamber, and the main valve body in response to a change in the internal pressure of the temperature-sensing greenhouse A temperature-sensitive pressure responsive element that is driven in the opening and closing direction.

そして、前記弁本体に、前記高圧冷媒の温度が所定温度以上のとき、当該高圧冷媒の一部を前記低圧冷媒流出口に逃がすリリーフ機構が設けられていることを特徴としている。   The valve body is provided with a relief mechanism for allowing a part of the high-pressure refrigerant to escape to the low-pressure refrigerant outlet when the temperature of the high-pressure refrigerant is equal to or higher than a predetermined temperature.

前記リリーフ機構は、好ましくは、前記高圧冷媒を前記低圧冷媒流出口に導く弁座付き弁装通路と、該弁座付き弁装通路に嵌挿されたリリーフ弁体と、該リリーフ弁体を開弁方向に付勢する形状記憶合金製ばねと、を備える。   Preferably, the relief mechanism includes a valve seat passage with a valve seat for guiding the high-pressure refrigerant to the low-pressure refrigerant outlet, a relief valve body fitted into the valve seat passage with the valve seat, and a valve opening direction of the relief valve body And a shape memory alloy spring for biasing.

他の好ましい態様では、前記リリーフ機構が前記主弁体内に設けられる。   In another preferred embodiment, the relief mechanism is provided in the main valve body.

前記弁座付き弁装通路は、好ましくは、前記主弁室を迂回して前記高圧冷媒流入口と前記低圧冷媒流出口とを連通するバイパス通路で構成される。   The valve seat passage with a valve seat is preferably configured as a bypass passage that bypasses the main valve chamber and communicates the high-pressure refrigerant inlet and the low-pressure refrigerant outlet.

前記形状記憶合金製ばねは、好ましくは、その変態温度である所定温度(例えば60°C)以上に加熱されたとき、元の形状に戻って前記リリーフ弁体を前記弁座からリフトさせるように構成される。   The shape memory alloy spring preferably returns to its original shape and lifts the relief valve body from the valve seat when heated to a predetermined temperature (for example, 60 ° C.) or higher, which is its transformation temperature. Composed.

前記高圧冷媒は、好ましくは、前記弁座付き弁装通路の内周面と前記リリーフ弁体との間に形成された溝や切欠部等を通って前記低圧冷媒流出口に導かれるようにされる。   The high-pressure refrigerant is preferably guided to the low-pressure refrigerant outlet through a groove or a notch formed between an inner peripheral surface of the valve-equipped passage with valve seat and the relief valve body. .

他の好ましい態様では、前記弁座付き弁装通路の内周面と前記リリーフ弁体との間に防振用とシール用とを兼ねるOリングが介装され、前記高圧冷媒は、前記リリーフ弁体内に設けられた導通孔を通って前記低圧冷媒流出口に導かれるようにされる。   In another preferred embodiment, an O-ring serving both as a vibration isolator and a seal is interposed between an inner peripheral surface of the valve-equipped passage with valve seat and the relief valve body, and the high-pressure refrigerant is contained in the relief valve body. It is made to guide | invade to the said low-pressure refrigerant | coolant outflow port through the conduction hole provided in this.

他の好ましい態様では、前記リリーフ機構は、前記リリーフ弁体を閉弁方向に付勢するバイアスばねを備える。   In another preferred aspect, the relief mechanism includes a bias spring that biases the relief valve body in a valve closing direction.

他の好ましい態様では、前記リリーフ弁体の前記弁座からのリフト量を制限するためのストッパが設けられる。   In another preferred embodiment, a stopper for limiting the lift amount of the relief valve body from the valve seat is provided.

前記主弁体は、好ましくは、同軸的に連結された上段弁棒と下段弁棒とで構成される。   The main valve body is preferably composed of an upper valve shaft and a lower valve shaft which are coaxially connected.

他の好ましい態様では、前記弁本体における前記主弁座上方に、前記主弁体が摺動自在に嵌挿される案内穴が形成され、該案内穴の上方に、前記感温用流入口及び流出口並びに前記感温用導入室が形成され、前記案内穴の下方に前記高圧冷媒流入口及び流出口並びに主弁室が形成される。   In another preferred embodiment, a guide hole into which the main valve body is slidably inserted is formed above the main valve seat in the valve body, and the temperature-sensitive inlet and the flow path are formed above the guide hole. An outlet and the temperature-sensing introduction chamber are formed, and the high-pressure refrigerant inlet and outlet and a main valve chamber are formed below the guide hole.

他の好ましい態様では、前記感温圧力応動エレメントは、ダイアフラムと、該ダイアフラムと協同して前記感温室を画成する断面逆凹形状の蓋部材と、該蓋部材と協同して前記ダイアフラムの外周部分を挟持して密封するとともに、前記主弁体がその内周に挿入される鍔状部付き円筒状の蓋受け部材と、を備え、前記蓋受け部材の円筒部分外周に、前記弁本体への取り付けに供される雄ねじ部が設けられる。   In another preferred embodiment, the temperature-sensitive pressure responsive element includes a diaphragm, a lid member having a reverse concave shape in cross section that defines the temperature-sensitive room in cooperation with the diaphragm, and an outer periphery of the diaphragm in cooperation with the lid member. A cylindrical lid receiving member with a hook-like portion into which the main valve body is inserted and sealed to the inner circumference of the main valve body, and to the valve body on the outer circumference of the cylindrical portion of the lid receiving member A male thread portion is provided for mounting.

他の好ましい態様では、前記主弁体と前記ダイアフラムとが同軸的に配置され、前記主弁体の一端部と前記ダイアフラムとがプロジェクション溶接により接合される。   In another preferred embodiment, the main valve body and the diaphragm are coaxially arranged, and one end of the main valve body and the diaphragm are joined by projection welding.

他の好ましい態様では、前記主弁体に上面開口の縦穴が設けられるとともに、前記ダイアフラムに前記感温室と前記縦穴とを連通させる透孔が形成され、前記感温室と前記縦穴とで一つの拡張感温室が構成される。   In another preferred embodiment, the main valve body is provided with a vertical hole having an upper surface opening, and a through-hole is formed in the diaphragm so as to communicate the temperature-sensitive room and the vertical hole. A sensitive greenhouse is constructed.

本発明に係る圧力制御弁の好ましい態様では、例えば、高圧冷媒を低圧冷媒流出口に導く弁座付き弁装通路と、該弁座付き弁装通路に嵌挿されたリリーフ弁体と、該リリーフ弁体を開弁方向に付勢する形状記憶合金製ばねと、を備えているリリーフ機構が弁本体(好ましくは主弁体内)に設けられ、高圧冷媒の温度が所定温度以上になったとき、それを前記形状記憶合金製ばねが感知してリリーフ弁体を開弁方向にリフトさせて、高圧冷媒の一部を低圧冷媒流出口にリリーフするようにされるので、日射やエンジン等からの熱によってエレメント内の圧力が上昇することに起因する開弁不能等の動作不良を確実に防止できる。   In a preferred embodiment of the pressure control valve according to the present invention, for example, a valve-equipped passage with a valve seat for guiding high-pressure refrigerant to a low-pressure refrigerant outlet, a relief valve body fitted into the valve-equipped passage with the valve seat, and the relief valve body A relief mechanism comprising a shape memory alloy spring for urging the valve in the valve opening direction is provided in the valve main body (preferably in the main valve body), and when the temperature of the high-pressure refrigerant exceeds a predetermined temperature, Since the shape memory alloy spring senses and lifts the relief valve body in the valve opening direction, a part of the high-pressure refrigerant is relieved to the low-pressure refrigerant outlet, so that the element is generated by solar radiation or heat from the engine or the like. It is possible to reliably prevent malfunctions such as the inability to open the valve due to an increase in the internal pressure.

また、感温圧力応動エレメントを弁本体に内蔵させずに外から弁本体にねじ込む等の手法で取り付けるようにされること等から、構成の簡素化、部品点数の削減、加工組立コストの低減等を効果的に図ることができる。   In addition, the temperature-sensitive pressure responsive element is not built in the valve body, but is attached by a method such as screwing into the valve body from the outside, etc., simplifying the configuration, reducing the number of parts, reducing processing and assembly costs, etc. Can be effectively achieved.

以下、本発明の圧力制御弁の実施形態を図面を参照しながら説明する。
図1は、本発明に係る圧力制御弁の第1実施形態を示す縦断面図である。図示の第1実施形態の圧力制御弁1Aは、図3に示される如くに、前述した図8に示されるものと基本的には略同様な蒸気圧縮式冷凍サイクル100Aに組み込まれ、ガスクーラ102から内部熱交換器103を介して導入される冷媒をガスクーラ102の出口側の冷媒温度に応じて調圧して蒸発器104に導出するようにされる。なお、図3に示される冷凍サイクル100Aにおいて、図8に示される冷凍サイクル100の各部と同一構成もしくは同一機能部分には同一の符号を付してそれらの重複説明を省略する。
Hereinafter, embodiments of a pressure control valve of the present invention will be described with reference to the drawings.
FIG. 1 is a longitudinal sectional view showing a first embodiment of a pressure control valve according to the present invention. As shown in FIG. 3, the pressure control valve 1A of the illustrated first embodiment is incorporated in a vapor compression refrigeration cycle 100A basically similar to that shown in FIG. The refrigerant introduced through the internal heat exchanger 103 is regulated in accordance with the refrigerant temperature on the outlet side of the gas cooler 102 and led to the evaporator 104. In the refrigeration cycle 100A shown in FIG. 3, the same components or the same functional parts as those of the refrigeration cycle 100 shown in FIG.

前記圧力制御弁1Aは、冷凍サイクル100Aを効率良く運転するために設けられるもの、言い換えれば、ガスクーラ102の出口側の冷媒温度に対して最大成績係数が得られるようにガスクーラ102の出口側の冷媒圧力を調圧するために設けられるもので、弁本体10Aと、主弁体15と、感温圧力応動エレメント20と、を備える。前記主弁体15は、同軸的に連結された、上面開口の縦穴19が設けられた段付き円柱ないし円筒状の上段弁棒15Aと、該上段弁棒15Aにその上部が螺着されるとともに、円錐面状主弁部17が下端部に設けられた段付き円筒状の下段弁棒15Bと、から構成されている。   The pressure control valve 1A is provided to efficiently operate the refrigeration cycle 100A, in other words, the refrigerant on the outlet side of the gas cooler 102 so that the maximum coefficient of performance is obtained with respect to the refrigerant temperature on the outlet side of the gas cooler 102. It is provided to regulate the pressure, and includes a valve main body 10A, a main valve body 15, and a temperature-sensitive pressure responsive element 20. The main valve body 15 is coaxially connected to a stepped columnar or cylindrical upper valve rod 15A provided with a vertical hole 19 having an upper surface opening, and an upper portion of the main valve body 15 is screwed to the upper valve rod 15A. The conical surface main valve portion 17 is composed of a stepped cylindrical lower valve rod 15B provided at the lower end portion.

前記弁本体10Aは、アルミ押し出し棒材から切り出されたムク材に下記の各部が切削加工等により形成されたもので、その下部には、ガスクーラ102からの冷媒を内部熱交換器103を介して導入するための入口通路部11aを含む右側方に開口した高圧冷媒流入口(継手部)11、この高圧冷媒流入口11からの冷媒が導入される主弁室14、この主弁室14の底部を形成し、前記主弁体15(の主弁部17)が接離する円錐面状の主弁座13、前記弁室14からの冷媒を蒸発器104に導出するための出口通路部12aを含む左側方に開口した低圧冷媒流出口(継手部)12が形成されている。なお、主弁座13には、小さなノッチ(図示省略)が形成されており、本制御弁1Aの弁開度は、主弁体15(の主弁部17)の主弁座13からのリフト量に相当する。   The valve main body 10A is formed by cutting or cutting the following parts on a bulk material cut out from an aluminum extruded bar, and in the lower part, refrigerant from the gas cooler 102 is passed through an internal heat exchanger 103. A high-pressure refrigerant inlet (joint part) 11 opened to the right side including an inlet passage part 11a for introduction, a main valve chamber 14 into which refrigerant from the high-pressure refrigerant inlet 11 is introduced, and a bottom part of the main valve chamber 14 A main valve seat 13 having a conical surface to which the main valve body 15 (the main valve portion 17) contacts and separates, and an outlet passage portion 12a for leading the refrigerant from the valve chamber 14 to the evaporator 104. A low-pressure refrigerant outlet (joint portion) 12 that opens to the left side is formed. A small notch (not shown) is formed in the main valve seat 13, and the valve opening degree of the control valve 1A is the lift from the main valve seat 13 of the main valve body 15 (the main valve portion 17). It corresponds to the amount.

また、弁本体10Aの中央部には、前記主弁室14に連なって、主弁体15の下段弁棒15Bが摺動自在に嵌挿される案内穴18が形成され、この案内穴18の上方、つまり、弁本体10Aの上部には、ガスクーラ102からの冷媒を導入するための左側方に開口した感温用流入口61、及び、その冷媒を内部熱交換器103に導出するための右側方に開口した感温用流出口62が形成されており、それら感温用流入口61と流出口62との間に感温用導入室60が形成されている。感温用導入室60は、上段弁棒15Aの上部周りを含む断面凸字状となっている。また、弁本体10Aの上部内周には、後述する感温圧力応動エレメント20を弁本体10Aに取り付けるための雌ねじ部10bが形成されている。なお、前記下段弁棒15Bの外周面と案内孔18との間には、主弁室14と感温用導入室60との間で冷媒が流通するのを遮断すべくOリング48が装着されている。   Further, a guide hole 18 is formed in the central portion of the valve body 10A so as to be slidably inserted into the lower valve rod 15B of the main valve body 15 so as to be continuous with the main valve chamber 14. That is, in the upper part of the valve body 10A, a temperature-sensitive inlet 61 opened to the left side for introducing the refrigerant from the gas cooler 102, and a right side for leading the refrigerant to the internal heat exchanger 103. A temperature-sensing outlet 62 is formed, and a temperature-sensing introduction chamber 60 is formed between the temperature-sensing inlet 61 and the outlet 62. The temperature sensing introduction chamber 60 has a convex cross section including the upper portion of the upper valve stem 15A. Further, a female thread portion 10b for attaching a temperature sensitive pressure responsive element 20 (described later) to the valve main body 10A is formed on the upper inner periphery of the valve main body 10A. An O-ring 48 is mounted between the outer peripheral surface of the lower valve stem 15B and the guide hole 18 so as to block the refrigerant from flowing between the main valve chamber 14 and the temperature sensing introduction chamber 60. ing.

前記感温圧力応動エレメント20は、有底短円筒状のダイアフラム21と、このダイアフラム21と協同して感温室(ダイアフラム室)25を画成する断面逆凹形状の蓋部材22と、この蓋部材22と協同してダイアフラム21の外周部分(外周端縁部と円筒部分)を挟持して密封するとともに、主弁体15の上段弁棒15A上部がその内周に挿入される鍔状部23a付き円筒状の蓋受け部材23と、を備え、前記蓋部材22、蓋受け部材23(の鍔状部23a)、及びダイアフラム21における合わせ部(挟持部)の下端部分は全周溶接により接合(溶接部Ka)されている。   The temperature-sensitive pressure responsive element 20 includes a bottomed short cylindrical diaphragm 21, a lid member 22 having a reverse concave shape in cross section that defines a temperature-sensitive greenhouse (diaphragm chamber) 25 in cooperation with the diaphragm 21, and the lid member 22 is provided with a hook-like portion 23a in which the upper part of the upper valve stem 15A of the main valve body 15 is inserted into the inner periphery thereof while sandwiching and sealing the outer peripheral part (outer peripheral edge part and cylindrical part) of the diaphragm 21 in cooperation with A cylindrical lid receiving member 23, and the lower end portion of the lid member 22, the lid receiving member 23 (the hook-like portion 23 a), and the mating portion (clamping portion) of the diaphragm 21 is joined (welded) by all-around welding. Part Ka).

前記主弁体15の上段弁棒15Aは、軸部15aとその上端部に設けられた鍔状大径部15bとからなっており、鍔状大径部15bは、蓋受け部材23の上部中央に設けられた凹部23dに浮いた状態で昇降自在に嵌挿されている。この鍔状大径部15bの上面には断面台形の環状突起16が形成されるとともに、その内外周に環状溝が形成され、前記環状突起16にダイアフラム21が主弁体15(上段弁棒15A)と同軸的にプロジェクション溶接により接合(溶接部Kb)されている。   The upper valve rod 15A of the main valve body 15 is composed of a shaft portion 15a and a bowl-shaped large diameter portion 15b provided at the upper end portion thereof, and the bowl-shaped large diameter portion 15b is formed at the upper center of the lid receiving member 23. It is inserted so as to be able to move up and down in a state where it floats in a recess 23d. An annular protrusion 16 having a trapezoidal cross section is formed on the upper surface of the bowl-shaped large-diameter portion 15b, and an annular groove is formed on the inner and outer periphery thereof. A diaphragm 21 is placed on the annular protrusion 16 on the main valve body 15 (upper valve stem 15A). ) And is coaxially joined by projection welding (welded portion Kb).

また、上段弁棒15Aの上部には、上面開口の縦穴19が設けられ、前記ダイアフラム21の中央部に感温室25と前記縦穴19とを連通させる透孔21aが形成され、感温室25と縦穴19とで一つの拡張感温室25’が構成されている。このように感温室を感温用導入室60側に拡張することで、温度感知能力が高められる。   In addition, a vertical hole 19 having an upper surface opening is provided on the upper part of the upper valve rod 15A, and a through hole 21a is formed in the center of the diaphragm 21 so as to communicate the temperature sensitive chamber 25 and the vertical hole 19 with each other. 19 constitutes one extended sensation greenhouse 25 '. In this manner, the temperature sensing capability is enhanced by extending the temperature sensing greenhouse to the temperature sensing introduction chamber 60 side.

一方、前記拡張感温室25’(感温室25+縦穴19)には、感温室25に固着された短いキャピラリチューブ39から、ガスクーラ102の出口側の冷媒温度に対して最大成績係数が得られるようにガスクーラ102の出口側の冷媒圧力を調圧(例えば、出口側の冷媒温度が40°Cであるとき、出口側の冷媒圧力を例えば10MPaとすれば成績係数が最大となる場合には、その出口側の冷媒圧力が10MPaとなるように制御)すべく、COが所定の密度で封入されるとともに、窒素ガス等の不活性ガスが嵩上げ封入され、この状態で前記キャピラリチューブ39の末端が封止されている。 On the other hand, in the extended sensation greenhouse 25 ′ (sensation chamber 25 + vertical hole 19), the maximum coefficient of performance is obtained with respect to the refrigerant temperature on the outlet side of the gas cooler 102 from the short capillary tube 39 fixed to the sensation chamber 25. The refrigerant pressure on the outlet side of the gas cooler 102 is adjusted (for example, when the refrigerant temperature on the outlet side is 40 ° C. and the refrigerant coefficient on the outlet side is, for example, 10 MPa, the coefficient of performance is maximized. CO 2 is sealed at a predetermined density and an inert gas such as nitrogen gas is raised and sealed, and in this state, the end of the capillary tube 39 is sealed. It has been stopped.

また、前記蓋受け部材23の円筒部分外周には、前記弁本体10Aへの取り付けに供される、前記雌ねじ部10bに螺合する雄ねじ部23bが設けられており、前記のようにして一体に結合された感温圧力応動エレメント20(ダイアフラム21、蓋部材22、蓋受け部材23)及び主弁体15からなるユニットは、前記雄ねじ部23bを前記弁本体10Aの雌ねじ部10bに螺合させて全体を回転させることによりねじ込んで、弁本体10Aに取り付ける。このようにして弁本体10Aに取り付けた状態では、主弁体15(上段弁棒15A)周りに感温用導入室60が形成され、この感温用導入室60内の冷媒の温度が拡張感温室25’により感知されることになる。   Further, on the outer periphery of the cylindrical portion of the lid receiving member 23, there is provided a male screw portion 23b that is used for attachment to the valve main body 10A and screwed into the female screw portion 10b. In the unit composed of the combined temperature-sensitive pressure responsive element 20 (diaphragm 21, lid member 22, lid receiving member 23) and main valve body 15, the male screw portion 23b is screwed into the female screw portion 10b of the valve body 10A. It is screwed in by rotating the whole and attached to the valve body 10A. In the state of being attached to the valve body 10A in this way, a temperature sensing introduction chamber 60 is formed around the main valve body 15 (upper valve stem 15A), and the temperature of the refrigerant in the temperature sensing introduction chamber 60 is expanded. It will be sensed by the greenhouse 25 '.

なお、蓋受け部材23の下面と弁本体10Aの上面との間にはガスケット26が介装されている。また、弁本体10Aには、図示はされていないが、当該制御弁1Aをガスクーラ102あるいは内部熱交換器103等に取付固定するための、ねじ穴や丸穴等が形成されている。   A gasket 26 is interposed between the lower surface of the lid receiving member 23 and the upper surface of the valve body 10A. Although not shown, the valve body 10A is formed with a screw hole, a round hole, or the like for mounting and fixing the control valve 1A to the gas cooler 102, the internal heat exchanger 103, or the like.

上記構成に加え、本実施形態の圧力制御弁1Aでは、前記主弁体15(下段弁棒15B)内に、前記感温用導入室60に導入された高圧冷媒の温度が所定温度以上のとき、当該高圧冷媒の一部を低圧冷媒流出口12に逃がすべく、リリーフ機構が設けられている。   In addition to the above configuration, in the pressure control valve 1A of the present embodiment, when the temperature of the high-pressure refrigerant introduced into the temperature sensing introduction chamber 60 in the main valve body 15 (lower valve rod 15B) is equal to or higher than a predetermined temperature. A relief mechanism is provided to allow a part of the high-pressure refrigerant to escape to the low-pressure refrigerant outlet 12.

該リリーフ機構は、感温用導入室60に開口する複数の入口31、底部に弁座35が設けられた上面開口の弁穴(リリーフ弁室)32、及び該弁孔32の下方に形成された出口33からなる弁座付き弁装通路30と、該弁座付き弁装通路30の弁穴32に嵌挿された、大径部41及び前記弁座35に接離する円錐面状の弁部42を有する段付き円柱状のリリーフ弁体40と、該リリーフ弁体40を開弁方向に付勢すべく、大径部41と弁穴32の底部との間に縮装された形状記憶合金製ばね45と、前記リリーフ弁体40を閉弁方向に付勢すべく、前記上段弁棒15Aの底面と大径部41との間に縮装されたバイアスばね46と、を備えている。   The relief mechanism is formed below a plurality of inlets 31 that open to the temperature-sensing introduction chamber 60, a valve hole (relief valve chamber) 32 having an upper surface provided with a valve seat 35 at the bottom, and the valve hole 32. A valve seat passage 30 with a valve seat comprising an outlet 33, and a large-diameter portion 41 fitted into a valve hole 32 of the valve seat passage 30 with the valve seat and a conical surface valve portion 42 contacting and separating from the valve seat 35. A stepped columnar relief valve body 40 having a shape, and a shape memory alloy made by compression between the large diameter portion 41 and the bottom of the valve hole 32 to urge the relief valve body 40 in the valve opening direction. A spring 45 and a bias spring 46 that is compressed between the bottom surface of the upper valve stem 15A and the large-diameter portion 41 are provided to urge the relief valve element 40 in the valve closing direction.

前記リリーフ弁体40の大径部41外周には、図2(A)に示される如くの断面矩形の縦溝47が複数本設けられており、前記感温用導入室60の高圧冷媒は、リリーフ弁体40の開弁時に、前記入口31→縦溝47(弁穴32の内周面とリリーフ弁体40との間)→弁座35と弁部42との間(リフト量に応じて)→前記出口33を通って低圧冷媒流出口12に導かれるようにされている。なお、前記リリーフ弁体40の大径部41外周には、前記縦溝47に代えて、図2(B)に示される如くの平行面取り切欠部47’等を形成してもよい。   A plurality of vertical grooves 47 having a rectangular cross section as shown in FIG. 2A are provided on the outer periphery of the large-diameter portion 41 of the relief valve body 40, and the high-pressure refrigerant in the temperature-sensing introduction chamber 60 is: When the relief valve body 40 is opened, the inlet 31 → the vertical groove 47 (between the inner peripheral surface of the valve hole 32 and the relief valve body 40) → between the valve seat 35 and the valve portion 42 (depending on the lift amount). → The gas is led to the low-pressure refrigerant outlet 12 through the outlet 33. In addition, instead of the longitudinal groove 47, a parallel chamfered cutout 47 'as shown in FIG. 2B or the like may be formed on the outer periphery of the large diameter portion 41 of the relief valve body 40.

また、リリーフ弁体40の上部には、当該リリーフ弁体40(の弁部42)の前記弁座35からのリフト量を制限するためのストッパ43が突設されており、ストッパ43が上段弁棒15Aの底面に接当すると、リリーフ弁体40のリフトが止められるようになっている。   Further, a stopper 43 for restricting the lift amount of the relief valve body 40 (the valve portion 42) from the valve seat 35 protrudes from the upper portion of the relief valve body 40, and the stopper 43 serves as an upper valve. When it comes into contact with the bottom surface of the rod 15A, the lift of the relief valve body 40 is stopped.

なお、前記形状記憶合金製ばね45は、その素材として、例えば、Ni−Ti(ニッケルチタン)系合金に、記憶する温度を調整すべくCu(銅)をわずかに添加したものが用いられており、マルテンサイト相からオーステナイト相への相変態を起こす変態温度(変態点)である所定温度(例えば60°C)以上に加熱されたとき、元の形状に戻って(伸張して)リリーフ弁体40を前記弁座35からリフト(開弁)させるようになっている。   The shape memory alloy spring 45 is made of, for example, a Ni-Ti (nickel titanium) alloy with a slight addition of Cu (copper) to adjust the temperature to be memorized. The relief valve body returns to its original shape (extends) when heated to a predetermined temperature (for example, 60 ° C.) that is a transformation temperature (transformation point) that causes a phase transformation from the martensite phase to the austenite phase. 40 is lifted (opened) from the valve seat 35.

このような構成とされた本実施形態の圧力制御弁1Aでは、ガスクーラ102の出口側の冷媒が感温用流入口61から感温用導入室60に導入されると、拡張感温室25’によりガスクーラ102の出口側の冷媒温度が感知され、拡張感温室25’の内圧がガスクーラ102の出口側の冷媒温度に応じたものとなり、この拡張感温室25’の内圧の変化にダイアフラム21が応動して主弁体15を開閉方向に駆動し、これによって、弁開度が調整され、ガスクーラ102の出口側の冷媒温度に対して最大成績係数が得られるようにガスクーラ102の出口側の冷媒圧力が調圧される。   In the pressure control valve 1A of the present embodiment configured as described above, when the refrigerant on the outlet side of the gas cooler 102 is introduced from the temperature sensing inlet 61 into the temperature sensing introduction chamber 60, the expansion sensing greenhouse 25 ' The refrigerant temperature on the outlet side of the gas cooler 102 is sensed, and the internal pressure of the extended sensation greenhouse 25 ′ corresponds to the refrigerant temperature on the outlet side of the gas cooler 102. Thus, the main valve body 15 is driven in the opening / closing direction, whereby the valve opening is adjusted, and the refrigerant pressure on the outlet side of the gas cooler 102 is adjusted so that the maximum coefficient of performance is obtained with respect to the refrigerant temperature on the outlet side of the gas cooler 102. It is regulated.

このように本実施形態の圧力制御弁1Aでは、感温圧力応動エレメント20のみで弁開度を調整するようにされるので、弁開度(主弁体15のリフト量)が拡張感温室25’内外の差圧による開弁力とばね部材による閉弁力との平衡関係により決まるようにしたものに比して、構成が簡素化されるとともに、部品点数が削減され、また、感温圧力応動エレメント20を弁本体に内蔵させずに外から弁本体10Aにねじ込む等の手法で取り付けるようにされることからも、さらに構成の簡素化、部品点数の削減、加工組立コストの低減等を効果的に図ることができる。   Thus, in the pressure control valve 1A of the present embodiment, the valve opening degree is adjusted only by the temperature-sensitive pressure responsive element 20, so that the valve opening degree (the lift amount of the main valve body 15) is increased. 'The structure is simplified, the number of parts is reduced, and the temperature-sensitive pressure is compared with that determined by the balanced relationship between the valve opening force due to the internal and external differential pressure and the valve closing force due to the spring member. Since the responding element 20 is attached to the valve body 10A from the outside without being incorporated in the valve body, the structure is simplified, the number of parts is reduced, and the processing and assembly costs are reduced. Can be achieved.

上記に加え、主弁体15に、高圧冷媒を低圧冷媒流出口12に導く弁座付き弁装通路30と、該弁座付き弁装通路30に嵌挿されたリリーフ弁体40と、該リリーフ弁体40を開弁方向に付勢する形状記憶合金製ばね45と、を備えたリリーフ機構が設けられ、高圧冷媒の温度が所定温度(例えば、60°C)以上になったとき、それを形状記憶合金製ばね45が感知してリリーフ弁体40を開弁方向にリフトさせて、高圧冷媒の一部を低圧冷媒流出口12にリリーフするようにされるので、日射やエンジン等からの熱によってエレメント内の圧力が上昇することに起因する開弁不能等の動作不良を確実に防止できる。   In addition to the above, the valve seat passage 30 with a valve seat for guiding the high-pressure refrigerant to the low-pressure refrigerant outlet 12 in the main valve body 15, the relief valve body 40 fitted in the valve seat passage 30 with the valve seat, and the relief valve body A relief mechanism including a shape memory alloy spring 45 for urging 40 in the valve opening direction, and when the temperature of the high-pressure refrigerant reaches a predetermined temperature (for example, 60 ° C.) or higher, the shape memory is stored. Since the alloy spring 45 senses and lifts the relief valve body 40 in the valve opening direction, a part of the high-pressure refrigerant is relieved to the low-pressure refrigerant outlet 12, so that the element is caused by solar radiation or heat from the engine or the like. It is possible to reliably prevent malfunctions such as the inability to open the valve due to an increase in the internal pressure.

なお、本第1実施形態の圧力制御弁1Aでは、リリーフ弁体40の弁部42(弁座35)より上流側(弁穴32内等の感温用導入室60側)が高圧Phとなり、下流側(低圧冷媒流出口12側)が低圧Plとなるので、それらの間に差圧が生じる(Ph−Pl>0)。そのため、圧縮機101の起動後は、前記差圧がリリーフ弁体40を閉弁する方向に働く。   In the pressure control valve 1A of the first embodiment, the upstream side (the temperature sensing introduction chamber 60 side such as the inside of the valve hole 32) from the valve portion 42 (valve seat 35) of the relief valve body 40 has a high pressure Ph. Since the downstream side (low pressure refrigerant outlet 12 side) becomes the low pressure Pl, a differential pressure is generated between them (Ph−Pl> 0). Therefore, after the compressor 101 is started, the differential pressure works in a direction to close the relief valve body 40.

図4は、本発明に係る圧力制御弁の第2実施形態の縦断面図である。図示第2実施形態の圧力制御弁1Bは、基本的には第1実施形態の圧力制御弁1Aと同じ構成であるが(第1実施形態の圧力制御弁1Aの各部に対応する部分もしくは同一機能部分には同一の符号を付してそれらの重複説明を省略する)、本実施形態の圧力制御弁1Bでは、前記弁座付き弁装通路30(弁穴32)の内周面とリリーフ弁体40との間に防振用とシール用とを兼ねるOリング49が介装され、感温用導入室60の高圧冷媒は、前記縦溝47ではなく、リリーフ弁体40内に形成された上部横穴44a、縦穴44b、下部横穴44cからなる導通孔(均圧孔)を通って低圧冷媒流出口12に導かれるようにされており、このような構成のもとでも、第1実施形態と略同様な作用効果が得られる。   FIG. 4 is a longitudinal sectional view of a second embodiment of the pressure control valve according to the present invention. The pressure control valve 1B of the illustrated second embodiment has basically the same configuration as the pressure control valve 1A of the first embodiment (part corresponding to each part of the pressure control valve 1A of the first embodiment or the same function). In the pressure control valve 1B of this embodiment, the inner peripheral surface of the valve seat passage 30 (valve hole 32) and the relief valve element 40 are omitted. The high-pressure refrigerant in the temperature-sensing introduction chamber 60 is not the vertical groove 47 but the upper horizontal hole formed in the relief valve body 40. 44a, a vertical hole 44b, and a lower horizontal hole 44c through a conduction hole (equal pressure equalization hole) that is guided to the low-pressure refrigerant outlet 12. Even under such a configuration, substantially the same as in the first embodiment. Effects can be obtained.

図5は、本発明に係る圧力制御弁の第3実施形態の縦断面図である。図示第3実施形態の圧力制御弁1Cは、主弁体15及びリリーフ機構以外は、基本的には第1実施形態の圧力制御弁1Aと同じ構成であるが(第1実施形態の圧力制御弁1Aの各部に対応する部分もしくは同一機能部分には同一の符号を付してそれらの重複説明を省略する)、本実施形態の圧力制御弁1Cでは、弁座付き弁装通路(第1及び第2実施形態では符号30で示されている)は、主弁室14を迂回して、高圧冷媒流入口11と低圧冷媒流出口12とを連通するバイパス通路50で構成されている。   FIG. 5 is a longitudinal sectional view of a third embodiment of the pressure control valve according to the present invention. The pressure control valve 1C of the third embodiment shown in the figure is basically the same as the pressure control valve 1A of the first embodiment except for the main valve body 15 and the relief mechanism (the pressure control valve of the first embodiment). The parts corresponding to the respective parts of 1A or the same function parts are denoted by the same reference numerals and their duplicate description is omitted). In the pressure control valve 1C of the present embodiment, the valve-equipped passage with valve seats (first and second) (Denoted by reference numeral 30 in the embodiment) includes a bypass passage 50 that bypasses the main valve chamber 14 and communicates the high-pressure refrigerant inlet 11 and the low-pressure refrigerant outlet 12.

すなわち、本実施形態では、主弁体15は、上段弁棒15Aとその下部に圧入溶接等で連結固定された段付き中実円柱状の下段弁棒15B’とで構成され、また、リリーフ機構は、主弁室14を迂回して、入口通路部11aを含む右側方に開口した高圧冷媒流入口11と出口通路部12aを含む左側方に開口した低圧冷媒流出口12とを連通する弁座55付き弁装通路としてのバイパス通路50と、このバイパス通路50に嵌挿された、前記弁座55に接離する円錐面状の大径弁部42’を有する段付き円柱状のリリーフ弁体40と、該リリーフ弁体40を開弁方向に付勢すべく、リリーフ弁体40上面と入口通路部11a上面(凹部)との間に縮装された形状記憶合金製ばね45と、前記リリーフ弁体40を閉弁方向に付勢すべく、前記バイパス通路50における弁座55より上流側の大径リリーフ弁室53内、より詳細には、前記大径弁部42下面と弁本体10Cの下端部に螺着せしめられた閉塞封止用のプラグ56との間に縮装されたバイアスばね46と、を備えている。なお、前記プラグ56と弁本体10Cとの間を確実に封止すべく、ガスケット51が介装されており、該ガスケット51は前記プラグ56により締め付けられている。   That is, in the present embodiment, the main valve body 15 is composed of an upper valve stem 15A and a stepped solid cylindrical lower valve stem 15B ′ connected and fixed to the lower portion thereof by press-fit welding or the like, and a relief mechanism. Is a valve seat that bypasses the main valve chamber 14 and communicates the high-pressure refrigerant inlet 11 that opens to the right including the inlet passage 11a and the low-pressure refrigerant outlet 12 that opens to the left including the outlet passage 12a. A stepped cylindrical relief valve body having a bypass passage 50 as a valved passage with 55 and a conical surface-shaped large-diameter valve portion 42 ′ that is fitted into the bypass passage 50 and contacts and separates from the valve seat 55. 40, a shape memory alloy spring 45, which is contracted between the upper surface of the relief valve body 40 and the upper surface (recessed portion) of the inlet passage portion 11a to urge the relief valve body 40 in the valve opening direction, and the relief In order to urge the valve body 40 in the valve closing direction, In the large-diameter relief valve chamber 53 on the upstream side of the valve seat 55 in the passage 50, more specifically, a plug for closure sealing screwed to the lower surface of the large-diameter valve portion 42 and the lower end portion of the valve body 10C. 56 and a bias spring 46 that is contracted between the bias spring 46 and the bias spring 46. Note that a gasket 51 is interposed between the plug 56 and the valve body 10 </ b> C to ensure sealing, and the gasket 51 is tightened by the plug 56.

前記リリーフ弁体40には、その中央部を貫通するように導通孔(均圧孔)44が形成されるとともに、前記バイパス通路50の内周面とリリーフ弁体40との間に防振用とシール用とを兼ねるOリング58が介装されており、前記感温用導入室60の高圧冷媒は、リリーフ弁体40の開弁時に、前記入口通路部11a→導通孔44→リリーフ弁室32→弁座55と大径弁部42’との間(リフト量に応じて)→連通路57を通って低圧冷媒流出口12に導かれるようにされている。   The relief valve body 40 is formed with a conduction hole (pressure equalizing hole) 44 so as to penetrate the central portion thereof, and is used for vibration isolation between the inner peripheral surface of the bypass passage 50 and the relief valve body 40. The high-pressure refrigerant in the temperature-sensing introduction chamber 60 is inserted into the inlet passage portion 11a → the conduction hole 44 → the relief valve chamber when the relief valve body 40 is opened. 32 → Between the valve seat 55 and the large-diameter valve portion 42 ′ (according to the lift amount) → the passage through the communication passage 57 is led to the low-pressure refrigerant outlet 12.

このような構成のもとでも、第1及び第2実施形態と略同様な作用効果が得られる。   Even under such a configuration, substantially the same operational effects as those of the first and second embodiments can be obtained.

なお、本第3実施形態の圧力制御弁1Cでは、リリーフ弁体40の上端側(高圧冷媒流入口11側)と下端側(リリーフ弁室53側)とが共に高圧Phとなり、それらの間に差圧は生じない。そのため、リリーフ弁体40は形状記憶合金製ばね45のばね荷重のみ(温度のみ)に依存して開閉弁することになる。   In the pressure control valve 1C of the third embodiment, the upper end side (the high-pressure refrigerant inlet 11 side) and the lower end side (the relief valve chamber 53 side) of the relief valve body 40 are both at a high pressure Ph. There is no differential pressure. Therefore, the relief valve body 40 opens and closes depending on only the spring load (temperature only) of the shape memory alloy spring 45.

また、上記第3実施形態においては、バイアスばね46のセット荷重を調節することは不可能であるが、これを調節可能とすることもできる。すなわち、図6に示される如くに、弁本体10Cの下部を下方に延設(リリーフ弁室53を下方に延長)し、このリリーフ弁室53に雌ねじ部54を設け、この雌ねじ部54に調節ねじ52を螺合させて、バイアスばね46の下端を受けるようにする。このようになせば、調節ねじ52のねじ込み量を調節することにより、バイアスばね46のセット荷重を任意に変更することが可能となる。   In the third embodiment, although it is impossible to adjust the set load of the bias spring 46, it can be made adjustable. That is, as shown in FIG. 6, the lower portion of the valve body 10 </ b> C is extended downward (the relief valve chamber 53 is extended downward), and a female screw portion 54 is provided in the relief valve chamber 53, and the female screw portion 54 is adjusted. The screw 52 is screwed to receive the lower end of the bias spring 46. By doing so, it is possible to arbitrarily change the set load of the bias spring 46 by adjusting the screwing amount of the adjusting screw 52.

図7は、本発明に係る圧力制御弁の第4実施形態の縦断面図である。図示第4実施形態の圧力制御弁1Dは、基本的には第3実施形態の圧力制御弁1Cと同じ構成であるが(第3実施形態の圧力制御弁1Cの各部に対応する部分もしくは同一機能部分には同一の符号を付してそれらの重複説明を省略する)、本実施形態の圧力制御弁1Dでは、第3実施形態においてバイパス通路50の内周面とリリーフ弁体40との間に配在されているOリング58が取り除かれて、バイパス通路50の内周面とリリーフ弁体40の外周面との間にクリアランスSが形成され、このクリアランスSを介して常時高圧冷媒をブリードする構成となっており、このような構成のもとでも、第1ないし第3実施形態と略同様な作用効果が得られる。   FIG. 7 is a longitudinal sectional view of a fourth embodiment of the pressure control valve according to the present invention. The pressure control valve 1D of the fourth embodiment shown in the figure has basically the same configuration as the pressure control valve 1C of the third embodiment (part corresponding to each part of the pressure control valve 1C of the third embodiment or the same function). In the pressure control valve 1D of the present embodiment, between the inner peripheral surface of the bypass passage 50 and the relief valve body 40 in the third embodiment, the same reference numerals are assigned to the portions, and the duplicate description thereof is omitted. The distributed O-ring 58 is removed, and a clearance S is formed between the inner peripheral surface of the bypass passage 50 and the outer peripheral surface of the relief valve body 40, and the high-pressure refrigerant is always bleed through the clearance S. Even under such a configuration, substantially the same operational effects as those of the first to third embodiments can be obtained.

本発明に係る圧力制御弁の第1実施形態を示す縦断面図。The longitudinal cross-sectional view which shows 1st Embodiment of the pressure control valve which concerns on this invention. 図1のX−X矢視断面図。XX arrow sectional drawing of FIG. 第1実施形態の圧力制御弁が組み込まれた蒸気圧縮式冷凍サイクルの一例を示す図。The figure which shows an example of the vapor compression refrigeration cycle in which the pressure control valve of 1st Embodiment was integrated. 本発明に係る圧力制御弁の第2実施形態を示す縦断面図。The longitudinal cross-sectional view which shows 2nd Embodiment of the pressure control valve which concerns on this invention. 本発明に係る圧力制御弁の第3実施形態を示す縦断面図。The longitudinal cross-sectional view which shows 3rd Embodiment of the pressure control valve which concerns on this invention. 図5に示される第3実施形態の圧力制御弁の変形例を示す縦断面図。The longitudinal cross-sectional view which shows the modification of the pressure control valve of 3rd Embodiment shown by FIG. 本発明に係る圧力制御弁の第4実施形態を示す縦断面図。The longitudinal cross-sectional view which shows 4th Embodiment of the pressure control valve which concerns on this invention. 従来の圧力制御弁が組み込まれた蒸気圧縮式冷凍サイクルの一例を示す図。The figure which shows an example of the vapor compression refrigeration cycle in which the conventional pressure control valve was incorporated.

符号の説明Explanation of symbols

1A、1B、1C、1D…圧力制御弁
10A、10B、10C、10D…弁本体
11 …高圧冷媒流入口
12 …低圧冷媒流出口
13 …主弁座
14 …主弁室
15 …主弁体
15A…上段弁棒
15B…下段弁棒
17 …主弁部
19 …縦穴
20 …感温圧力応動エレメント
21 …ダイアフラム
22 …蓋部材
23 …蓋受け部材
25 …感温室
25’…拡張感温室
30 …弁座付き弁装通路
32 …弁穴(リリーフ弁室)
35 …弁座
40 …リリーフ弁体
42 …弁部
43 …ストッパ
45 …形状記憶合金製ばね
46 …バイアスばね
50 …バイパス通路
51 …ガスケット
55 …弁座
61 …感温用流入口
62 …感温用流出口
100A…蒸気圧縮式冷凍サイクル
101…圧縮機
102…ガスクーラ
103…内部熱交換器
104…蒸発器
1A, 1B, 1C, 1D ... Pressure control valves 10A, 10B, 10C, 10D ... Valve body 11 ... High pressure refrigerant inlet 12 ... Low pressure refrigerant outlet 13 ... Main valve seat 14 ... Main valve chamber 15 ... Main valve body 15A ... Upper valve stem 15B ... Lower valve stem 17 ... Main valve portion 19 ... Vertical hole 20 ... Temperature sensitive pressure responsive element 21 ... Diaphragm 22 ... Lid member 23 ... Lid receiving member 25 ... Sensitive greenhouse 25 '... Expanded sensation greenhouse 30 Passage 32 ... Valve hole (Relief valve chamber)
35 ... Valve seat 40 ... Relief valve element 42 ... Valve part 43 ... Stopper 45 ... Shape memory alloy spring 46 ... Bias spring 50 ... Bypass passage 51 ... Gasket 55 ... Valve seat 61 ... Temperature sensing inlet 62 ... For temperature sensing Outlet 100A ... Vapor compression refrigeration cycle 101 ... Compressor 102 ... Gas cooler 103 ... Internal heat exchanger 104 ... Evaporator

Claims (14)

冷媒としてのCO2を循環させるための圧縮機と、該圧縮機により圧縮された高圧冷媒を冷却するガスクーラと、該ガスクーラからの冷媒が調圧されて導入される蒸発器と、該蒸発器の出口側の低圧冷媒と前記ガスクーラの出口側の高圧冷媒との熱交換を行う内部熱交換器と、を有する蒸気圧縮式冷凍サイクルに組み込まれ、前記ガスクーラから前記内部熱交換器を介して導入される高圧冷媒を前記ガスクーラの出口側の冷媒温度に応じて調圧して前記蒸発器に導出するための、主弁体及び該主弁体が接離する主弁座が設けられた主弁室を有する圧力制御弁であって、
前記ガスクーラからの高圧冷媒を導入するための感温用流入口及びそれを前記内部熱交換器に導出するための感温用流出口、それら感温用流入口と流出口との間に設けられた感温用導入室、前記内部熱交換器からの高圧冷媒を前記主弁室に導入するための高圧冷媒流入口及び前記主弁体により低圧に調圧された冷媒を前記蒸発器に導出する低圧冷媒流出口、を有する弁本体と、前記感温用導入室に導入された高圧冷媒の温度を感知する感温室を有し、該感温室の内圧の変化に応動して前記主弁体を開閉方向に駆動する感温圧力応動エレメントと、を備え、
前記弁本体に、前記高圧冷媒の温度が所定温度以上のとき、当該高圧冷媒の一部を前記低圧冷媒流出口に逃がすリリーフ機構が設けられていることを特徴とする圧力制御弁。
A compressor for circulating CO 2 as a refrigerant, a gas cooler for cooling the high-pressure refrigerant compressed by the compressor, an evaporator into which the refrigerant from the gas cooler is pressure-adjusted and introduced, An internal heat exchanger that exchanges heat between the low-pressure refrigerant on the outlet side and the high-pressure refrigerant on the outlet side of the gas cooler, and is introduced into the vapor compression refrigeration cycle from the gas cooler via the internal heat exchanger. A main valve chamber provided with a main valve body and a main valve seat for contacting and separating the main valve body for adjusting the pressure of the high-pressure refrigerant according to the refrigerant temperature on the outlet side of the gas cooler and leading it to the evaporator A pressure control valve having
A temperature-sensitive inlet for introducing the high-pressure refrigerant from the gas cooler, a temperature-sensitive outlet for leading it to the internal heat exchanger, and provided between the temperature-sensitive inlet and the outlet. The temperature-sensing introduction chamber, the high-pressure refrigerant inlet for introducing the high-pressure refrigerant from the internal heat exchanger into the main valve chamber, and the refrigerant adjusted to a low pressure by the main valve body are led to the evaporator. A valve body having a low-pressure refrigerant outlet, and a temperature-sensing greenhouse for sensing the temperature of the high-pressure refrigerant introduced into the temperature-sensing introduction chamber, and the main valve body in response to a change in the internal pressure of the temperature-sensing greenhouse A temperature-sensitive pressure responsive element that drives in the opening and closing direction,
The pressure control valve according to claim 1, wherein a relief mechanism is provided in the valve body for allowing a part of the high-pressure refrigerant to escape to the low-pressure refrigerant outlet when the temperature of the high-pressure refrigerant is equal to or higher than a predetermined temperature.
前記リリーフ機構は、前記高圧冷媒を前記低圧冷媒流出口に導く弁座付き弁装通路と、該弁座付き弁装通路に嵌挿されたリリーフ弁体と、該リリーフ弁体を開弁方向に付勢する形状記憶合金製ばねと、を備えていることを特徴とする請求項1に記載の圧力制御弁。   The relief mechanism includes a valved passage with a valve seat for guiding the high-pressure refrigerant to the outlet of the low-pressure refrigerant, a relief valve body fitted into the valved passage with the valve seat, and urges the relief valve body in a valve opening direction. The pressure control valve according to claim 1, further comprising: a shape memory alloy spring. 前記リリーフ機構が前記主弁体内に設けられていることを特徴とする請求項2に記載の圧力制御弁。   The pressure control valve according to claim 2, wherein the relief mechanism is provided in the main valve body. 前記弁座付き弁装通路は、前記主弁室を迂回して前記高圧冷媒流入口と前記低圧冷媒流出口とを連通するバイパス通路で構成されていることを特徴とする請求項2に記載の圧力制御弁。   3. The pressure according to claim 2, wherein the valve-equipped passage with the valve seat is configured by a bypass passage that bypasses the main valve chamber and communicates the high-pressure refrigerant inlet and the low-pressure refrigerant outlet. Control valve. 前記形状記憶合金製ばねは、その変態温度である所定以上に加熱されたとき、元の形状に戻って前記リリーフ弁体を前記弁座からリフトさせるように構成されていることを特徴とする請求項2から4のいずれかに記載の圧力制御弁。   The shape memory alloy spring is configured to return to its original shape and lift the relief valve body from the valve seat when heated to a predetermined temperature that is its transformation temperature. Item 5. The pressure control valve according to any one of Items 2 to 4. 前記高圧冷媒は、前記弁座付き弁装通路の内周面と前記リリーフ弁体との間に形成された溝や切欠部等を通って前記低圧冷媒流出口に導かれるようにされていることを特徴とする請求項2から5のいずれかに記載の圧力制御弁。   The high-pressure refrigerant is guided to the low-pressure refrigerant outlet through a groove or notch formed between an inner peripheral surface of the valve-equipped passage with the valve seat and the relief valve body. 6. The pressure control valve according to claim 2, wherein the pressure control valve is characterized in that: 前記弁座付き弁装通路の内周面と前記リリーフ弁体との間に防振用とシール用とを兼ねるOリングが介装され、前記高圧冷媒は、前記リリーフ弁体内に設けられた導通孔を通って前記低圧冷媒流出口に導かれるようにされていることを特徴とする請求項2から5のいずれかに記載の圧力制御弁。   An O-ring serving both as a vibration isolator and a seal is interposed between an inner peripheral surface of the valve seat passage with the valve seat and the relief valve body, and the high-pressure refrigerant is a conduction hole provided in the relief valve body. The pressure control valve according to any one of claims 2 to 5, wherein the pressure control valve is guided to the low-pressure refrigerant outlet through the outlet. 前記リリーフ機構は、前記リリーフ弁体を閉弁方向に付勢するバイアスばねを備えていることを特徴とする請求項2から7のいずれかに記載の圧力制御弁。   The pressure control valve according to claim 2, wherein the relief mechanism includes a bias spring that biases the relief valve body in a valve closing direction. 前記リリーフ弁体の前記弁座からのリフト量を制限するためのストッパが設けられていることを特徴とする請求項2から8のいずれかに記載の圧力制御弁。   The pressure control valve according to any one of claims 2 to 8, wherein a stopper for limiting a lift amount of the relief valve body from the valve seat is provided. 前記主弁体は、同軸的に連結された上段弁棒と下段弁棒とで構成されていることを特徴とする請求項1に記載の圧力制御弁。   2. The pressure control valve according to claim 1, wherein the main valve body includes an upper valve rod and a lower valve rod that are coaxially connected to each other. 前記弁本体における前記主弁座上方に、前記主弁体が摺動自在に嵌挿される案内穴が形成され、該案内穴の上方に、前記感温用流入口及び流出口並びに前記感温用導入室が形成され、前記案内穴の下方に前記高圧冷媒流入口及び流出口並びに主弁室が形成されていることを特徴とする請求項1に記載の圧力制御弁。   A guide hole into which the main valve body is slidably inserted is formed above the main valve seat in the valve body, and the temperature-sensitive inlet and outlet and the temperature-sensitive inlet are above the guide hole. The pressure control valve according to claim 1, wherein an introduction chamber is formed, and the high-pressure refrigerant inlet and outlet and a main valve chamber are formed below the guide hole. 前記感温圧力応動エレメントは、ダイアフラムと、該ダイアフラムと協同して前記感温室を画成する断面逆凹形状の蓋部材と、該蓋部材と協同して前記ダイアフラムの外周部分を挟持して密封するとともに、前記主弁体がその内周に挿入される鍔状部付き円筒状の蓋受け部材と、を備え、前記蓋受け部材の円筒部分外周に、前記弁本体への取り付けに供される雄ねじ部が設けられていることを特徴とする請求項1に記載の圧力制御弁。   The temperature-sensitive pressure-responsive element includes a diaphragm, a lid member having an inverted concave cross-section that cooperates with the diaphragm to define the temperature-sensing greenhouse, and sandwiches and seals the outer peripheral portion of the diaphragm in cooperation with the lid member. In addition, the main valve body is provided with a cylindrical lid receiving member with a hook-like portion inserted into the inner periphery thereof, and is provided for attachment to the valve body on the outer periphery of the cylindrical portion of the lid receiving member. The pressure control valve according to claim 1, wherein a male screw portion is provided. 前記主弁体と前記ダイアフラムとが同軸的に配置され、前記主弁体の一端部と前記ダイアフラムとがプロジェクション溶接により接合されていることを特徴とする請求項12に記載の圧力制御弁。   The pressure control valve according to claim 12, wherein the main valve body and the diaphragm are coaxially arranged, and one end portion of the main valve body and the diaphragm are joined by projection welding. 前記主弁体に上面開口の縦穴が設けられるとともに、前記ダイアフラムに前記感温室と前記縦穴とを連通させる透孔が形成され、前記感温室と前記縦穴とで一つの拡張感温室が構成されていることを特徴とする請求項12又は13に記載の圧力制御弁。   The main valve body is provided with a vertical hole having an upper surface opening, and a through-hole is formed in the diaphragm so as to communicate the temperature-sensitive room with the vertical hole. The temperature-sensitive room and the vertical hole constitute one extended temperature-sensitive room. The pressure control valve according to claim 12 or 13, wherein the pressure control valve is provided.
JP2005291051A 2005-10-04 2005-10-04 Pressure control valve Expired - Fee Related JP4509000B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005291051A JP4509000B2 (en) 2005-10-04 2005-10-04 Pressure control valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005291051A JP4509000B2 (en) 2005-10-04 2005-10-04 Pressure control valve

Publications (2)

Publication Number Publication Date
JP2007101054A true JP2007101054A (en) 2007-04-19
JP4509000B2 JP4509000B2 (en) 2010-07-21

Family

ID=38028183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005291051A Expired - Fee Related JP4509000B2 (en) 2005-10-04 2005-10-04 Pressure control valve

Country Status (1)

Country Link
JP (1) JP4509000B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115179918A (en) * 2022-07-12 2022-10-14 眉山中车制动科技股份有限公司 Structure and method for accurately controlling air pressure of brake cylinder

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03152366A (en) * 1989-11-07 1991-06-28 Nippondenso Co Ltd Expansion valve for refrigerator
JPH03221761A (en) * 1990-01-25 1991-09-30 Mitsubishi Electric Corp Refrigerant circuit for air conditioner
JPH11201568A (en) * 1997-11-06 1999-07-30 Denso Corp Supercritical refrigeration cycle
JP2000146365A (en) * 1998-11-12 2000-05-26 Behr Gmbh & Co Expansion member and valve unit usable therefor
JP2000230650A (en) * 1999-02-09 2000-08-22 Denso Corp Pressure control valve
JP2001082835A (en) * 1999-09-13 2001-03-30 Denso Corp Pressure control valve
JP2002022318A (en) * 2000-07-10 2002-01-23 Fuji Koki Corp Thermostatic expansion valve

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03152366A (en) * 1989-11-07 1991-06-28 Nippondenso Co Ltd Expansion valve for refrigerator
JPH03221761A (en) * 1990-01-25 1991-09-30 Mitsubishi Electric Corp Refrigerant circuit for air conditioner
JPH11201568A (en) * 1997-11-06 1999-07-30 Denso Corp Supercritical refrigeration cycle
JP2000146365A (en) * 1998-11-12 2000-05-26 Behr Gmbh & Co Expansion member and valve unit usable therefor
JP2000230650A (en) * 1999-02-09 2000-08-22 Denso Corp Pressure control valve
JP2001082835A (en) * 1999-09-13 2001-03-30 Denso Corp Pressure control valve
JP2002022318A (en) * 2000-07-10 2002-01-23 Fuji Koki Corp Thermostatic expansion valve

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115179918A (en) * 2022-07-12 2022-10-14 眉山中车制动科技股份有限公司 Structure and method for accurately controlling air pressure of brake cylinder
CN115179918B (en) * 2022-07-12 2023-07-11 眉山中车制动科技股份有限公司 Structure and method for precisely controlling air pressure of brake cylinder

Also Published As

Publication number Publication date
JP4509000B2 (en) 2010-07-21

Similar Documents

Publication Publication Date Title
US7036527B2 (en) Composite valve
US11796263B2 (en) Valve assembly, heat exchange assembly, and oil temperature regulation system for gearbox
JP2006266660A (en) Expansion device
EP0971184A2 (en) Pressure control valve
JPWO2006090826A1 (en) Pressure control valve
JP2008138812A (en) Differential pressure valve
JP3995828B2 (en) Temperature expansion valve
JP2010112616A (en) Thermal expansion valve
KR101352205B1 (en) Temperature expansion valve
JP2007085489A (en) Pressure control valve
CN108087530B (en) Heat exchange assembly
JP6569061B2 (en) Control valve
JP6447906B2 (en) Expansion valve
JP2007278616A (en) Expansion device
JP4509000B2 (en) Pressure control valve
JP2007322058A (en) Pressure control valve
JP4069548B2 (en) Control valve
JP2007024486A (en) Expansion device
JP4484656B2 (en) Temperature-sensitive control valve and refrigeration cycle device
CN108087532B (en) Heat exchange assembly
CN108087531B (en) Heat exchange assembly
JP2006292185A (en) Expansion device and refrigerating cycle
JP2002349732A (en) Relief valve, high pressure control valve with relief valve, and supercritical vapor compression refrigeration cycle system
JP2000186870A (en) Control valve for refrigeration cycle
CN114667424A (en) Power element and expansion valve using the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070711

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070711

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100420

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100427

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees