JP3738760B2 - Refrigeration equipment - Google Patents

Refrigeration equipment Download PDF

Info

Publication number
JP3738760B2
JP3738760B2 JP2002374387A JP2002374387A JP3738760B2 JP 3738760 B2 JP3738760 B2 JP 3738760B2 JP 2002374387 A JP2002374387 A JP 2002374387A JP 2002374387 A JP2002374387 A JP 2002374387A JP 3738760 B2 JP3738760 B2 JP 3738760B2
Authority
JP
Japan
Prior art keywords
temperature
heat exchanger
outdoor heat
control valve
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002374387A
Other languages
Japanese (ja)
Other versions
JP2003207237A (en
Inventor
章 藤高
寿夫 若林
伸二 渡辺
浩直 沼本
幸男 渡邊
完爾 羽根田
義典 小林
雄一 薬丸
成人 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2002374387A priority Critical patent/JP3738760B2/en
Publication of JP2003207237A publication Critical patent/JP2003207237A/en
Application granted granted Critical
Publication of JP3738760B2 publication Critical patent/JP3738760B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Temperature-Responsive Valves (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、非共沸混合冷媒を用いた冷凍装置に関するものである。
【0002】
【従来の技術】
近年、CFCおよびHCFCフロンの規制にともない冷凍装置の代替冷媒として混合冷媒が注目をあびている。従来の非共沸混合冷媒を用いた冷凍装置の一例について、以下図面を参照しながら説明する。
【0003】
図21は従来の非共沸混合冷媒を用いた冷凍装置の冷凍サイクルを示すものである。
【0004】
図21において50は圧縮機、51は四方弁、52は室内熱交換器、53は絞り装置、54は室外熱交換器で、順次環状に接続されて主回路を構成している。
【0005】
以上のように構成された冷凍装置について、以下その動作について説明する。
【0006】
圧縮機50で圧縮された高温高圧の冷媒蒸気は、四方弁51を介して室内熱交換器52において放熱し、凝縮液化する。その後、絞り装置53で減圧膨張されて低温低圧の冷媒となる。そして、室外熱交換器54で吸熱して蒸発、気化した後、低温低圧の冷媒蒸気となり、再び圧縮機50で圧縮され冷凍サイクルを繰り返す(例えば特開平3−13766号公報)。
【0007】
【発明が解決しようとする課題】
暖房運転時の室外熱交換器は蒸発器として作用し、冷媒は気液二相状態で変化する。単一冷媒の場合は熱交換器の入口冷媒温度と出口冷媒温度は同じであるが、非共沸混合冷媒は非等温性があり、冷媒の乾き度が大きくなるに従い温度が高くなるため室外熱交換器入口冷媒温度の方が室外熱交換器出口冷媒温度よりも低くなる。そのため上記のような構成では、暖房運転時、単一冷媒の場合では室外熱交換器に着霜しないような室外温度でも、非共沸混合冷媒を用いると室外熱交換器の入口に着霜し、暖房能力が低下することが考えられる。
【0008】
本発明は上記従来例の課題を解決するもので、室外熱交換器の部分的な着霜を防ぎ効率の良い暖房運転を可能とすることを目的としたものである。
【0009】
【課題を解決するための手段】
上記問題点を解決するために本発明は、非共沸混合冷媒を用い、圧縮機、四方弁、室内熱交換器、絞り装置、第1室外熱交換器、制御弁、第2室外熱交換器を環状に接続し、前記第1室外熱交換器より前記第2室外熱交換器の大きさを大きくするとともに、前記制御弁と並列に設けた第2絞り装置を備え、前記制御弁の開閉動作を行う設定温度は、第1設定温度、第2設定温度、第3設定温度となるに従い値は小さく設定されており、前記第1室外熱交換器の冷媒温度が前記第3設定温度より低い時は前記制御弁を開き、前記第3設定温度以上で前記第2設定温度より低い時は前記制御弁を閉じ、前記第1設定温度以上の時は前記制御弁を開く構成としたことを特徴とする冷凍装置である。上記制御弁と並列に設けられた第2絞り装置によって、第1室外熱交換器が着霜を起こすような温度条件下において、制御弁が動作すると、冷媒は第2絞り装置に流れ、第2絞り装置の前後で冷媒に差圧が生じ、第1室外熱交換器の圧力は第2室外熱交換器の圧力より高くなり第1室外熱交換器を流れる冷媒の温度は高くなるため、第1熱交換器入口の着霜を防ぐことができ、
効率の良い暖房運転を可能にできる。
【0010】
【発明の実施の形態】
上記の課題を解決するための本発明は、制御弁、前記制御弁と並列に第2絞り装置を設けたものである。このことにより、第1室外熱交換器が着霜を起こすような温度条件下において、制御弁が動作すると、冷媒は第2絞り装置に流れ、第2絞り装置の前後で冷媒に差圧が生じ、第1室外熱交換器の圧力は第2室外熱交換器の圧力より高くなり第1室外熱交換器を流れる冷媒の温度は高くなるため、第1熱交換器入口の着霜を防ぐことができ、効率の良い暖房運転を可能にできる。
【0011】
また、本発明は、第1室外熱交換器、第2室外熱交換器の間に減圧機構を有し形状記憶合金バネを内蔵した制御弁を設けることで、室外熱交換器が着霜を起こすような条件下において形状記憶合金バネが変態しバイアスバネにより押されてたわみ、弁体を弁座に押しつけ冷媒の流路を狭めると、冷媒は制御弁の前後で差圧が生じ、第1室外熱交換器の圧力は第2室外熱交換器の圧力より高くなり第1室外熱交換器を流れる冷媒の温度は高くなるため、第1熱交換器入口の着霜を防ぐことができ、別の絞り装置、弁制御装置が不要で、より簡単な構成で効率の良い暖房運転を可能にできる。
【0012】
【実施例】
以下、本発明の実施例について、図面を参照して説明する。
【0013】
(実施例1)
図1は、本発明の冷凍装置の第1の実施例における冷凍サイクル図である。
【0014】
図1において、1は圧縮機、2は四方弁、3は室内熱交換器、4は絞り装置、5は第1室外熱交換器、6は制御弁、7は第2室外熱交換器で、順次環状に接続されて主回路を構成し、制御弁6と並列に第2絞り装置8を設け冷凍サイクルを構成し、第2室外熱交換器7の大きさは第1室外熱交換器5より大きい。22は制御弁6の開閉を制御する弁制御装置、24は第1室外熱交換器5の冷媒温度を検出して温度検出信号を出力する冷媒温度検出器である。
【0015】
図2は図1に示す冷凍装置の電気接続を示す電気回路図である。図中、24は第1室外熱交換器5の冷媒温度を検知するための冷媒温度検出器、25はA/D変換装置、26はマイクロコンピュータ(以下LSIと称す)であり、入力回路27、CPU28、メモリ29、出力回路30を有している。入力回路27には、第1室外熱交換器5の冷媒温度検出器24の出力が、A/D変換装置25を介して入力される。31は電磁コイルで、出力回路30の出力により制御弁6の開閉を動作させる。
【0016】
ここで図3に示すブロック図と図2に示す電気回路図について説明すると、図2の第1室外熱交換器5の冷媒温度検出器24は、図3の第1室外熱交換器5の冷媒温度を検出して出力する冷媒温度検出手段、図2のLSI26は、図3の冷媒温度検出手段により検出された値と設定値とを比較し制御信号を出力する比較手段と、制御弁6の開閉を制御する出力モードを記憶した記憶手段と、比較手段から発生する出力信号により、前記記憶手段の出力モードの一つを選択する選択手段に相当する。そして、図2の制御弁6を開閉させる電磁コイル31は、図3の出力手段に相当する。
【0017】
上記構成において、冷凍装置運転時の制御回路の構成と動作を図4を参考に説明する。図4はLSI26のメモリ29に記憶された冷凍装置のプログラムを示すフローチャートである。
【0018】
運転の指示が出ると、冷凍装置の運転が始まり、同時に図4に示すステップ40が実行され第1室外熱交換器5の冷媒温度Teが検出され、ステップ41で第1室外熱交換器5の冷媒温度Te第2設定温度T2(例えば−2℃)との比較演算を行い、Te≧T2であれば「NO」の判定によりステップ42に進みメモリ29内蔵の選択手段により記憶回路の第1の出力モードが選択され、電磁コイル31への通電されず、制御弁6が開いたままの状態でステップ40に戻る。つまり、第1室外熱交換器5入口に着霜が成長しないような条件では、制御弁6は開いたままとなる。
【0019】
次に室外気温が低くなると、蒸発器として作用する第1室外熱交換器5、第2室外熱交換器7の冷媒温度は室外気温より低くなり、大気から吸熱する。ここで非共沸混合冷媒を用いると、その非等温性のために冷媒の乾き度が大きくなるに従い冷媒温度は上昇する。そのため、第1室外熱交換器5の中央から出口までや第2室外熱交換器7の温度が0℃以上な場合でも、第1室外熱交換器5の入口は0℃に低下し第1室外熱交換器5の入口のみに着霜が始まる。そして、Te<T2となり、第1室外熱交換器5に着霜が成長する温度条件になるとステップ41で「YES」の判定がなされ、ステップ43に進みメモリ29内蔵の選択手段により記憶回路の第2出力モードが選択され、出力回路30より出力が出て電磁コイル31へ通電されて制御弁6が閉まる。制御弁6が閉まると冷媒は第2絞り装置8に流れ第2絞り装置8前後で圧力差が生じる。この時、第2室外熱交換器7の大きさは第1室外熱交換器5より大きいため、第2室外熱交換器7の冷媒圧力は余り変化せず、第1室外熱交換器5の冷媒圧力が上昇し、第1室外熱交換器5の冷媒温度も上昇する。そして、ステップ44で第1室外熱交換器5の冷媒温度Teを検出し、ステップ45で第1室外熱交換器5の冷媒温度Teと第1設定温度T1(例えば1℃)との比較演算を行う。ステップ45でTe であれば「NO」の判定によりステップ46に進む。ステップ46では第1室外熱交換器5の冷媒温度Teと第3設定温度T3(例えば−5℃)との比較演算を行い、Te であれば「NO」の判定によりステップ43に戻り、記憶回路の第2出力モードが選択され続け、出力回路30より信号が出力されて電磁コイル31へ通電されて制御弁6が閉まったままとなり、第1室外熱交換器5の霜は解ける。そして、室外気温が上昇する等してTe≧T1となると、ステップ42に進み、記憶回路の第1の出力モードが選択され、電磁コイル31への通電されず、制御弁6が開き、ステップ40に戻る。従って、第1室外熱交換器5の霜は解け成長しない。
【0020】
さらに、外気温が下がり第1および第2室外熱交換器5、7全体に着霜が成長する状態になると、ステップ46で第1室外熱交換器5の冷媒温度Teと第3設定温度T3との比較演算を行い、Te 3となると記憶回路の第1の出力モードが選択され、電磁コイル31への通電されず、制御弁6が開く。冷媒は第2絞り装置8を流れず減圧されないため、制御弁6前後で冷媒温度の差は生じない。このように制御弁6前後で圧力差は付かないため、第1、第2室外熱交換器5、7を有効に利用し効率の良い暖房運転を可能にできる。
【0021】
この様に、室外熱交換器の着霜を防ぎ、効率の良い暖房運転が可能となる。
【0022】
なお、上記説明は制御弁6とそれと並列に設けた第2絞り装置8を用いて説明したが、制御弁6に絞り機構を設け、制御弁6が動作した場合に、制御弁6内の冷媒流路が狭められ、制御弁6前後で圧力差が生じるようにすれば、より簡単な構成で室外熱交換器の着霜を防ぎ、効率の良い暖房運転が可能となる。
【0023】
(実施例2)
図5において、1は圧縮機、2は四方弁、3は室内熱交換器、4は絞り装置、5は第1室外熱交換器、9は制御弁、7は第2室外熱交換器で、順次環状に接続されて主回路を構成し、制御弁9と並列に第2絞り装置8を設け冷凍サイクルを構成している。なお、第2室外熱交換器7の大きさは第1室外熱交換器5より大きい。ここで、第1の実施例と異な
るのは第1熱交換器の温度を検出して温度検出信号を出力する冷媒温度検出器24と弁制御装置22がないことと、制御弁9の構造である。
【0024】
図6は、制御弁9の断面図である。
【0025】
図6において、10は弁体、11は弁座、12はバイアスバネ、13は第1形状記憶合金バネ、14は第1流路である。
【0026】
図7は第1形状記憶合金バネ13の温度−ひずみ曲線(ヒステリシス曲線)である。加熱時と冷却時の動作温度には温度差、すなわち温度ヒステリシスがあり、第1形状記憶合金バネ13は加熱時の変態温度T1(例えば0℃)に、冷却時の変態温度T2(例えば−2℃)に調節している。
【0027】
上記構成において、制御弁9の動作を説明する。
【0028】
第1形状記憶合金バネ13は設定した変態温度T1以上になると伸長し、バイアスバネ12のバネ力に抗して弁体10を押動し第1流路14は開状態となり、冷媒は第2絞り装置8を流れず第1流路14を流れる。一方、第1形状記憶合金バネ13は設定変態温度T2より低くなると、バイアスバネ12に押動され弁体10は弁座11に当たり、第1流路14は閉状態となる。そのため、冷媒は第2絞り装置8しか流れることができず減圧され、冷媒の温度は低下する。
【0029】
次に冷凍装置運転時の制御弁9の動作を説明する。
【0030】
暖房運転時、室外気温が高く、制御弁9を流れる冷媒の温度が設定変態温度T2より高い時は、第1形状記憶合金バネ13はバイアスバネ12のバネ力に抗して弁体10を押動しバイアスバネ12を圧縮するため、第1流路14は開状態となる。冷媒は第2絞り装置8に流れないため減圧されず、制御弁9前後で冷媒温度の差は生じない。
【0031】
しかし室外気温が低くなると、蒸発器として作用する第1室外熱交換器5、第2室外熱交換器7の温度は室外気温より低くなり、大気から吸熱するが、非共沸混合冷媒を用いると、その非等温性のために冷媒の乾き度が大きくなるに従い冷媒温度は上昇する。そのため、第1室外熱交換器5の中央から出口までや第2室外熱交換器7の温度が0℃以上な場合でも、第1室外熱交換器5の入口は0℃以下に低下し第1室外熱交換器5の入口のみに着霜が始まる。そして、制御弁9を流れる冷媒の温度が第1形状記憶合金バネ13の設定変態温度T2より低くなると、図8のように第1形状記憶合金バネ13はバイアスバネ12に押動され弁体10を弁座11に押し当て、第1流路14は閉状態となる。冷媒は第2絞り装置8しか流れることができず第2絞り装置8前後で圧力差が生じる。この時、第2室外熱交換器7の大きさは第1室外熱交換器5より大きいため、第2室外熱交換器7の冷媒圧力は余り変化せず、第1室外熱交換器5の冷媒圧力が上昇し、第1室外熱交換器5の入口冷媒温度も上昇する。従って、第1室外熱交換器5の入口の霜は解け成長しない。
【0032】
また、制御弁9が動作している状態で、室外気温が上昇する等して第1室外熱交換器5に着霜が起こらないような状態で、制御弁9の冷媒温度が第1形状記憶合金バネ13の設定変態温度T1より高くなると、図6のように第1形状記憶合金バネ13は変態し伸びバイアスバネ12を圧縮し弁体10を弁座11から離して、第1流路14は開状態となる。冷媒は第2絞り装置8を流れず減圧されないため、制御弁9前後で冷媒温度の差は生じない。
【0033】
このように、室外熱交換器の着霜を防ぎ、効率の良い暖房運転が可能となる。
【0034】
(実施例3)
図9において、1は圧縮機、2は四方弁、3は室内熱交換器、4は絞り装置、5は第1室外熱交換器、18は制御弁、7は第2室外熱交換器で、順次環状に接続されて主回路を構成し、制御弁18と並列に第2絞り装置8を設け冷凍サイクルを構成している。なお、第2室外熱交換器7の大きさは第1室外熱交換器5より大きい。ここで、第2の実施例と異なるのは制御弁18の構造である。
【0035】
図10は、制御弁18の断面図である。
【0036】
図10において、10は弁体、11は摺動可能な弁座、12は第1バイアスバネ、13は第1形状記憶合金バネ、14は第1流路、15は第2バイアスバネ、16は第2形状記憶合金バネ、17は弁体10の移動を止めるストッパである。
【0037】
図11は第1形状記憶合金バネで13と第2形状記憶合金バネ16の温度−ひずみ曲線(ヒステリシス曲線)である。加熱時と冷却時の動作温度には温度差、すなわち温度ヒステリシスがあり、第1形状記憶合金バネ13は加熱時の変態温度T1(例えば0℃)に、冷却時の変態温度T2(例えば−2℃)に調節し、第2形状記憶合金バネ16は加熱時の変態温度T3(例えば−3℃)に、冷却時の変態温度T4(例えば−5℃)に調節している。
【0038】
上記構成において、制御弁18の動作を説明する。
【0039】
第1形状記憶合金バネ13は設定した変態温度T1以上になると伸長し、第1バイアスバネ12のバネ力に抗して弁体10を押動し第1流路14は開状態となる。一方、第1形状記憶合金バネ13は設定変態温度T2より低くなると、第1バイアスバネ12に押動された弁体10は弁座11に当たり、第1流路14は閉状態となる。そのため、冷媒は第2絞り装置8しか流れることができず、第2絞り装置8前後で減圧され、冷媒の温度は低下する。また、第2形状記憶合金バネ16は設定変態温度T4より低くなると、第2バイアスバネ15のバネ力に抗することができず収縮する。弁座11は第2バイアスバネ15により押動されるが、弁体10はストッパ17により止められてしまうため、弁座11の移動距離を弁体10の移動距離よりも長くなるように第1バイアスバネ12、第1形状記憶合金バネ13、第2バイアスバネ15、第2形状記憶合金バネ16の力を調整すれば、第1流路14は開状態となる。
【0040】
次に冷凍装置運転時の制御弁18の動作を説明する。
【0041】
暖房運転時、室外気温が高く、制御弁18を流れる冷媒の温度が設定変態温度T2より高い時は、図10のように第1形状記憶合金バネ13は第1バイアスバネ12のバネ力に抗して弁体10を押動し第1バイアスバネ12を圧縮し、第2形状記憶合金バネ16は第2バイアスバネ15のバネ力に抗して弁座11を押動し第2バイアスバネ15を圧縮するため、第1流路14は開状態となる。冷媒は第2絞り装置8を流れないため減圧されず、制御弁18前後で冷媒温度の差は生じない。
【0042】
しかし室外気温が低くなると、蒸発器として作用する第1室外熱交換器5、第2室外熱交換器7の温度は室外気温より低くなり、大気から吸熱するが、非共沸混合冷媒を用いると、その非等温性のために冷媒の乾き度が大きくなるに従い冷媒温度は上昇する。そのため、第1室外熱交換器5の中央から出口までや第2室外熱交換器7の温度が0℃以上な場合でも、第1室外熱交換器5の入口は0℃以下に低下し第1室外熱交換器5の入口のみに着霜が始まる。そして、制御弁18を流れる冷媒の温度が第1形状記憶合金バネ13の設
定変態温度T2より低く第2形状記憶合金バネ16の設定変態温度T4より高いと、図12のように第1形状記憶合金バネ13は第1バイアスバネ12に押動され弁体10を弁座11に押し当て、第2形状記憶合金バネ16は第2バイアスバネ15のバネ力に抗して弁座11を押し第2バイアスバネ15を圧縮するため、第1流路14は閉状態となる。その結果、冷媒は第2絞り装置8しか流れることができず第2絞り装置8前後で圧力差が生じる。この時、第2室外熱交換器7の大きさは第1室外熱交換器5より大きいため、第2室外熱交換器7の冷媒圧力は余り変化せず、第1室外熱交換器5の冷媒圧力が上昇し、第1室外熱交換器5の入口冷媒温度も上昇する。従って、第1室外熱交換器5の入口の霜は解け成長しない。
【0043】
さらに、制御弁18の冷媒の温度が第2形状記憶合金バネ16の設定変態温度T4より低くなると、第1および第2室外熱交換器5、7全体に着霜が成長する状態であるため、図13のように第2形状記憶合金バネ16は第2バイアスバネ15のバネ力に抗すことができず収縮し、弁座11は第2バイアスバネ15に押動されるが、弁体10はストッパ17により止められてしまうため、第1流路14は開状態となる。冷媒は第2絞り装置8を流れず減圧されないため、制御弁18前後で冷媒温度の差は生じない。このように制御弁18前後で圧力差は付かないため、第1、第2室外熱交換器5、7を有効に利用し効率の良い暖房運転を可能にできる。
【0044】
また、制御弁18の温度が低く、図13のように第1、第2バイアスバネ12、15に押動され、第1、第2形状記憶合金バネ13、16が変態し収縮し、制御弁18が開いている状態から、室外気温が上昇する等で制御弁18を流れている冷媒の温度が上昇し、第2形状記憶合金バネ16の設定変態温度T3より高くなり、第1および第2室外熱交換器5、7全体に着霜せず、第1室外熱交換器5の入口のみに着霜するような状態になると、図12のように第2形状記憶合金バネ16は変態し伸び第2バイアスバネ15を圧縮し弁座11を弁体10に押し当てるため、第1流路14は閉状態となる。その結果、冷媒は第2絞り装置8しか流れることができず第2絞り装置8前後で圧力差が生じ、第1室外熱交換器5の冷媒圧力が上昇し、第1室外熱交換器5の入口冷媒温度も上昇する。従って、第1室外熱交換器5の入口の霜は解け成長しない。
【0045】
さらに、室外気温が上昇し、第1室外熱交換器5に着霜が起こらないような状態で、制御弁18を流れる冷媒の温度が第1形状記憶合金バネ13の設定変態温度T1より高くなると、図10のように第1形状記憶合金バネ13は変態し伸び第1バイアスバネ12を圧縮し弁体10を弁座11から離して、第1流路14は開状態となる。冷媒は第2絞り装置8を流れず減圧されないため、制御弁18前後で冷媒温度の差は生じない。
【0046】
このように、室外熱交換器の部分的な着霜を防ぎ、また、室外熱交換器全体に着霜するような状態では制御弁を開き効率の良い暖房運転が可能となる。
【0047】
(実施例4)
図14は、本発明の冷凍装置の第4の実施例における冷凍サイクル図である。
【0048】
図14において、1は圧縮機、2は四方弁、3は室内熱交換器、4は絞り装置、5は第1室外熱交換器、19は制御弁、7は第2室外熱交換器で、順次環状に接続されて冷凍サイクルを構成し、第2室外熱交換器の大きさは第1室外熱交換器より大きい。ここで、第2の実施例と異なるのは制御弁19の構造で、減圧機構を持つことである。
【0049】
図15は、制御弁19の断面図である。
【0050】
図15において、9は弁本体、10は弁体、11は弁座、12はバイアスバネ、13は
第1形状記憶合金バネ、14は第1流路、20は第2流路である。
【0051】
第1形状記憶合金バネ13の温度−ひずみ曲線(ヒステリシス曲線)は、図7の第2の実施例のものと同一である。
【0052】
上記構成において、制御弁19の動作を説明する。
【0053】
第1形状記憶合金バネ13は設定した変態温度T1以上になると伸長し、バイアスバネ12のバネ力に抗して弁体10を押動し第1流路14は開状態となり、冷媒は第1流路14を流れる。一方、第1形状記憶合金バネ13は設定変態温度T2より低くなると、バイアスバネ12に押動され弁体10は弁座11に当たり、第1流路14は閉状態となる。そのため、冷媒は第2流路20しか流れることができず流路が狭められるため、減圧され、冷媒の温度は低下する。
【0054】
次に冷凍装置運転時の制御弁19の動作を説明する。
【0055】
暖房運転時、室外気温が高く、制御弁19を流れる冷媒の温度が設定変態温度T2より高い時は、図15のように第1形状記憶合金バネ13はバイアスバネ12のバネ力に抗して弁体10を押動しバイアスバネ12を圧縮するため、第1流路14は開状態となる。冷媒は制御弁19により減圧されず、制御弁19前後で冷媒温度の差は生じない。
【0056】
しかし室外気温が低くなると、蒸発器として作用する第1室外熱交換器5、第2室外熱交換器7の温度は室外気温より低くなり、大気から吸熱するが、非共沸混合冷媒を用いると、その非等温性のために冷媒の乾き度が大きくなるに従い冷媒温度は上昇する。そのため、第1室外熱交換器5の中央から出口までや第2室外熱交換器7の温度が0℃以上な場合でも、第1室外熱交換器5の入口は0℃以下に低下し第1室外熱交換器5の入口のみに着霜が始まる。そして、制御弁19を流れる冷媒の温度が第1形状記憶合金バネ13の設定変態温度T2より低くなると、図16のように第1形状記憶合金バネ13はバイアスバネ12に押動され弁体10を弁座11に押し当て、第1流路14は閉状態となる。冷媒は第2流路20しか流れることができず流路が狭められるため、制御弁19前後で圧力差が生じる。この時、第2室外熱交換器7の大きさは第1室外熱交換器5より大きいため、第2室外熱交換器7の冷媒圧力は余り変化せず、第1室外熱交換器5の冷媒圧力が上昇し、第1室外熱交換器5の入口冷媒温度も上昇する。従って第1室外熱交換器5の入口の霜は解け成長しない。
【0057】
また、制御弁19が動作している状態で、室外気温が上昇する等して第1室外熱交換器5に着霜が起こらないような状態で、制御弁19の冷媒温度が第1形状記憶合金バネ13の設定変態温度T1より高くなると、図15のように第1形状記憶合金バネ13は変態し伸びバイアスバネ12を圧縮し弁体10を弁座11から離して、第1流路14は開状態となる。冷媒は減圧されないため、制御弁19前後で冷媒温度の差は生じない。
【0058】
このように、減圧機構を持つ制御弁を用いることで第2絞り装置は不要となり、室外熱交換器の部分的な着霜を防ぎ、効率の良い暖房運転が可能となる。
【0059】
(実施例5)
図17において、1は圧縮機、2は四方弁、3は室内熱交換器、4は絞り装置、5は第1室外熱交換器、21は制御弁、7は第2室外熱交換器で、順次環状に接続されて冷凍サイクルを構成している。なお、第2室外熱交換器7の大きさは第1室外熱交換器5より大きい。ここで、第4の実施例と異なるのは制御弁21の構造である。
【0060】
図18は、制御弁21の断面図である。
【0061】
図18において、10は弁体、11は摺動可能な弁座、12は第1バイアスバネ、13は第1形状記憶合金バネ、14は第1流路、15は第2バイアスバネ、16は第2形状記憶合金バネ、17は弁体10の移動を止めるストッパ、20は第2流路である。
【0062】
第1形状記憶合金バネ13と第2形状記憶合金バネ16の温度−ひずみ曲線(ヒステリシス曲線)は第3の実施例の図11と同一である。
【0063】
上記構成において、制御弁21の動作を説明する。
【0064】
第1形状記憶合金バネ13は設定した変態温度T1以上になると伸長し、第1バイアスバネ12のバネ力に抗して弁体10を押動し第1流路14は開状態となる。一方、第1形状記憶合金バネ13は設定変態温度T2より低くなると、第1バイアスバネ12に押動された弁体10は弁座11に当たり、第1流路14は閉状態となる。そのため、冷媒は第2流路20しか流れることができず流路が狭められるため、減圧され、冷媒の温度は低下する。
【0065】
また、第2形状記憶合金バネ16は設定変態温度T4より低くなると、第2バイアスバネ15のバネ力に抗すことができず収縮する。弁座11は第2バイアスバネ15により押動されるが、弁体10はストッパ17により止められてしまうため、弁座11の移動距離を弁体10の移動距離よりも長くなるように第1バイアスバネ12、第1形状記憶合金バネ13、第2バイアスバネ15、第2形状記憶合金バネ16の力を調整すれば、第1流路14は開状態となる。
【0066】
次に冷凍装置運転時の制御弁21の動作を説明する。
【0067】
暖房運転時、室外気温が高く、制御弁21を流れる冷媒の温度が設定変態温度T2より高い時は、図18のように第1形状記憶合金バネ13は第1バイアスバネ12のバネ力に抗して弁体10を押動し第1バイアスバネ12を圧縮し、第2形状記憶合金バネ16は第2バイアスバネ15のバネ力に抗して弁座11を押動し第2バイアスバネ15を圧縮するため、第1流路14は開状態となり、冷媒は減圧されず、制御弁21前後で冷媒温度の差は生じない。
【0068】
しかし室外気温が低くなると、蒸発器として作用する第1室外熱交換器5、第2室外熱交換器7の温度は室外気温より低くなり、大気から吸熱するが、非共沸混合冷媒を用いると、その非等温性のために冷媒の乾き度が大きくなるに従い冷媒温度は上昇する。そのため、第1室外熱交換器5の中央から出口までや第2室外熱交換器7の温度が0℃以上な場合でも、第1室外熱交換器5の入口は0℃以下に低下し第1室外熱交換器5の入口のみに着霜が始まる。そして、制御弁21を流れる冷媒の温度が第1形状記憶合金バネ13の設定変態温度T2より低く第2形状記憶合金バネ16の設定変態温度T4より高いと、図19のように第1形状記憶合金バネ13は第1バイアスバネ12に押動され弁体10を弁座11に押し当て、第2形状記憶合金バネ16は第2バイアスバネ15のバネ力に抗して弁座11を押し第2バイアスバネ15を圧縮するため、第1流路14は閉状態となる。その結果、冷媒は第2流路20しか流れることができず流路が狭められるため、制御弁21前後で圧力差が生じる。この時、第2室外熱交換器7の大きさは第1室外熱交換器5より大きいため、第2室外熱交換器7の冷媒圧力は余り変化せず、第1室外熱交換器5の冷媒圧力が上昇し、第1室外熱交換器5の入口冷媒温度も上昇する。従って、第1室外熱交換器5の入口の霜は解け成長しない。
【0069】
さらに、制御弁21の冷媒の温度が第2形状記憶合金バネ16の設定変態温度T4より低くなると、第1および第2室外熱交換器5、7全体に着霜が成長する状態であるため、図20のように第2形状記憶合金バネ16は第2バイアスバネ15のバネ力に抗すことができず収縮し、弁座11は第2バイアスバネ15に押動されるが、弁体10はストッパ17により止められてしまうため、第1流路14は開状態となる。冷媒は減圧されないため、制御弁21前後で冷媒温度の差は生じない。このように制御弁21前後で圧力差は付かないため、第1、第2室外熱交換器5、7を有効に利用し効率の良い暖房運転を可能にできる。
【0070】
また、制御弁21の温度が低く図20のように、第1、第2バイアスバネ12、15に押動され、第1、第2形状記憶合金バネ13、16が変態し収縮し、制御弁21が開いている状態から、室外気温が上昇する等で制御弁21を流れている冷媒の温度が上昇し、第2形状記憶合金バネ16の設定変態温度T3より高くなり、第1および第2室外熱交換器5、7全体に着霜せず、第1室外熱交換器5の入口のみに着霜するような状態になると、図19のように第2形状記憶合金バネ16は変態し伸び第2バイアスバネ15を圧縮し弁座11を弁体10に押し当てるため、第1流路14は閉状態となる。その結果、冷媒は第2流路20しか流れることができず流路が狭められるため、制御弁21前後で圧力差が生じ、第1室外熱交換器5の冷媒圧力が上昇し、第1室外熱交換器5の入口冷媒温度も上昇する。従って、第1室外熱交換器5の入口の霜は解け成長しない。
【0071】
さらに、室外気温が上昇し、第1室外熱交換器5に着霜が起こらないような状態で、制御弁21を流れる冷媒の温度が第1形状記憶合金バネ13の設定変態温度T1より高くなると、図18のように第1形状記憶合金バネ13は変態し伸び第1バイアスバネ12を圧縮し弁体10を弁座11から離して、第1流路14は開状態となる。冷媒は減圧されないため、制御弁21前後で冷媒温度の差は生じない。
【0072】
このように、室外熱交換器の部分的な着霜を防ぎ、また、室外熱交換器全体に着霜するような状態では制御弁21を開き効率の良い暖房運転が可能となる。
【0073】
【発明の効果】
上記実施例より明らかなように本発明によれば、第1室外熱交換器、第2室外熱交換器の間に制御弁と、その制御弁と並列に第2絞り装置を設けることで、第1室外熱交換器が着霜を起こすような温度条件下において、制御弁が動作すると、冷媒は第2絞り装置に流れ、第2絞り装置の前後で冷媒に差圧が生じ、第1室外熱交換器の圧力は第2室外熱交換器の圧力より高くなり第1室外熱交換器を流れる冷媒の温度は高くなるため、第1熱交換器入口の着霜を防ぐことができ、効率の良い暖房運転を可能にできる。
【0074】
た、本発明のように、第1室外熱交換器、第2室外熱交換器の間に減圧機構を有し形状記憶合金バネを内蔵した制御弁を設けることで、室外熱交換器が着霜を起こすような条件下において形状記憶合金バネが変態しバイアスバネにより押されてたわみ、弁体を弁座に押しつけ冷媒の流路を狭めると、冷媒は制御弁の前後で冷媒に差圧が生じ、第1室外熱交換器の圧力は第2室外熱交換器の圧力より高くなり第1室外熱交換器を流れる冷媒の温度は高くなるため、第1熱交換器の着霜を防ぐことができ、効率の良い暖房運転を可能にできるとともに、別の絞り装置が不要となる。
【図面の簡単な説明】
【図1】 本発明の実施例を示す冷凍装置の冷凍サイクル図
【図2】 本発明の実施例を示す冷凍装置の弁制御装置の電気回路図
【図3】 本発明の実施例を示す冷凍装置の弁制御装置のブロック図
【図4】 本発明の実施例を示す冷凍装置の弁制御装置のフローチャート
【図5】 本発明の他の実施例を示す冷凍装置の冷凍サイクル図
【図6】 本発明の他の冷凍装置に用いる制御弁の断面図
【図7】 本発明の他の冷凍装置に用いる制御弁の形状記憶合金バネの温度−ひずみ曲線図
【図8】 本発明の他の冷凍装置に用いる制御弁の動作を示す断面図
【図9】 本発明の他の実施例を示す冷凍装置の冷凍サイクル図
【図10】 本発明の他の実施例を示す冷凍装置に用いる制御弁の断面図
【図11】 本発明の他の実施例を示す冷凍装置に用いる制御弁の形状記憶合金バネの温度−ひずみ曲線図
【図12】 本発明の他の実施例を示す冷凍装置に用いる制御弁の動作を示す断面図
【図13】 本発明の他の実施例を示す冷凍装置に用いる制御弁の動作を示す断面図
【図14】 本発明のさらに他の実施例を示す冷凍装置の冷凍サイクル図
【図15】 本発明のさらに他の実施例を示す冷凍装置に用いる制御弁の断面図
【図16】 本発明のさらに他の実施例を示す冷凍装置に用いる制御弁の動作を示す断面図
【図17】 本発明のさらに他の実施の形態を示す冷凍装置の冷凍サイクル図
【図18】 本発明のさらに他の実施の形態を示す冷凍装置に用いる制御弁の断面図
【図19】 本発明のさらに他の実施の形態を示す冷凍装置に用いる制御弁の動作を示す断面図
【図20】 本発明のさらに他の実施の形態を示す冷凍装置に用いる制御弁の動作を示す断面図
【図21】 従来の冷凍装置の冷凍サイクル図
【符号の説明】
1 圧縮機
2 四方弁
3 室内熱交換器
4 絞り装置
5 第1室外熱交換器
6 制御弁
7 第2室外熱交換器
8 第2絞り装置
9 制御弁
10 弁体
11 弁座
12 バイアスバネ
13 第1形状記憶合金バネ
14 第1流路
15 第2バイアスバネ
16 第2形状記憶合金バネ
17 ストッパ
18 制御弁
19 制御弁
20 第2流路
21 制御弁
22 弁制御装置
23 電源スイッチ
24 冷媒温度検出器
25 A/D変換装置
26 マイクロコンピュータ(LSI)
27 入力回路
28 CPU
29 メモリ
30 出力回路
31 電磁コイル
[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to a refrigeration apparatus using a non-azeotropic refrigerant mixture.
[0002]
[Prior art]
  In recent years, mixed refrigerants have attracted attention as alternative refrigerants for refrigeration equipment in accordance with regulations on CFCs and HCFCs. An example of a conventional refrigeration apparatus using a non-azeotropic refrigerant mixture will be described below with reference to the drawings.
[0003]
  FIG. 21 shows a refrigeration cycle of a refrigeration apparatus using a conventional non-azeotropic refrigerant mixture.
[0004]
  In FIG. 21, 50 is a compressor, 51 is a four-way valve, 52 is an indoor heat exchanger, 53 is an expansion device, and 54 is an outdoor heat exchanger, which are sequentially connected in an annular form to constitute a main circuit.
[0005]
  The operation of the refrigeration apparatus configured as described above will be described below.
[0006]
  The high-temperature and high-pressure refrigerant vapor compressed by the compressor 50 dissipates heat in the indoor heat exchanger 52 through the four-way valve 51 and is condensed and liquefied. Thereafter, it is expanded under reduced pressure by the expansion device 53 to become a low-temperature and low-pressure refrigerant. Then, after absorbing heat by the outdoor heat exchanger 54 and evaporating and vaporizing it, it becomes low-temperature and low-pressure refrigerant vapor, and is compressed again by the compressor 50 to repeat the refrigeration cycle (for example, JP-A-3-13766).
[0007]
[Problems to be solved by the invention]
  The outdoor heat exchanger during heating operation acts as an evaporator, and the refrigerant changes in a gas-liquid two-phase state. In the case of a single refrigerant, the inlet refrigerant temperature and outlet refrigerant temperature of the heat exchanger are the same, but the non-azeotropic refrigerant mixture is non-isothermal, and the temperature increases as the degree of dryness of the refrigerant increases. The exchanger inlet refrigerant temperature is lower than the outdoor heat exchanger outlet refrigerant temperature. Therefore, in the configuration as described above, at the time of heating operation, even if the outdoor temperature does not frost on the outdoor heat exchanger in the case of a single refrigerant, frost is formed at the inlet of the outdoor heat exchanger if a non-azeotropic refrigerant mixture is used. It is conceivable that the heating capacity decreases.
[0008]
  The present invention solves the above-described problems of the conventional example, and aims to prevent partial frost formation of an outdoor heat exchanger and enable efficient heating operation.
[0009]
[Means for Solving the Problems]
  In order to solve the above problems, the present inventionUsing a non-azeotropic refrigerant mixture, the compressor, the four-way valve, the indoor heat exchanger, the expansion device, the first outdoor heat exchanger, the control valve, and the second outdoor heat exchanger are connected in an annular shape, and the first outdoor heat exchange The second outdoor heat exchanger is made larger than the condenser, and includes a second expansion device provided in parallel with the control valve. The set temperature for opening and closing the control valve is the first set temperature, The value is set smaller as the second set temperature and the third set temperature are reached. When the refrigerant temperature of the first outdoor heat exchanger is lower than the third set temperature, the control valve is opened, and the third set temperature is set. The refrigeration apparatus is configured to close the control valve when the temperature is lower than the second set temperature and open the control valve when the temperature is equal to or higher than the first set temperature.is there. Provided in parallel with the control valveBy the second diaphragmWhen the control valve operates under a temperature condition that causes the first outdoor heat exchanger to form frost, the refrigerant flows into the second expansion device, and a differential pressure is generated in the refrigerant before and after the second expansion device. Since the pressure of the outdoor heat exchanger becomes higher than the pressure of the second outdoor heat exchanger and the temperature of the refrigerant flowing through the first outdoor heat exchanger becomes high, frosting at the inlet of the first heat exchanger can be prevented,
Efficient heating operation is possible.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
  To solve the above problemsThe present inventionControl valve, saidControl valve andA second diaphragm device is provided in parallel. As a result, when the control valve operates under a temperature condition in which the first outdoor heat exchanger causes frost formation, the refrigerant flows into the second expansion device, and a differential pressure is generated in the refrigerant before and after the second expansion device. Since the pressure of the first outdoor heat exchanger becomes higher than the pressure of the second outdoor heat exchanger and the temperature of the refrigerant flowing through the first outdoor heat exchanger becomes higher, it is possible to prevent frost formation at the inlet of the first heat exchanger. And efficient heating operation is possible.
[0011]
  Also,The present inventionIs provided with a control valve having a pressure reducing mechanism between the first outdoor heat exchanger and the second outdoor heat exchanger and having a shape memory alloy spring built therein, so that the outdoor heat exchanger is frosted. When the shape memory alloy spring is transformed and bent by the bias spring and the valve body is pressed against the valve seat to narrow the flow path of the refrigerant, the refrigerant has a differential pressure before and after the control valve, and the first outdoor heat exchanger Since the pressure is higher than the pressure of the second outdoor heat exchanger and the temperature of the refrigerant flowing through the first outdoor heat exchanger is increased, frosting at the inlet of the first heat exchanger can be prevented, and another throttle device, valve A control device is unnecessary, and efficient heating operation can be realized with a simpler configuration.
[0012]
【Example】
  Embodiments of the present invention will be described below with reference to the drawings.
[0013]
  (Example 1)
  FIG. 1 is a refrigeration cycle diagram in the first embodiment of the refrigeration apparatus of the present invention.
[0014]
  In FIG. 1, 1 is a compressor, 2 is a four-way valve, 3 is an indoor heat exchanger, 4 is a throttle device, 5 is a first outdoor heat exchanger, 6 is a control valve, and 7 is a second outdoor heat exchanger. A main circuit is formed by sequentially connecting in an annular manner, and a refrigeration cycle is configured by providing a second expansion device 8 in parallel with the control valve 6. The size of the second outdoor heat exchanger 7 is larger than that of the first outdoor heat exchanger 5. large. 22 is a valve control device that controls the opening and closing of the control valve 6, and 24 is a refrigerant temperature detector that detects the refrigerant temperature of the first outdoor heat exchanger 5 and outputs a temperature detection signal.
[0015]
  FIG. 2 is an electric circuit diagram showing an electrical connection of the refrigeration apparatus shown in FIG. In the figure, 24 is a refrigerant temperature detector for detecting the refrigerant temperature of the first outdoor heat exchanger 5, 25 is an A / D converter, 26 is a microcomputer (hereinafter referred to as LSI), and an input circuit 27, A CPU 28, a memory 29, and an output circuit 30 are provided. The output of the refrigerant temperature detector 24 of the first outdoor heat exchanger 5 is input to the input circuit 27 via the A / D conversion device 25. 31 is an electromagnetic coil that operates to open and close the control valve 6 according to the output of the output circuit 30.
[0016]
  Here, the block diagram shown in FIG. 3 and the electric circuit diagram shown in FIG. 2 will be described. The refrigerant temperature detector 24 of the first outdoor heat exchanger 5 in FIG. 2 is the refrigerant of the first outdoor heat exchanger 5 in FIG. The refrigerant temperature detecting means for detecting and outputting the temperature, the LSI 26 in FIG. 2, compares the value detected by the refrigerant temperature detecting means in FIG. 3 with the set value and outputs a control signal, and the control valve 6 This corresponds to a storage unit that stores an output mode for controlling opening and closing, and a selection unit that selects one of the output modes of the storage unit based on an output signal generated from the comparison unit. And the electromagnetic coil 31 which opens and closes the control valve 6 of FIG. 2 is equivalent to the output means of FIG.
[0017]
  In the above configuration, the configuration and operation of the control circuit during operation of the refrigeration apparatus will be described with reference to FIG. FIG. 4 is a flowchart showing a program of the refrigeration apparatus stored in the memory 29 of the LSI 26.
[0018]
  When the operation instruction is issued, the operation of the refrigeration apparatus starts, and at the same time, the step 40 shown in FIG. 4 is executed, and the refrigerant temperature T of the first outdoor heat exchanger 5 iseIs detected, and in step 41, the refrigerant temperature T of the first outdoor heat exchanger 5 is detected.eWhenSecondSet temperature T2(For example, −2 ° C.)e≧ T2If “NO”, the process proceeds to step 42 and the first output mode of the memory circuit is selected by the selection means built in the memory 29, the electromagnetic coil 31 is not energized, and the control valve 6 remains open. Return to step 40. That is, the control valve 6 remains open under the condition that frost does not grow at the inlet of the first outdoor heat exchanger 5.
[0019]
  Next, when the outdoor temperature is lowered, the refrigerant temperatures of the first outdoor heat exchanger 5 and the second outdoor heat exchanger 7 acting as an evaporator become lower than the outdoor temperature and absorb heat from the atmosphere. Here, when a non-azeotropic refrigerant mixture is used, the refrigerant temperature rises as the dryness of the refrigerant increases due to its non-isothermal property. Therefore, even when the temperature from the center of the first outdoor heat exchanger 5 to the outlet or the temperature of the second outdoor heat exchanger 7 is 0 ° C. or higher, the inlet of the first outdoor heat exchanger 5 is lowered to 0 ° C. Frosting begins only at the inlet of the heat exchanger 5. And Te<T2When the temperature condition is reached in which frost grows in the first outdoor heat exchanger 5, “YES” is determined in step 41, the process proceeds to step 43, and the second output mode of the storage circuit is selected by the selection means built in the memory 29. Then, an output is output from the output circuit 30 and the electromagnetic coil 31 is energized to close the control valve 6. When the control valve 6 is closed, the refrigerant flows into the second expansion device 8 and a pressure difference occurs between the front and rear of the second expansion device 8. At this time, since the size of the second outdoor heat exchanger 7 is larger than that of the first outdoor heat exchanger 5, the refrigerant pressure in the second outdoor heat exchanger 7 does not change so much, and the refrigerant in the first outdoor heat exchanger 5 does not change. The pressure rises and the refrigerant temperature of the first outdoor heat exchanger 5 also rises. In step 44, the refrigerant temperature T of the first outdoor heat exchanger 5 is obtained.eIn step 45, the refrigerant temperature T of the first outdoor heat exchanger 5 is detected.eAnd the first set temperature T1Comparison operation with (for example, 1 ° C.) is performed. T in step 45e<T 1 If so, the process proceeds to step 46 by determining “NO”. In step 46, the refrigerant temperature T of the first outdoor heat exchanger 5 is determined.eAnd the third set temperature TThree(For example, −5 ° C.)eT 3 If “NO”, the process returns to step 43, the second output mode of the memory circuit is continuously selected, a signal is output from the output circuit 30 and the electromagnetic coil 31 is energized, and the control valve 6 remains closed. The frost in the first outdoor heat exchanger 5 is thawed. And the Te≧ T1Then, the process proceeds to step 42 where the first output mode of the memory circuit is selected, the electromagnetic coil 31 is not energized, the control valve 6 is opened, and the process returns to step 40. Therefore, the frost of the first outdoor heat exchanger 5 does not melt and grow.
[0020]
  Further, when the outside air temperature decreases and frost forms on the entire first and second outdoor heat exchangers 5 and 7, the refrigerant temperature T of the first outdoor heat exchanger 5 is determined in step 46.eAnd the third set temperature TThreeAnd comparison operation with Te <TThreeThen, the first output mode of the memory circuit is selected, the electromagnetic coil 31 is not energized, and the control valve 6 is opened. Since the refrigerant does not flow through the second expansion device 8 and is not depressurized, there is no refrigerant temperature difference before and after the control valve 6. Since there is no pressure difference before and after the control valve 6 in this way, the first and second outdoor heat exchangers 5 and 7 can be used effectively to enable efficient heating operation.
[0021]
  In this way, frosting of the outdoor heat exchanger is prevented and efficient heating operation is possible.
[0022]
  Although the above description has been made using the control valve 6 and the second throttle device 8 provided in parallel therewith, when the control valve 6 is provided with a throttle mechanism and the control valve 6 operates, the refrigerant in the control valve 6 If the flow path is narrowed and a pressure difference is generated before and after the control valve 6, frosting of the outdoor heat exchanger can be prevented with a simpler structure, and an efficient heating operation can be performed.
[0023]
  (Example 2)
  In FIG. 5, 1 is a compressor, 2 is a four-way valve, 3 is an indoor heat exchanger, 4 is a throttle device, 5 is a first outdoor heat exchanger, 9 is a control valve, and 7 is a second outdoor heat exchanger. The main circuit is configured by being sequentially connected in an annular shape, and a second expansion device 8 is provided in parallel with the control valve 9 to configure a refrigeration cycle. The size of the second outdoor heat exchanger 7 is larger than that of the first outdoor heat exchanger 5. Here, different from the first embodiment
This is because there is no refrigerant temperature detector 24 and a valve control device 22 for detecting the temperature of the first heat exchanger and outputting a temperature detection signal, and the structure of the control valve 9.
[0024]
  FIG. 6 is a cross-sectional view of the control valve 9.
[0025]
  In FIG. 6, 10 is a valve body, 11 is a valve seat, 12 is a bias spring, 13 is a first shape memory alloy spring, and 14 is a first flow path.
[0026]
  FIG. 7 is a temperature-strain curve (hysteresis curve) of the first shape memory alloy spring 13. There is a temperature difference, ie, temperature hysteresis, between the operating temperature during heating and cooling, and the first shape memory alloy spring 13 has a transformation temperature T2 during cooling (for example, -2) to a transformation temperature T1 during heating (for example, 0 ° C.). ℃).
[0027]
  In the above configuration, the operation of the control valve 9 will be described.
[0028]
  The first shape memory alloy spring 13 expands when it reaches the set transformation temperature T1 or higher, pushes the valve body 10 against the spring force of the bias spring 12, opens the first flow path 14, and the refrigerant is in the second state. It flows through the first flow path 14 without flowing through the expansion device 8. On the other hand, when the first shape memory alloy spring 13 becomes lower than the set transformation temperature T2, the bias spring 12 pushes the valve body 10 against the valve seat 11, and the first flow path 14 is closed. Therefore, the refrigerant can only flow through the second expansion device 8 and is depressurized, and the temperature of the refrigerant decreases.
[0029]
  Next, the operation of the control valve 9 during operation of the refrigeration apparatus will be described.
[0030]
  During the heating operation, when the outdoor air temperature is high and the temperature of the refrigerant flowing through the control valve 9 is higher than the set transformation temperature T2, the first shape memory alloy spring 13 pushes the valve body 10 against the spring force of the bias spring 12. In order to move and compress the bias spring 12, the 1st flow path 14 will be in an open state. Since the refrigerant does not flow to the second expansion device 8, it is not depressurized, and there is no difference in refrigerant temperature before and after the control valve 9.
[0031]
  However, when the outdoor air temperature decreases, the temperatures of the first outdoor heat exchanger 5 and the second outdoor heat exchanger 7 acting as an evaporator become lower than the outdoor air temperature and absorb heat from the atmosphere. However, when a non-azeotropic refrigerant mixture is used, Because of its non-isothermal property, the refrigerant temperature rises as the dryness of the refrigerant increases. Therefore, even when the temperature from the center of the first outdoor heat exchanger 5 to the outlet or the temperature of the second outdoor heat exchanger 7 is 0 ° C. or higher, the inlet of the first outdoor heat exchanger 5 is reduced to 0 ° C. or lower and the first Frosting begins only at the entrance of the outdoor heat exchanger 5. When the temperature of the refrigerant flowing through the control valve 9 becomes lower than the set transformation temperature T2 of the first shape memory alloy spring 13, the first shape memory alloy spring 13 is pushed by the bias spring 12 as shown in FIG. Is pressed against the valve seat 11, and the first flow path 14 is closed. The refrigerant can only flow through the second expansion device 8, and a pressure difference occurs between the front and rear of the second expansion device 8. At this time, since the size of the second outdoor heat exchanger 7 is larger than that of the first outdoor heat exchanger 5, the refrigerant pressure in the second outdoor heat exchanger 7 does not change so much, and the refrigerant in the first outdoor heat exchanger 5 does not change. The pressure rises and the inlet refrigerant temperature of the first outdoor heat exchanger 5 also rises. Therefore, the frost at the inlet of the first outdoor heat exchanger 5 does not melt and grow.
[0032]
  Further, the refrigerant temperature of the control valve 9 is stored in the first shape memory in such a state that frosting does not occur in the first outdoor heat exchanger 5 due to, for example, the outdoor temperature rising while the control valve 9 is operating. When the temperature becomes higher than the set transformation temperature T1 of the alloy spring 13, the first shape memory alloy spring 13 is transformed to compress the extension bias spring 12 and release the valve body 10 from the valve seat 11 as shown in FIG. Is open. Since the refrigerant does not flow through the second expansion device 8 and is not depressurized, there is no refrigerant temperature difference before and after the control valve 9.
[0033]
  Thus, frost formation of the outdoor heat exchanger is prevented, and efficient heating operation is possible.
[0034]
  (Example 3)
  9, 1 is a compressor, 2 is a four-way valve, 3 is an indoor heat exchanger, 4 is a throttle device, 5 is a first outdoor heat exchanger, 18 is a control valve, and 7 is a second outdoor heat exchanger. The main circuit is configured by sequentially connecting in an annular manner, and the second expansion device 8 is provided in parallel with the control valve 18 to configure the refrigeration cycle. The size of the second outdoor heat exchanger 7 is larger than that of the first outdoor heat exchanger 5. Here, the structure of the control valve 18 is different from the second embodiment.
[0035]
  FIG. 10 is a cross-sectional view of the control valve 18.
[0036]
  FIG.10 is a valve body, 11 is a slidable valve seat, 12 is a first bias spring, 13 is a first shape memory alloy spring, 14 is a first flow path, 15 is a second bias spring, and 16 is a second bias spring. A shape memory alloy spring 17 is a stopper that stops the movement of the valve body 10.
[0037]
  FIG. 11 is a temperature-strain curve (hysteresis curve) of the first shape memory alloy spring 13 and the second shape memory alloy spring 16. There is a temperature difference, ie, temperature hysteresis, between the operating temperature during heating and cooling, and the first shape memory alloy spring 13 has a transformation temperature T2 during cooling (for example, -2) to a transformation temperature T1 during heating (for example, 0 ° C.). The second shape memory alloy spring 16 is adjusted to a transformation temperature T3 (for example, −3 ° C.) during heating and a transformation temperature T4 (for example −5 ° C.) during cooling.
[0038]
  In the above configuration, the operation of the control valve 18 will be described.
[0039]
  The first shape memory alloy spring 13 expands when it reaches the set transformation temperature T1 or higher, pushes the valve body 10 against the spring force of the first bias spring 12, and the first flow path 14 is opened. On the other hand, when the first shape memory alloy spring 13 becomes lower than the set transformation temperature T2, the valve body 10 pushed by the first bias spring 12 hits the valve seat 11, and the first flow path 14 is closed. Therefore, the refrigerant can only flow through the second expansion device 8 and is decompressed before and after the second expansion device 8, and the temperature of the refrigerant decreases. Further, when the second shape memory alloy spring 16 becomes lower than the set transformation temperature T4, the second shape memory alloy spring 16 cannot resist the spring force of the second bias spring 15 and contracts. Although the valve seat 11 is pushed by the second bias spring 15, the valve body 10 is stopped by the stopper 17, so that the first travel distance of the valve seat 11 is longer than the travel distance of the valve body 10. If the force of the bias spring 12, the first shape memory alloy spring 13, the second bias spring 15, and the second shape memory alloy spring 16 is adjusted, the first flow path 14 is opened.
[0040]
  Next, the operation of the control valve 18 during operation of the refrigeration apparatus will be described.
[0041]
  During the heating operation, when the outdoor air temperature is high and the temperature of the refrigerant flowing through the control valve 18 is higher than the set transformation temperature T2, the first shape memory alloy spring 13 resists the spring force of the first bias spring 12 as shown in FIG. Then, the valve body 10 is pushed and the first bias spring 12 is compressed, and the second shape memory alloy spring 16 pushes the valve seat 11 against the spring force of the second bias spring 15 and the second bias spring 15. Therefore, the first flow path 14 is in an open state. Since the refrigerant does not flow through the second expansion device 8, it is not depressurized, and there is no difference in refrigerant temperature before and after the control valve 18.
[0042]
  However, when the outdoor air temperature decreases, the temperatures of the first outdoor heat exchanger 5 and the second outdoor heat exchanger 7 acting as an evaporator become lower than the outdoor air temperature and absorb heat from the atmosphere. However, when a non-azeotropic refrigerant mixture is used, Because of its non-isothermal property, the refrigerant temperature rises as the dryness of the refrigerant increases. Therefore, even when the temperature from the center of the first outdoor heat exchanger 5 to the outlet or the temperature of the second outdoor heat exchanger 7 is 0 ° C. or higher, the inlet of the first outdoor heat exchanger 5 is reduced to 0 ° C. or lower and the first Frosting begins only at the entrance of the outdoor heat exchanger 5. Then, the temperature of the refrigerant flowing through the control valve 18 is set at the first shape memory alloy spring 13.
When the temperature is lower than the constant transformation temperature T2 and higher than the set transformation temperature T4 of the second shape memory alloy spring 16, the first shape memory alloy spring 13 is pushed by the first bias spring 12 as shown in FIG. 11, the second shape memory alloy spring 16 presses the valve seat 11 against the spring force of the second bias spring 15 and compresses the second bias spring 15, so that the first flow path 14 is closed. . As a result, the refrigerant can only flow through the second expansion device 8, and a pressure difference occurs between the second expansion device 8 and the second expansion device 8. At this time, since the size of the second outdoor heat exchanger 7 is larger than that of the first outdoor heat exchanger 5, the refrigerant pressure in the second outdoor heat exchanger 7 does not change so much, and the refrigerant in the first outdoor heat exchanger 5 does not change. The pressure rises and the inlet refrigerant temperature of the first outdoor heat exchanger 5 also rises. Therefore, the frost at the inlet of the first outdoor heat exchanger 5 does not melt and grow.
[0043]
  Furthermore, when the temperature of the refrigerant of the control valve 18 becomes lower than the set transformation temperature T4 of the second shape memory alloy spring 16, frost forms on the entire first and second outdoor heat exchangers 5 and 7, As shown in FIG. 13, the second shape memory alloy spring 16 cannot resist the spring force of the second bias spring 15 and contracts, and the valve seat 11 is pushed by the second bias spring 15. Is stopped by the stopper 17, the first flow path 14 is opened. Since the refrigerant does not flow through the second expansion device 8 and is not depressurized, there is no difference in refrigerant temperature before and after the control valve 18. Thus, since there is no pressure difference before and after the control valve 18, the first and second outdoor heat exchangers 5 and 7 can be effectively used to enable efficient heating operation.
[0044]
  Further, the temperature of the control valve 18 is low, and it is pushed by the first and second bias springs 12 and 15 as shown in FIG. 13, so that the first and second shape memory alloy springs 13 and 16 are transformed and contracted, and the control valve From the open state, the temperature of the refrigerant flowing through the control valve 18 rises due to, for example, an increase in the outdoor air temperature, becomes higher than the set transformation temperature T3 of the second shape memory alloy spring 16, and the first and second When the entire outdoor heat exchangers 5 and 7 are not frosted and only the inlet of the first outdoor heat exchanger 5 is frosted, the second shape memory alloy spring 16 is transformed and stretched as shown in FIG. Since the second bias spring 15 is compressed and the valve seat 11 is pressed against the valve body 10, the first flow path 14 is closed. As a result, the refrigerant can only flow through the second expansion device 8 and a pressure difference occurs between the second expansion device 8 and the refrigerant, the refrigerant pressure in the first outdoor heat exchanger 5 rises, and the first outdoor heat exchanger 5 The inlet refrigerant temperature also increases. Therefore, the frost at the inlet of the first outdoor heat exchanger 5 does not melt and grow.
[0045]
  Furthermore, when the outdoor air temperature rises and the first outdoor heat exchanger 5 is not frosted, the temperature of the refrigerant flowing through the control valve 18 becomes higher than the set transformation temperature T1 of the first shape memory alloy spring 13. As shown in FIG. 10, the first shape memory alloy spring 13 is transformed and stretched, the first bias spring 12 is compressed, the valve body 10 is separated from the valve seat 11, and the first flow path 14 is opened. Since the refrigerant does not flow through the second expansion device 8 and is not depressurized, there is no difference in refrigerant temperature before and after the control valve 18.
[0046]
  Thus, partial frost formation of the outdoor heat exchanger is prevented, and in a state where frost formation occurs on the entire outdoor heat exchanger, the control valve is opened to enable efficient heating operation.
[0047]
  (Example 4)
  FIG. 14 is a refrigeration cycle diagram in the fourth embodiment of the refrigeration apparatus of the present invention.
[0048]
  In FIG. 14, 1 is a compressor, 2 is a four-way valve, 3 is an indoor heat exchanger, 4 is a throttle device, 5 is a first outdoor heat exchanger, 19 is a control valve, and 7 is a second outdoor heat exchanger. The refrigeration cycle is configured by sequentially connecting in an annular shape, and the size of the second outdoor heat exchanger is larger than that of the first outdoor heat exchanger. Here, the second embodiment is different from the second embodiment in the structure of the control valve 19 and having a pressure reducing mechanism.
[0049]
  FIG. 15 is a cross-sectional view of the control valve 19.
[0050]
  In FIG. 15, 9 is a valve body, 10 is a valve body, 11 is a valve seat, 12 is a bias spring, 13 is
A first shape memory alloy spring, 14 is a first flow path, and 20 is a second flow path.
[0051]
  The temperature-strain curve (hysteresis curve) of the first shape memory alloy spring 13 is the same as that of the second embodiment of FIG.
[0052]
  In the above configuration, the operation of the control valve 19 will be described.
[0053]
  The first shape memory alloy spring 13 expands when it reaches the set transformation temperature T1 or higher, pushes the valve element 10 against the spring force of the bias spring 12, opens the first flow path 14, and the refrigerant is the first. It flows through the flow path 14. On the other hand, when the first shape memory alloy spring 13 becomes lower than the set transformation temperature T2, the bias spring 12 pushes the valve body 10 against the valve seat 11, and the first flow path 14 is closed. Therefore, since the refrigerant can only flow through the second flow path 20 and the flow path is narrowed, the pressure is reduced and the temperature of the refrigerant decreases.
[0054]
  Next, the operation of the control valve 19 during operation of the refrigeration apparatus will be described.
[0055]
  During the heating operation, when the outdoor air temperature is high and the temperature of the refrigerant flowing through the control valve 19 is higher than the set transformation temperature T2, the first shape memory alloy spring 13 resists the spring force of the bias spring 12 as shown in FIG. Since the valve body 10 is pushed and the bias spring 12 is compressed, the first flow path 14 is opened. The refrigerant is not depressurized by the control valve 19, and there is no refrigerant temperature difference before and after the control valve 19.
[0056]
  However, when the outdoor air temperature decreases, the temperatures of the first outdoor heat exchanger 5 and the second outdoor heat exchanger 7 acting as an evaporator become lower than the outdoor air temperature and absorb heat from the atmosphere. However, when a non-azeotropic refrigerant mixture is used, Because of its non-isothermal property, the refrigerant temperature rises as the dryness of the refrigerant increases. Therefore, even when the temperature from the center of the first outdoor heat exchanger 5 to the outlet or the temperature of the second outdoor heat exchanger 7 is 0 ° C. or higher, the inlet of the first outdoor heat exchanger 5 is reduced to 0 ° C. or lower and the first Frosting begins only at the entrance of the outdoor heat exchanger 5. When the temperature of the refrigerant flowing through the control valve 19 becomes lower than the set transformation temperature T2 of the first shape memory alloy spring 13, the first shape memory alloy spring 13 is pushed by the bias spring 12 as shown in FIG. Is pressed against the valve seat 11, and the first flow path 14 is closed. Since the refrigerant can only flow through the second flow path 20 and the flow path is narrowed, a pressure difference is generated before and after the control valve 19. At this time, since the size of the second outdoor heat exchanger 7 is larger than that of the first outdoor heat exchanger 5, the refrigerant pressure in the second outdoor heat exchanger 7 does not change so much, and the refrigerant in the first outdoor heat exchanger 5 does not change. The pressure rises and the inlet refrigerant temperature of the first outdoor heat exchanger 5 also rises. Therefore, the frost at the inlet of the first outdoor heat exchanger 5 does not melt and grow.
[0057]
  Further, the refrigerant temperature of the control valve 19 is stored in the first shape memory in such a state that frosting does not occur in the first outdoor heat exchanger 5 due to, for example, the outdoor temperature rising while the control valve 19 is operating. When the temperature becomes higher than the set transformation temperature T1 of the alloy spring 13, the first shape memory alloy spring 13 is transformed to compress the extension bias spring 12 and release the valve body 10 from the valve seat 11 as shown in FIG. Is open. Since the refrigerant is not depressurized, there is no difference in refrigerant temperature before and after the control valve 19.
[0058]
  As described above, the use of the control valve having the pressure reducing mechanism eliminates the need for the second expansion device, prevents partial frosting of the outdoor heat exchanger, and enables efficient heating operation.
[0059]
  (Example 5)
  In FIG. 17, 1 is a compressor, 2 is a four-way valve, 3 is an indoor heat exchanger, 4 is a throttle device, 5 is a first outdoor heat exchanger, 21 is a control valve, and 7 is a second outdoor heat exchanger. The refrigeration cycle is configured by sequentially connecting in an annular shape. The size of the second outdoor heat exchanger 7 is larger than that of the first outdoor heat exchanger 5. Here, the difference from the fourth embodiment is the structure of the control valve 21.
[0060]
  FIG. 18 is a cross-sectional view of the control valve 21.
[0061]
  In FIG. 18, 10 is a valve body, 11 is a slidable valve seat, 12 is a first bias spring, 13 is a first shape memory alloy spring, 14 is a first flow path, 15 is a second bias spring, and 16 is A second shape memory alloy spring, 17 is a stopper for stopping the movement of the valve body 10, and 20 is a second flow path.
[0062]
  The temperature-strain curve (hysteresis curve) of the first shape memory alloy spring 13 and the second shape memory alloy spring 16 is the same as FIG. 11 of the third embodiment.
[0063]
  In the above configuration, the operation of the control valve 21 will be described.
[0064]
  The first shape memory alloy spring 13 expands when it reaches the set transformation temperature T1 or higher, pushes the valve body 10 against the spring force of the first bias spring 12, and the first flow path 14 is opened. On the other hand, when the first shape memory alloy spring 13 becomes lower than the set transformation temperature T2, the valve body 10 pushed by the first bias spring 12 hits the valve seat 11, and the first flow path 14 is closed. Therefore, since the refrigerant can only flow through the second flow path 20 and the flow path is narrowed, the pressure is reduced and the temperature of the refrigerant decreases.
[0065]
  Further, when the second shape memory alloy spring 16 becomes lower than the set transformation temperature T4, it cannot resist the spring force of the second bias spring 15 and contracts. Although the valve seat 11 is pushed by the second bias spring 15, the valve body 10 is stopped by the stopper 17, so that the first travel distance of the valve seat 11 is longer than the travel distance of the valve body 10. If the force of the bias spring 12, the first shape memory alloy spring 13, the second bias spring 15, and the second shape memory alloy spring 16 is adjusted, the first flow path 14 is opened.
[0066]
  Next, the operation of the control valve 21 during operation of the refrigeration apparatus will be described.
[0067]
  During the heating operation, when the outdoor air temperature is high and the temperature of the refrigerant flowing through the control valve 21 is higher than the set transformation temperature T2, the first shape memory alloy spring 13 resists the spring force of the first bias spring 12 as shown in FIG. Then, the valve body 10 is pushed and the first bias spring 12 is compressed, and the second shape memory alloy spring 16 pushes the valve seat 11 against the spring force of the second bias spring 15 and the second bias spring 15. Therefore, the first flow path 14 is opened, the refrigerant is not depressurized, and there is no refrigerant temperature difference before and after the control valve 21.
[0068]
  However, when the outdoor air temperature decreases, the temperatures of the first outdoor heat exchanger 5 and the second outdoor heat exchanger 7 acting as an evaporator become lower than the outdoor air temperature and absorb heat from the atmosphere. However, when a non-azeotropic refrigerant mixture is used, Because of its non-isothermal property, the refrigerant temperature rises as the dryness of the refrigerant increases. Therefore, even when the temperature from the center of the first outdoor heat exchanger 5 to the outlet or the temperature of the second outdoor heat exchanger 7 is 0 ° C. or higher, the inlet of the first outdoor heat exchanger 5 is reduced to 0 ° C. or lower and the first Frosting begins only at the entrance of the outdoor heat exchanger 5. Then, when the temperature of the refrigerant flowing through the control valve 21 is lower than the set transformation temperature T2 of the first shape memory alloy spring 13 and higher than the set transformation temperature T4 of the second shape memory alloy spring 16, the first shape memory as shown in FIG. The alloy spring 13 is pushed by the first bias spring 12 to press the valve body 10 against the valve seat 11, and the second shape memory alloy spring 16 pushes the valve seat 11 against the spring force of the second bias spring 15. In order to compress the 2 bias spring 15, the first flow path 14 is closed. As a result, the refrigerant can only flow through the second flow path 20 and the flow path is narrowed, so that a pressure difference occurs between the front and rear of the control valve 21. At this time, since the size of the second outdoor heat exchanger 7 is larger than that of the first outdoor heat exchanger 5, the refrigerant pressure in the second outdoor heat exchanger 7 does not change so much, and the refrigerant in the first outdoor heat exchanger 5 does not change. The pressure rises and the inlet refrigerant temperature of the first outdoor heat exchanger 5 also rises. Therefore, the frost at the inlet of the first outdoor heat exchanger 5 does not melt and grow.
[0069]
  Furthermore, when the temperature of the refrigerant of the control valve 21 becomes lower than the set transformation temperature T4 of the second shape memory alloy spring 16, frost forms on the entire first and second outdoor heat exchangers 5 and 7, As shown in FIG. 20, the second shape memory alloy spring 16 cannot resist the spring force of the second bias spring 15 and contracts, and the valve seat 11 is pushed by the second bias spring 15. Is stopped by the stopper 17, the first flow path 14 is opened. Since the refrigerant is not depressurized, there is no difference in refrigerant temperature before and after the control valve 21. Thus, since there is no pressure difference before and after the control valve 21, the first and second outdoor heat exchangers 5 and 7 can be effectively used to enable efficient heating operation.
[0070]
  Further, the temperature of the control valve 21 is low, and the first and second bias springs 12 and 15 are pushed by the first and second shape memory alloy springs 13 and 16 as shown in FIG. From the open state, the temperature of the refrigerant flowing through the control valve 21 rises due to, for example, the outdoor air temperature rising, and becomes higher than the set transformation temperature T3 of the second shape memory alloy spring 16, and the first and second When the entire outdoor heat exchangers 5 and 7 are not frosted and only the inlet of the first outdoor heat exchanger 5 is frosted, the second shape memory alloy spring 16 is transformed and stretched as shown in FIG. Since the second bias spring 15 is compressed and the valve seat 11 is pressed against the valve body 10, the first flow path 14 is closed. As a result, since the refrigerant can only flow through the second flow path 20 and the flow path is narrowed, a pressure difference occurs between the control valve 21 and the refrigerant pressure in the first outdoor heat exchanger 5 increases, and the first outdoor The inlet refrigerant temperature of the heat exchanger 5 also rises. Therefore, the frost at the inlet of the first outdoor heat exchanger 5 does not melt and grow.
[0071]
  Furthermore, when the outdoor air temperature rises and the first outdoor heat exchanger 5 is not frosted, the temperature of the refrigerant flowing through the control valve 21 becomes higher than the set transformation temperature T1 of the first shape memory alloy spring 13. As shown in FIG. 18, the first shape memory alloy spring 13 is transformed and stretched, the first bias spring 12 is compressed, the valve body 10 is separated from the valve seat 11, and the first flow path 14 is opened. Since the refrigerant is not depressurized, there is no difference in refrigerant temperature before and after the control valve 21.
[0072]
  Thus, partial frost formation of the outdoor heat exchanger is prevented, and in a state where frost is formed on the entire outdoor heat exchanger, the control valve 21 is opened to enable efficient heating operation.
[0073]
【The invention's effect】
  As is clear from the above exampleThe present inventionAccording to the present invention, there is provided a control valve between the first outdoor heat exchanger and the second outdoor heat exchanger, and the second throttle device in parallel with the control valve.SetTherefore, when the control valve operates under a temperature condition in which the first outdoor heat exchanger causes frost formation, the refrigerant flows into the second expansion device, and a differential pressure is generated in the refrigerant before and after the second expansion device. Since the pressure of the first outdoor heat exchanger becomes higher than the pressure of the second outdoor heat exchanger and the temperature of the refrigerant flowing through the first outdoor heat exchanger becomes higher, it is possible to prevent frost formation at the inlet of the first heat exchanger. And efficient heating operation is possible.
[0074]
  MaBookAs in the invention, by providing a control valve having a pressure reducing mechanism between the first outdoor heat exchanger and the second outdoor heat exchanger and incorporating a shape memory alloy spring, the outdoor heat exchanger may cause frost formation. When the shape memory alloy spring transforms and bends by being biased by the bias spring under a narrow condition, and the valve body is pressed against the valve seat to narrow the flow path of the refrigerant, a differential pressure is generated in the refrigerant before and after the control valve, and the first Since the pressure of the outdoor heat exchanger becomes higher than the pressure of the second outdoor heat exchanger and the temperature of the refrigerant flowing through the first outdoor heat exchanger becomes high, frosting of the first heat exchanger can be prevented, A good heating operation can be performed and a separate throttle device is not required.
[Brief description of the drawings]
FIG. 1 is a refrigeration cycle diagram of a refrigeration apparatus showing an embodiment of the present invention.
FIG. 2 is an electric circuit diagram of a valve control device of a refrigeration apparatus showing an embodiment of the present invention.
FIG. 3 is a block diagram of a valve control device of a refrigeration apparatus showing an embodiment of the present invention.
FIG. 4 is a flowchart of a valve control device of a refrigeration apparatus showing an embodiment of the present invention.
FIG. 5 is a refrigeration cycle diagram of a refrigeration apparatus showing another embodiment of the present invention.
FIG. 6 is a sectional view of a control valve used in another refrigeration apparatus of the present invention.
FIG. 7 is a temperature-strain curve diagram of a shape memory alloy spring of a control valve used in another refrigeration apparatus of the present invention.
FIG. 8 is a cross-sectional view showing the operation of a control valve used in another refrigeration apparatus of the present invention.
FIG. 9 is a refrigeration cycle diagram of a refrigeration apparatus showing another embodiment of the present invention.
FIG. 10 is a cross-sectional view of a control valve used in a refrigeration apparatus showing another embodiment of the present invention.
FIG. 11 is a temperature-strain curve diagram of a shape memory alloy spring of a control valve used in a refrigeration apparatus showing another embodiment of the present invention.
FIG. 12 is a sectional view showing the operation of a control valve used in a refrigeration apparatus showing another embodiment of the present invention.
FIG. 13 is a sectional view showing the operation of a control valve used in a refrigeration apparatus showing another embodiment of the present invention.
FIG. 14 is a refrigeration cycle diagram of a refrigeration apparatus showing still another embodiment of the present invention.
FIG. 15 is a sectional view of a control valve used in a refrigeration apparatus showing still another embodiment of the present invention.
FIG. 16 is a cross-sectional view showing the operation of a control valve used in a refrigeration apparatus showing still another embodiment of the present invention.
FIG. 17 is a refrigeration cycle diagram of a refrigeration apparatus showing still another embodiment of the present invention.
FIG. 18 is a cross-sectional view of a control valve used in a refrigeration apparatus showing still another embodiment of the present invention.
FIG. 19 is a cross-sectional view showing the operation of a control valve used in a refrigeration apparatus showing still another embodiment of the present invention.
FIG. 20 is a cross-sectional view showing the operation of a control valve used in a refrigeration apparatus showing still another embodiment of the present invention.
FIG. 21 is a refrigeration cycle diagram of a conventional refrigeration apparatus.
[Explanation of symbols]
  1 Compressor
  2 Four-way valve
  3 Indoor heat exchanger
  4 Aperture device
  5 1st outdoor heat exchanger
  6 Control valve
  7 Second outdoor heat exchanger
  8 Second diaphragm device
  9 Control valve
  10 Disc
  11 Valve seat
  12 Bias spring
  13 First shape memory alloy spring
  14 First flow path
  15 Second bias spring
  16 Second shape memory alloy spring
  17 Stopper
  18 Control valve
  19 Control valve
  20 Second flow path
  21 Control valve
  22 Valve control device
  23 Power switch
  24 Refrigerant temperature detector
  25 A / D converter
  26 Microcomputer (LSI)
  27 Input circuit
  28 CPU
  29 memory
  30 Output circuit
  31 Electromagnetic coil

Claims (5)

非共沸混合冷媒を用い、圧縮機、四方弁、室内熱交換器、絞り装置、第1室外熱交換器、制御弁、第2室外熱交換器を環状に接続し、前記第1室外熱交換器より前記第2室外熱交換器の大きさを大きくするとともに、前記制御弁と並列に設けた第2絞り装置を備え、前記制御弁の開閉動作を行う設定温度は、第1設定温度、第2設定温度、第3設定温度となるに従い値は小さく設定されており、前記第1室外熱交換器の冷媒温度が前記第3設定温度より低い時は前記制御弁を開き、前記第3設定温度以上で前記第2設定温度より低い時は前記制御弁を閉じ、前記第1設定温度以上の時は前記制御弁を開く構成としたことを特徴とする冷凍装置。Using a non-azeotropic refrigerant mixture, the compressor, the four-way valve, the indoor heat exchanger, the expansion device, the first outdoor heat exchanger, the control valve, and the second outdoor heat exchanger are connected in an annular shape, and the first outdoor heat exchange The second outdoor heat exchanger is made larger than the condenser, and includes a second expansion device provided in parallel with the control valve. The set temperature for opening and closing the control valve is the first set temperature, The value is set smaller as the second set temperature and the third set temperature are reached. When the refrigerant temperature of the first outdoor heat exchanger is lower than the third set temperature, the control valve is opened, and the third set temperature is set. When the temperature is lower than the second set temperature, the control valve is closed, and when the temperature is equal to or higher than the first set temperature, the control valve is opened . 非共沸混合冷媒を用い、圧縮機、四方弁、室内熱交換器、絞り装置、第1室外熱交換器、制御弁、第2室外熱交換器を環状に接続した冷凍装置において、前記第1室外熱交換器より前記第2室外熱交換器の大きさを大きくし、前記制御弁に設けた減圧機構を備え、前記制御弁の開閉動作を行う設定温度は、第1設定温度、第2設定温度、第3設定温度となるに従い値は小さく設定されており、前記第1室外熱交換器の冷媒温度が前記第3設定温度より低い時は前記制御弁を開き、前記第3設定温度以上で前記第2設定温度より低い時は前記制御弁を閉じ、前記第1設定温度以上の時は前記制御弁を開く構成としたことを特徴とする冷凍装置。In the refrigeration system using the non-azeotropic refrigerant mixture, the compressor, the four-way valve, the indoor heat exchanger, the expansion device, the first outdoor heat exchanger, the control valve, and the second outdoor heat exchanger are connected in an annular shape. The second outdoor heat exchanger is larger than the outdoor heat exchanger, and includes a pressure reducing mechanism provided in the control valve. The set temperatures for opening and closing the control valve are the first set temperature and the second set temperature. The value is set to be smaller as the temperature becomes the third set temperature, and when the refrigerant temperature of the first outdoor heat exchanger is lower than the third set temperature, the control valve is opened, and the temperature is equal to or higher than the third set temperature. The refrigeration apparatus is configured to close the control valve when the temperature is lower than the second set temperature and to open the control valve when the temperature is equal to or higher than the first set temperature . 制御弁は、第1形状記憶合金バネ、第1バイアスバネ、前記第1形状記憶合金バネと前記第1バイアスバネとの間に挟まれた摺動可能な弁体、第2形状記憶合金バネ、第2バイアスバネ、前記第2形状記憶合金バネと前記第2バイアスバネとの間に挟まれた弁座を有することを特徴とする請求項1または2記載の冷凍装置。 The control valve includes a first shape memory alloy spring, a first bias spring, a slidable valve body sandwiched between the first shape memory alloy spring and the first bias spring, a second shape memory alloy spring, The refrigeration apparatus according to claim 1 or 2 , further comprising: a second bias spring, a valve seat sandwiched between the second shape memory alloy spring and the second bias spring . 温度ヒステリシスが2〜3度で、冷却時の変態温度が−2〜−4℃で、これを第2設定温度、加熱時の変態温度が0〜−2℃でこれを第1設定温度とする第1形状記憶合金バネと、冷却時の変態温度を第3設定温度とする第2形状記憶合金バネとを制御弁に使用することを特徴とする請求項3記載の冷凍装置。The temperature hysteresis is 2 to 3 degrees , the transformation temperature during cooling is −2 to −4 ° C., this is the second set temperature, and the transformation temperature during heating is 0 to −2 ° C. and this is the first set temperature. 4. The refrigeration apparatus according to claim 3 , wherein a first shape memory alloy spring and a second shape memory alloy spring having a third set temperature as a transformation temperature during cooling are used as control valves. 第1室外熱交換器の冷媒温度を検出して出力する第1室外熱交換器冷媒温度検出手段と、前記第1室外熱交換器冷媒温度と設定温度とを比較し、制御信号を出力する比較手段と、前記制御弁の開閉を制御する出力モードを記憶した記憶手段と、前記比較手段から発生する出力信号により、前記記憶手段の出力モードの一つを選択する選択手
段と、前記記憶手段の出力モードに従い前記制御弁の開閉を行う出力手段により構成した弁制御装置を設けたことを特徴とする請求項1記載の冷凍装置。
The first outdoor heat exchanger refrigerant temperature detecting means for detecting and outputting the refrigerant temperature of the first outdoor heat exchanger, and the comparison for comparing the first outdoor heat exchanger refrigerant temperature and the set temperature and outputting a control signal Storage means storing output mode for controlling the opening and closing of the control valve, selection means for selecting one of the output modes of the storage means based on an output signal generated from the comparison means, and claim 1 Symbol placement of the refrigerating apparatus is characterized in that a valve control device constructed in accordance with the output means for opening and closing said control valve in accordance with the output mode.
JP2002374387A 2002-12-25 2002-12-25 Refrigeration equipment Expired - Fee Related JP3738760B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002374387A JP3738760B2 (en) 2002-12-25 2002-12-25 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002374387A JP3738760B2 (en) 2002-12-25 2002-12-25 Refrigeration equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP33299395A Division JP3430761B2 (en) 1995-12-21 1995-12-21 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JP2003207237A JP2003207237A (en) 2003-07-25
JP3738760B2 true JP3738760B2 (en) 2006-01-25

Family

ID=27655999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002374387A Expired - Fee Related JP3738760B2 (en) 2002-12-25 2002-12-25 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JP3738760B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6045204B2 (en) * 2012-06-06 2016-12-14 三菱重工業株式会社 Heat exchange system
CN104132474B (en) * 2014-07-14 2017-01-25 珠海格力电器股份有限公司 Environment conditioning device for low-temperature laboratory
JP2016118295A (en) * 2014-12-18 2016-06-30 株式会社デンソー Temperature control valve and refrigeration cycle system provided with temperature control valve
WO2016098330A1 (en) * 2014-12-18 2016-06-23 株式会社デンソー Temperature control valve and refrigeration cycle system provided with same temperature control valve
DE102018206276A1 (en) * 2018-04-24 2019-10-24 Zf Friedrichshafen Ag Thermostatic valve
CN113738914B (en) * 2020-05-29 2022-10-18 比亚迪股份有限公司 Reversing valve

Also Published As

Publication number Publication date
JP2003207237A (en) 2003-07-25

Similar Documents

Publication Publication Date Title
JP3894221B1 (en) Air conditioner
JP2007155230A (en) Air conditioner
CN112344461B (en) Water system air conditioner
JP3738760B2 (en) Refrigeration equipment
JP2019158308A (en) Refrigeration cycle device
JPH10205933A (en) Air conditioner
JP3430761B2 (en) Refrigeration equipment
JPH10232073A (en) Air conditioner
JP2002243284A (en) Air conditioner
JPH10253204A (en) Method for operating air conditioner and air conditioner
JP2003106694A (en) Air conditioner
JP2002061978A (en) Air conditioner
EP0077414A1 (en) Air temperature conditioning system
JPH1163687A (en) Air conditioner cycle
JP2723774B2 (en) Multi-room air conditioner
JPH0282060A (en) Heat pump type air conditioner
JP3326898B2 (en) Control device for heat pump device
WO2022013981A1 (en) Refrigeration cycle device
JPH09210480A (en) Two-stage compression type refrigerating apparatus
JPH03170758A (en) Air conditioner
JPH05302765A (en) Multi-chamber type air conditioner
JPS5969663A (en) Refrigeration cycle
JP2003121012A (en) Method for controlling vapor compression type refrigerating cycle and vapor compression type refrigerating circuit in automotive air-conditioner
JP2000220891A (en) Air conditioner
EP0153557A2 (en) Refrigeration cycle apparatus

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051011

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051024

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111111

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121111

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131111

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees