JP2003207237A - Refrigerator - Google Patents

Refrigerator

Info

Publication number
JP2003207237A
JP2003207237A JP2002374387A JP2002374387A JP2003207237A JP 2003207237 A JP2003207237 A JP 2003207237A JP 2002374387 A JP2002374387 A JP 2002374387A JP 2002374387 A JP2002374387 A JP 2002374387A JP 2003207237 A JP2003207237 A JP 2003207237A
Authority
JP
Japan
Prior art keywords
heat exchanger
outdoor heat
temperature
control valve
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002374387A
Other languages
Japanese (ja)
Other versions
JP3738760B2 (en
Inventor
Akira Fujitaka
章 藤高
Toshio Wakabayashi
寿夫 若林
Shinji Watanabe
伸二 渡辺
Hironao Numamoto
浩直 沼本
Yukio Watanabe
幸男 渡邊
Kanji Haneda
完爾 羽根田
Yoshinori Kobayashi
義典 小林
Yuichi Kusumaru
雄一 薬丸
Shigeto Yamaguchi
成人 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002374387A priority Critical patent/JP3738760B2/en
Publication of JP2003207237A publication Critical patent/JP2003207237A/en
Application granted granted Critical
Publication of JP3738760B2 publication Critical patent/JP3738760B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Temperature-Responsive Valves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To perform efficient heating operation by preventing partial frosting of outdoor heat exchangers. <P>SOLUTION: A main circuit is constituted by successively and annularly connecting a compressor 1, a four-way valve 2, an indoor heat exchanger 3, an orifice device 4, the first outdoor heat exchanger 5, a control valve 9, and the second outdoor heat exchanger 7. A refrigerating cycle is constituted by arranging a second orifice device 8 in parallel to a control valve 6. The size of the second outdoor heat exchanger 7 is formed larger than the first outdoor heat exchanger 5. The control valve 9 is composed of a valve element 10, a valve seat 11, a bias spring 12, a shape memory alloy spring 13, and a first passage 14. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、非共沸混合冷媒を
用いた冷凍装置に関するものである。
TECHNICAL FIELD The present invention relates to a refrigerating apparatus using a non-azeotropic mixed refrigerant.

【0002】[0002]

【従来の技術】近年、CFCおよびHCFCフロンの規
制にともない冷凍装置の代替冷媒として混合冷媒が注目
をあびている。従来の非共沸混合冷媒を用いた冷凍装置
の一例について、以下図面を参照しながら説明する。
2. Description of the Related Art In recent years, a mixed refrigerant has been attracting attention as an alternative refrigerant for a refrigerating device in accordance with the regulations of CFC and HCFC. An example of a conventional refrigeration system using a non-azeotropic mixed refrigerant will be described below with reference to the drawings.

【0003】図21は従来の非共沸混合冷媒を用いた冷
凍装置の冷凍サイクルを示すものである。
FIG. 21 shows a refrigeration cycle of a conventional refrigeration system using a non-azeotropic mixed refrigerant.

【0004】図21において50は圧縮機、51は四方
弁、52は室内熱交換器、53は絞り装置、54は室外
熱交換器で、順次環状に接続されて主回路を構成してい
る。
In FIG. 21, reference numeral 50 is a compressor, 51 is a four-way valve, 52 is an indoor heat exchanger, 53 is a throttle device, and 54 is an outdoor heat exchanger, which are sequentially connected in a ring to form a main circuit.

【0005】以上のように構成された冷凍装置につい
て、以下その動作について説明する。
The operation of the refrigerating apparatus constructed as above will be described below.

【0006】圧縮機50で圧縮された高温高圧の冷媒蒸
気は、四方弁51を介して室内熱交換器52において放
熱し、凝縮液化する。その後、絞り装置53で減圧膨張
されて低温低圧の冷媒となる。そして、室外熱交換器5
4で吸熱して蒸発、気化した後、低温低圧の冷媒蒸気と
なり、再び圧縮機50で圧縮され冷凍サイクルを繰り返
す(例えば特開平3−13766号公報)。
The high-temperature and high-pressure refrigerant vapor compressed by the compressor 50 radiates heat in the indoor heat exchanger 52 via the four-way valve 51 and is condensed and liquefied. Then, the expansion device 53 decompresses and expands to a low-temperature low-pressure refrigerant. And the outdoor heat exchanger 5
After absorbing heat by 4 and evaporating and vaporizing, it becomes a low-temperature low-pressure refrigerant vapor, is compressed again by the compressor 50, and the refrigerating cycle is repeated (for example, JP-A-3-13766).

【0007】[0007]

【発明が解決しようとする課題】暖房運転時の室外熱交
換器は蒸発器として作用し、冷媒は気液二相状態で変化
する。単一冷媒の場合は熱交換器の入口冷媒温度と出口
冷媒温度は同じであるが、非共沸混合冷媒は非等温性が
あり、冷媒の乾き度が大きくなるに従い温度が高くなる
ため室外熱交換器入口冷媒温度の方が室外熱交換器出口
冷媒温度よりも低くなる。そのため上記のような構成で
は、暖房運転時、単一冷媒の場合では室外熱交換器に着
霜しないような室外温度でも、非共沸混合冷媒を用いる
と室外熱交換器の入口に着霜し、暖房能力が低下するこ
とが考えられる。
The outdoor heat exchanger during heating operation functions as an evaporator, and the refrigerant changes in a gas-liquid two-phase state. In the case of a single refrigerant, the inlet refrigerant temperature and the outlet refrigerant temperature of the heat exchanger are the same, but the non-azeotropic mixed refrigerant has non-isothermal properties, and the temperature increases as the dryness of the refrigerant increases, so the outdoor heat The refrigerant temperature at the inlet of the exchanger is lower than the refrigerant temperature at the outlet of the outdoor heat exchanger. Therefore, in the above-mentioned configuration, during the heating operation, even if the outdoor temperature is such that the outdoor heat exchanger does not frost in the case of a single refrigerant, the non-azeotropic mixed refrigerant causes frost formation at the inlet of the outdoor heat exchanger. It is possible that the heating capacity will decrease.

【0008】本発明は上記従来例の課題を解決するもの
で、室外熱交換器の部分的な着霜を防ぎ効率の良い暖房
運転を可能とすることを目的としたものである。
The present invention is intended to solve the above-mentioned problems of the conventional example, and it is an object of the present invention to prevent partial frost formation on the outdoor heat exchanger and enable efficient heating operation.

【0009】[0009]

【課題を解決するための手段】上記問題点を解決するた
めに本発明は、第1室外熱交換器、第2室外熱交換器の
間に制御弁と、その制御弁と並列に第2絞り装置を設
け、第1室外熱交換器の冷媒温度を検出して出力する第
1室外熱交換器冷媒温度検出手段と、この第1室外熱交
換器冷媒温度と設定温度とを比較し、制御信号を出力す
る比較手段と、制御弁の開閉を制御する出力モードを記
憶した記憶手段と、前記比較手段から発生する出力信号
により、前記記憶手段の出力モードの一つを選択する選
択手段と、前記記憶手段の出力モードに従い前記制御弁
の開閉を行う出力手段により構成した弁制御装置を設け
たものである。上記制御弁と並列に設けられた第2絞り
装置と弁制御装置によって、第1室外熱交換器が着霜を
起こすような温度条件下において、制御弁が動作する
と、冷媒は第2絞り装置に流れ、第2絞り装置の前後で
冷媒に差圧が生じ、第1室外熱交換器の圧力は第2室外
熱交換器の圧力より高くなり第1室外熱交換器を流れる
冷媒の温度は高くなるため、第1熱交換器入口の着霜を
防ぐことができ、効率の良い暖房運転を可能にできる。
In order to solve the above problems, the present invention provides a control valve between a first outdoor heat exchanger and a second outdoor heat exchanger, and a second throttle in parallel with the control valve. A first outdoor heat exchanger refrigerant temperature detecting means for detecting and outputting the refrigerant temperature of the first outdoor heat exchanger is provided with a device, and the first outdoor heat exchanger refrigerant temperature and the set temperature are compared with each other to obtain a control signal. A storage means storing an output mode for controlling opening and closing of a control valve; a selection means for selecting one of the output modes of the storage means according to an output signal generated from the comparison means; A valve control device is provided which is composed of output means for opening and closing the control valve according to the output mode of the storage means. When the control valve operates under a temperature condition in which the first outdoor heat exchanger causes frost formation, the refrigerant is transferred to the second expansion device by the second expansion device and the valve control device which are provided in parallel with the control valve. Flowing, a differential pressure is generated between the refrigerant before and after the second expansion device, the pressure of the first outdoor heat exchanger is higher than the pressure of the second outdoor heat exchanger, and the temperature of the refrigerant flowing through the first outdoor heat exchanger is high. Therefore, frost formation at the inlet of the first heat exchanger can be prevented, and efficient heating operation can be performed.

【0010】[0010]

【発明の実施の形態】上記の課題を解決するための請求
項1、請求項5、請求項6記載の発明は、制御弁、弁制
御装置と制御弁並列に第2絞り装置を設けたものであ
る。このことにより、第1室外熱交換器が着霜を起こす
ような温度条件下において、制御弁が動作すると、冷媒
は第2絞り装置に流れ、第2絞り装置の前後で冷媒に差
圧が生じ、第1室外熱交換器の圧力は第2室外熱交換器
の圧力より高くなり第1室外熱交換器を流れる冷媒の温
度は高くなるため、第1熱交換器入口の着霜を防ぐこと
ができ、効率の良い暖房運転を可能にできる。
BEST MODE FOR CARRYING OUT THE INVENTION In order to solve the above-mentioned problems, the inventions of claims 1, 5 and 6 are provided with a control valve, a valve control device and a second throttle device in parallel with the control valve. Is. As a result, when the control valve operates under a temperature condition in which the first outdoor heat exchanger causes frost formation, the refrigerant flows into the second expansion device, and a differential pressure is generated between the refrigerant before and after the second expansion device. Since the pressure of the first outdoor heat exchanger is higher than the pressure of the second outdoor heat exchanger and the temperature of the refrigerant flowing through the first outdoor heat exchanger is high, frost formation at the inlet of the first heat exchanger can be prevented. This enables efficient and efficient heating operation.

【0011】また、請求項2、請求項3、請求項4記載
の発明は、第1室外熱交換器、第2室外熱交換器の間に
減圧機構を有し形状記憶合金バネを内蔵した制御弁を設
けることで、室外熱交換器が着霜を起こすような条件下
において形状記憶合金バネが変態しバイアスバネにより
押されてたわみ、弁体を弁座に押しつけ冷媒の流路を狭
めると、冷媒は制御弁の前後で差圧が生じ、第1室外熱
交換器の圧力は第2室外熱交換器の圧力より高くなり第
1室外熱交換器を流れる冷媒の温度は高くなるため、第
1熱交換器入口の着霜を防ぐことができ、別の絞り装
置、弁制御装置が不要で、より簡単な構成で効率の良い
暖房運転を可能にできる。
Further, the invention according to claims 2, 3, and 4 is a control in which a pressure reducing mechanism is provided between the first outdoor heat exchanger and the second outdoor heat exchanger and a shape memory alloy spring is built in. By providing the valve, the shape memory alloy spring transforms under the condition that the outdoor heat exchanger causes frosting and is bent by being biased by the bias spring, pressing the valve body against the valve seat to narrow the flow path of the refrigerant, A differential pressure is generated between the refrigerant before and after the control valve, the pressure of the first outdoor heat exchanger becomes higher than the pressure of the second outdoor heat exchanger, and the temperature of the refrigerant flowing through the first outdoor heat exchanger becomes high. It is possible to prevent frost formation at the inlet of the heat exchanger, eliminate the need for a separate expansion device and valve control device, and enable efficient heating operation with a simpler configuration.

【0012】[0012]

【実施例】以下、本発明の実施例について、図面を参照
して説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0013】(実施例1)図1は、本発明の冷凍装置の
第1の実施例における冷凍サイクル図である。
(Embodiment 1) FIG. 1 is a refrigeration cycle diagram in a first embodiment of the refrigerating apparatus of the present invention.

【0014】図1において、1は圧縮機、2は四方弁、
3は室内熱交換器、4は絞り装置、5は第1室外熱交換
器、6は制御弁、7は第2室外熱交換器で、順次環状に
接続されて主回路を構成し、制御弁6と並列に第2絞り
装置8を設け冷凍サイクルを構成し、第2室外熱交換器
7の大きさは第1室外熱交換器5より大きい。22は制
御弁6の開閉を制御する弁制御装置、24は第1室外熱
交換器5の冷媒温度を検出して温度検出信号を出力する
冷媒温度検出器である。
In FIG. 1, 1 is a compressor, 2 is a four-way valve,
3 is an indoor heat exchanger, 4 is a throttle device, 5 is a first outdoor heat exchanger, 6 is a control valve, and 7 is a second outdoor heat exchanger, which are sequentially connected in an annular fashion to form a main circuit, and a control valve A second expansion device 8 is provided in parallel with 6 to form a refrigeration cycle, and the size of the second outdoor heat exchanger 7 is larger than that of the first outdoor heat exchanger 5. Reference numeral 22 is a valve control device that controls the opening and closing of the control valve 6, and 24 is a refrigerant temperature detector that detects the refrigerant temperature of the first outdoor heat exchanger 5 and outputs a temperature detection signal.

【0015】図2は図1に示す冷凍装置の電気接続を示
す電気回路図である。図中、24は第1室外熱交換器5
の冷媒温度を検知するための冷媒温度検出器、25はA
/D変換装置、26はマイクロコンピュータ(以下LS
Iと称す)であり、入力回路27、CPU28、メモリ
29、出力回路30を有している。入力回路27には、
第1室外熱交換器5の冷媒温度検出器24の出力が、A
/D変換装置25を介して入力される。31は電磁コイ
ルで、出力回路30の出力により制御弁6の開閉を動作
させる。
FIG. 2 is an electric circuit diagram showing the electric connection of the refrigerating apparatus shown in FIG. In the figure, 24 is the first outdoor heat exchanger 5
Refrigerant temperature detector for detecting the refrigerant temperature of
A / D converter, 26 is a microcomputer (hereinafter referred to as LS
I)), and has an input circuit 27, a CPU 28, a memory 29, and an output circuit 30. In the input circuit 27,
The output of the refrigerant temperature detector 24 of the first outdoor heat exchanger 5 is A
It is input via the / D converter 25. Reference numeral 31 is an electromagnetic coil, which operates the opening and closing of the control valve 6 by the output of the output circuit 30.

【0016】ここで図3に示すブロック図と図2に示す
電気回路図について説明すると、図2の第1室外熱交換
器5の冷媒温度検出器24は、図3の第1室外熱交換器
5の冷媒温度を検出して出力する冷媒温度検出手段、図
2のLSI26は、図3の冷媒温度検出手段により検出
された値と設定値とを比較し制御信号を出力する比較手
段と、制御弁6の開閉を制御する出力モードを記憶した
記憶手段と、比較手段から発生する出力信号により、前
記記憶手段の出力モードの一つを選択する選択手段に相
当する。そして、図2の制御弁6を開閉させる電磁コイ
ル31は、図3の出力手段に相当する。
The block diagram shown in FIG. 3 and the electric circuit diagram shown in FIG. 2 will now be described. The refrigerant temperature detector 24 of the first outdoor heat exchanger 5 of FIG. 2 corresponds to the first outdoor heat exchanger of FIG. The refrigerant temperature detecting means 5 for detecting and outputting the refrigerant temperature, the LSI 26 in FIG. 2 compares the value detected by the refrigerant temperature detecting means in FIG. 3 with a set value, and outputs a control signal; It corresponds to a storage unit that stores an output mode for controlling the opening and closing of the valve 6, and a selection unit that selects one of the output modes of the storage unit according to the output signal generated from the comparison unit. The electromagnetic coil 31 that opens and closes the control valve 6 in FIG. 2 corresponds to the output unit in FIG.

【0017】上記構成において、冷凍装置運転時の制御
回路の構成と動作を図4を参考に説明する。図4はLS
I26のメモリ29に記憶された冷凍装置のプログラム
を示すフローチャートである。
The structure and operation of the control circuit having the above-described structure when the refrigeration system is in operation will be described with reference to FIG. Figure 4 is LS
It is a flowchart which shows the program of the refrigeration apparatus memorize | stored in the memory 29 of I26.

【0018】運転の指示が出ると、冷凍装置の運転が始
まり、同時に図4に示すステップ40が実行され第1室
外熱交換器5の冷媒温度Teが検出され、ステップ41
で第1室外熱交換器5の冷媒温度Teと設定温度T2(例
えば−2℃)との比較演算を行い、Te≧T2であれば
「NO」の判定によりステップ42に進みメモリ29内
蔵の選択手段により記憶回路の第1の出力モードが選択
され、電磁コイル31への通電されず、制御弁6が開い
たままの状態でステップ40に戻る。つまり、第1室外
熱交換器5入口に着霜が成長しないような条件では、制
御弁6は開いたままとなる。
When the operation instruction is given, the operation of the refrigerating apparatus is started, and at the same time, step 40 shown in FIG. 4 is executed to detect the refrigerant temperature T e of the first outdoor heat exchanger 5, and step 41
Memory in performs a comparison operation between the refrigerant temperature T e and the set temperature T 2 of the first outdoor heat exchanger 5 (e.g. -2 ° C.), the flow proceeds to step 42 by determining "NO" if T e ≧ T 2 The first output mode of the memory circuit is selected by the built-in selection means 29, the electromagnetic coil 31 is not energized, and the control valve 6 is left open to return to step 40. That is, the control valve 6 remains open under the condition that frost does not grow at the inlet of the first outdoor heat exchanger 5.

【0019】次に室外気温が低くなると、蒸発器として
作用する第1室外熱交換器5、第2室外熱交換器7の冷
媒温度は室外気温より低くなり、大気から吸熱する。こ
こで非共沸混合冷媒を用いると、その非等温性のために
冷媒の乾き度が大きくなるに従い冷媒温度は上昇する。
そのため、第1室外熱交換器5の中央から出口までや第
2室外熱交換器7の温度が0℃以上な場合でも、第1室
外熱交換器5の入口は0℃に低下し第1室外熱交換器5
の入口のみに着霜が始まる。そして、Te<T2となり、
第1室外熱交換器5に着霜が成長する温度条件になると
ステップ41で「YES」の判定がなされ、ステップ4
3に進みメモリ29内蔵の選択手段により記憶回路の第
2出力モードが選択され、出力回路30より出力が出て
電磁コイル31へ通電されて制御弁6が閉まる。制御弁
6が閉まると冷媒は第2絞り装置8に流れ第2絞り装置
8前後で圧力差が生じる。この時、第2室外熱交換器7
の大きさは第1室外熱交換器5より大きいため、第2室
外熱交換器7の冷媒圧力は余り変化せず、第1室外熱交
換器5の冷媒圧力が上昇し、第1室外熱交換器5の冷媒
温度も上昇する。そして、ステップ44で第1室外熱交
換器5の冷媒温度T eを検出し、ステップ45で第1室
外熱交換器5の冷媒温度Teと第1設定温度T 1(例えば
1℃)との比較演算を行う。ステップ45でTe<T2
あれば「NO」の判定によりステップ46に進む。ステ
ップ46では第1室外熱交換器5の冷媒温度Teと第3
設定温度T3(例えば−5℃)との比較演算を行い、Te
≧T1であれば「NO」の判定によりステップ43に戻
り、記憶回路の第2出力モードが選択され続け、出力回
路30より信号が出力されて電磁コイル31へ通電され
て制御弁6が閉まったままとなり、第1室外熱交換器5
の霜は解ける。そして、室外気温が上昇する等してTe
≧T1となると、ステップ42に進み、記憶回路の第1
の出力モードが選択され、電磁コイル31への通電され
ず、制御弁6が開き、ステップ40に戻る。従って、第
1室外熱交換器5の霜は解け成長しない。
Next, when the outdoor temperature drops,
Cooling of the first outdoor heat exchanger 5 and the second outdoor heat exchanger 7 that operate.
The temperature of the medium becomes lower than the outdoor temperature, and heat is absorbed from the atmosphere. This
If a non-azeotropic mixed refrigerant is used here, because of its non-isothermal property,
The refrigerant temperature rises as the dryness of the refrigerant increases.
Therefore, from the center of the first outdoor heat exchanger 5 to the outlet,
Even when the temperature of the two outdoor heat exchangers 7 is 0 ° C or higher, the first chamber
The inlet of the external heat exchanger 5 drops to 0 ° C., and the first outdoor heat exchanger 5
Begins to frost only at the entrance of. And Te<T2Next to
When the temperature condition in which frost grows on the first outdoor heat exchanger 5 is reached
A "YES" determination is made in step 41, and step 4
In step 3, the selection means of the memory 29 makes the memory circuit first.
2 output mode is selected, output from the output circuit 30
The electromagnetic coil 31 is energized and the control valve 6 is closed. Control valve
When 6 is closed, the refrigerant flows to the second expansion device 8 and the second expansion device 8.
A pressure difference occurs around 8. At this time, the second outdoor heat exchanger 7
Is larger than the first outdoor heat exchanger 5, so the second chamber
The refrigerant pressure of the external heat exchanger 7 does not change so much and the first outdoor heat exchanger
The refrigerant pressure of the exchanger 5 rises, and the refrigerant of the first outdoor heat exchanger 5
The temperature also rises. Then, in step 44, the first outdoor heat exchange
Refrigerant temperature T of the converter 5 eIs detected, and the first chamber is detected in step 45.
Refrigerant temperature T of the external heat exchanger 5eAnd the first set temperature T 1(For example
(1 ° C). T in step 45e<T2so
If there is, a “NO” determination is made and the operation proceeds to step 46. Ste
At step 46, the refrigerant temperature T of the first outdoor heat exchanger 5eAnd the third
Set temperature T3(For example, -5 ° C)e
≧ T1If so, return to step 43 with a “NO” determination.
The second output mode of the memory circuit continues to be selected and the output
A signal is output from the path 30 and the electromagnetic coil 31 is energized.
The control valve 6 remains closed and the first outdoor heat exchanger 5
The frost on it can be thawed. Then, as the outdoor temperature rises, Te
≧ T1If so, the routine proceeds to step 42, where the first memory circuit
Output mode is selected and the electromagnetic coil 31 is energized.
Instead, the control valve 6 is opened, and the process returns to step 40. Therefore, the
1 Frost in the outdoor heat exchanger 5 does not melt and grow.

【0020】さらに、外気温が下がり第1および第2室
外熱交換器5、7全体に着霜が成長する状態になると、
ステップ46で第1室外熱交換器5の冷媒温度Teと第
3設定温度T3との比較演算を行い、Te≧T3となると
記憶回路の第1の出力モードが選択され、電磁コイル3
1への通電されず、制御弁6が開く。冷媒は第2絞り装
置8を流れず減圧されないため、制御弁6前後で冷媒温
度の差は生じない。このように制御弁6前後で圧力差は
付かないため、第1、第2室外熱交換器5、7を有効に
利用し効率の良い暖房運転を可能にできる。
Further, when the outside air temperature decreases and frost is grown on the entire first and second outdoor heat exchangers 5, 7,
In step 46, a comparison calculation is performed between the refrigerant temperature T e of the first outdoor heat exchanger 5 and the third set temperature T 3, and when T e ≧ T 3 , the first output mode of the memory circuit is selected and the electromagnetic coil Three
1 is not energized and the control valve 6 opens. Since the refrigerant does not flow through the second expansion device 8 and is not depressurized, there is no difference in refrigerant temperature before and after the control valve 6. In this way, since there is no pressure difference before and after the control valve 6, it is possible to effectively use the first and second outdoor heat exchangers 5 and 7 and enable efficient heating operation.

【0021】この様に、室外熱交換器の着霜を防ぎ、効
率の良い暖房運転が可能となる。
In this way, it is possible to prevent frost formation on the outdoor heat exchanger and to perform efficient heating operation.

【0022】なお、上記説明は制御弁6とそれと並列に
設けた第2絞り装置8を用いて説明したが、制御弁6に
絞り機構を設け、制御弁6が動作した場合に、制御弁6
内の冷媒流路が狭められ、制御弁6前後で圧力差が生じ
るようにすれば、より簡単な構成で室外熱交換器の着霜
を防ぎ、効率の良い暖房運転が可能となる。
In the above description, the control valve 6 and the second throttle device 8 provided in parallel with the control valve 6 are used. However, when the control valve 6 is provided with a throttle mechanism and the control valve 6 operates, the control valve 6 is operated.
If the refrigerant flow path inside is narrowed and a pressure difference is generated before and after the control valve 6, frost formation on the outdoor heat exchanger can be prevented and efficient heating operation can be performed with a simpler configuration.

【0023】(実施例2)図5において、1は圧縮機、
2は四方弁、3は室内熱交換器、4は絞り装置、5は第
1室外熱交換器、9は制御弁、7は第2室外熱交換器
で、順次環状に接続されて主回路を構成し、制御弁9と
並列に第2絞り装置8を設け冷凍サイクルを構成してい
る。なお、第2室外熱交換器7の大きさは第1室外熱交
換器5より大きい。ここで、第1の実施例と異なるのは
第1熱交換器の温度を検出して温度検出信号を出力する
冷媒温度検出器24と弁制御装置22がないことと、制
御弁9の構造である。
(Embodiment 2) In FIG. 5, 1 is a compressor,
2 is a four-way valve, 3 is an indoor heat exchanger, 4 is a throttle device, 5 is a first outdoor heat exchanger, 9 is a control valve, and 7 is a second outdoor heat exchanger, which are sequentially connected in an annular shape to form a main circuit. The refrigeration cycle is configured by providing the second expansion device 8 in parallel with the control valve 9. The size of the second outdoor heat exchanger 7 is larger than that of the first outdoor heat exchanger 5. Here, what is different from the first embodiment is that there is no refrigerant temperature detector 24 and valve control device 22 that detect the temperature of the first heat exchanger and output a temperature detection signal, and the structure of the control valve 9. is there.

【0024】図6は、制御弁9の断面図である。FIG. 6 is a sectional view of the control valve 9.

【0025】図6において、10は弁体、11は弁座、
12はバイアスバネ、13は第1形状記憶合金バネ、1
4は第1流路である。
In FIG. 6, 10 is a valve element, 11 is a valve seat,
12 is a bias spring, 13 is a first shape memory alloy spring, 1
Reference numeral 4 is a first flow path.

【0026】図7は第1形状記憶合金バネ13の温度−
ひずみ曲線(ヒステリシス曲線)である。加熱時と冷却
時の動作温度には温度差、すなわち温度ヒステリシスが
あり、第1形状記憶合金バネ13は加熱時の変態温度T
1(例えば0℃)に、冷却時の変態温度T2(例えば−
2℃)に調節している。
FIG. 7 shows the temperature of the first shape memory alloy spring 13.
It is a strain curve (hysteresis curve). There is a temperature difference between the operating temperatures during heating and cooling, that is, temperature hysteresis, and the first shape memory alloy spring 13 has a transformation temperature T during heating.
1 (eg 0 ° C.), the transformation temperature T2 (eg −
2 ℃).

【0027】上記構成において、制御弁9の動作を説明
する。
The operation of the control valve 9 in the above structure will be described.

【0028】第1形状記憶合金バネ13は設定した変態
温度T1以上になると伸長し、バイアスバネ12のバネ
力に抗して弁体10を押動し第1流路14は開状態とな
り、冷媒は第2絞り装置8を流れず第1流路14を流れ
る。一方、第1形状記憶合金バネ13は設定変態温度T
2より低くなると、バイアスバネ12に押動され弁体1
0は弁座11に当たり、第1流路14は閉状態となる。
そのため、冷媒は第2絞り装置8しか流れることができ
ず減圧され、冷媒の温度は低下する。
The first shape memory alloy spring 13 expands when the temperature exceeds the set transformation temperature T1 and pushes the valve body 10 against the spring force of the bias spring 12 to open the first flow path 14 and the refrigerant. Flows through the first flow path 14 without flowing through the second expansion device 8. On the other hand, the first shape memory alloy spring 13 has the set transformation temperature T
When it becomes lower than 2, the valve body 1 is pushed by the bias spring 12.
0 corresponds to the valve seat 11, and the first flow path 14 is closed.
Therefore, the refrigerant can flow only through the second expansion device 8, is decompressed, and the temperature of the refrigerant is lowered.

【0029】次に冷凍装置運転時の制御弁9の動作を説
明する。
Next, the operation of the control valve 9 during operation of the refrigeration system will be described.

【0030】暖房運転時、室外気温が高く、制御弁9を
流れる冷媒の温度が設定変態温度T2より高い時は、第
1形状記憶合金バネ13はバイアスバネ12のバネ力に
抗して弁体10を押動しバイアスバネ12を圧縮するた
め、第1流路14は開状態となる。冷媒は第2絞り装置
8に流れないため減圧されず、制御弁9前後で冷媒温度
の差は生じない。
During the heating operation, when the outdoor air temperature is high and the temperature of the refrigerant flowing through the control valve 9 is higher than the set transformation temperature T2, the first shape memory alloy spring 13 resists the spring force of the bias spring 12 and the valve body. The first flow path 14 is opened because the bias spring 12 is compressed by pushing 10. Since the refrigerant does not flow to the second expansion device 8, it is not decompressed, and there is no difference in refrigerant temperature before and after the control valve 9.

【0031】しかし室外気温が低くなると、蒸発器とし
て作用する第1室外熱交換器5、第2室外熱交換器7の
温度は室外気温より低くなり、大気から吸熱するが、非
共沸混合冷媒を用いると、その非等温性のために冷媒の
乾き度が大きくなるに従い冷媒温度は上昇する。そのた
め、第1室外熱交換器5の中央から出口までや第2室外
熱交換器7の温度が0℃以上な場合でも、第1室外熱交
換器5の入口は0℃以下に低下し第1室外熱交換器5の
入口のみに着霜が始まる。そして、制御弁9を流れる冷
媒の温度が第1形状記憶合金バネ13の設定変態温度T
2より低くなると、図8のように第1形状記憶合金バネ
13はバイアスバネ12に押動され弁体10を弁座11
に押し当て、第1流路14は閉状態となる。冷媒は第2
絞り装置8しか流れることができず第2絞り装置8前後
で圧力差が生じる。この時、第2室外熱交換器7の大き
さは第1室外熱交換器5より大きいため、第2室外熱交
換器7の冷媒圧力は余り変化せず、第1室外熱交換器5
の冷媒圧力が上昇し、第1室外熱交換器5の入口冷媒温
度も上昇する。従って、第1室外熱交換器5の入口の霜
は解け成長しない。
However, when the outdoor air temperature becomes low, the temperatures of the first outdoor heat exchanger 5 and the second outdoor heat exchanger 7 acting as evaporators become lower than the outdoor air temperature, and the heat is absorbed from the atmosphere, but the non-azeotropic mixed refrigerant. With the use of, due to its non-isothermal property, the refrigerant temperature rises as the dryness of the refrigerant increases. Therefore, even when the temperature from the center of the first outdoor heat exchanger 5 to the outlet or the temperature of the second outdoor heat exchanger 7 is 0 ° C or higher, the inlet of the first outdoor heat exchanger 5 is lowered to 0 ° C or lower and Frost starts only at the entrance of the outdoor heat exchanger 5. The temperature of the refrigerant flowing through the control valve 9 is the set transformation temperature T of the first shape memory alloy spring 13.
When it becomes lower than 2, the first shape memory alloy spring 13 is pushed by the bias spring 12 to move the valve body 10 to the valve seat 11 as shown in FIG.
Then, the first flow path 14 is closed. Refrigerant is second
Only the expansion device 8 can flow, and a pressure difference occurs before and after the second expansion device 8. At this time, since the size of the second outdoor heat exchanger 7 is larger than that of the first outdoor heat exchanger 5, the refrigerant pressure of the second outdoor heat exchanger 7 does not change so much and the first outdoor heat exchanger 5
Refrigerant pressure rises, and the inlet refrigerant temperature of the first outdoor heat exchanger 5 also rises. Therefore, the frost at the inlet of the first outdoor heat exchanger 5 does not thaw and grow.

【0032】また、制御弁9が動作している状態で、室
外気温が上昇する等して第1室外熱交換器5に着霜が起
こらないような状態で、制御弁9の冷媒温度が第1形状
記憶合金バネ13の設定変態温度T1より高くなると、
図6のように第1形状記憶合金バネ13は変態し伸びバ
イアスバネ12を圧縮し弁体10を弁座11から離し
て、第1流路14は開状態となる。冷媒は第2絞り装置
8を流れず減圧されないため、制御弁9前後で冷媒温度
の差は生じない。
In addition, when the control valve 9 is operating, the refrigerant temperature of the control valve 9 becomes the second temperature in a state in which frost does not occur in the first outdoor heat exchanger 5 due to an increase in outdoor temperature. 1 When it becomes higher than the set transformation temperature T1 of the shape memory alloy spring 13,
As shown in FIG. 6, the first shape memory alloy spring 13 is transformed, the extension bias spring 12 is compressed, the valve body 10 is separated from the valve seat 11, and the first flow path 14 is opened. Since the refrigerant does not flow through the second expansion device 8 and is not depressurized, there is no difference in refrigerant temperature before and after the control valve 9.

【0033】このように、室外熱交換器の着霜を防ぎ、
効率の良い暖房運転が可能となる。
As described above, frost formation on the outdoor heat exchanger is prevented,
Efficient heating operation becomes possible.

【0034】(実施例3)図9において、1は圧縮機、
2は四方弁、3は室内熱交換器、4は絞り装置、5は第
1室外熱交換器、18は制御弁、7は第2室外熱交換器
で、順次環状に接続されて主回路を構成し、制御弁18
と並列に第2絞り装置8を設け冷凍サイクルを構成して
いる。なお、第2室外熱交換器7の大きさは第1室外熱
交換器5より大きい。ここで、第2の実施例と異なるの
は制御弁18の構造である。
(Embodiment 3) In FIG. 9, 1 is a compressor,
2 is a four-way valve, 3 is an indoor heat exchanger, 4 is a throttle device, 5 is a first outdoor heat exchanger, 18 is a control valve, and 7 is a second outdoor heat exchanger, which are sequentially connected in an annular shape to form a main circuit. Configure and control valve 18
A second expansion device 8 is provided in parallel with the above to form a refrigeration cycle. The size of the second outdoor heat exchanger 7 is larger than that of the first outdoor heat exchanger 5. Here, what is different from the second embodiment is the structure of the control valve 18.

【0035】図10は、制御弁18の断面図である。FIG. 10 is a sectional view of the control valve 18.

【0036】図9において、10は弁体、11は摺動可
能な弁座、12は第1バイアスバネ、13は第1形状記
憶合金バネ、14は第1流路、15は第2バイアスバ
ネ、16は第2形状記憶合金バネ、17は弁体10の移
動を止めるストッパである。
In FIG. 9, 10 is a valve element, 11 is a slidable valve seat, 12 is a first bias spring, 13 is a first shape memory alloy spring, 14 is a first flow path, and 15 is a second bias spring. , 16 are second shape memory alloy springs, and 17 is a stopper for stopping the movement of the valve body 10.

【0037】図11は第1形状記憶合金バネで13と第
2形状記憶合金バネ16の温度−ひずみ曲線(ヒステリ
シス曲線)である。加熱時と冷却時の動作温度には温度
差、すなわち温度ヒステリシスがあり、第1形状記憶合
金バネ13は加熱時の変態温度T1(例えば0℃)に、
冷却時の変態温度T2(例えば−2℃)に調節し、第2
形状記憶合金バネ16は加熱時の変態温度T3(例えば
−3℃)に、冷却時の変態温度T4(例えば−5℃)に
調節している。
FIG. 11 is a temperature-strain curve (hysteresis curve) of the first shape memory alloy spring 13 and the second shape memory alloy spring 16. There is a temperature difference between the operating temperature at the time of heating and the operating temperature at the time of cooling, that is, temperature hysteresis, and the first shape memory alloy spring 13 has a transformation temperature T1 (for example, 0 ° C.) during heating
Adjust to the transformation temperature T2 (eg -2 ° C) during cooling,
The shape memory alloy spring 16 is adjusted to a transformation temperature T3 (for example, −3 ° C.) during heating and a transformation temperature T4 (for example, −5 ° C.) during cooling.

【0038】上記構成において、制御弁18の動作を説
明する。
The operation of the control valve 18 in the above structure will be described.

【0039】第1形状記憶合金バネ13は設定した変態
温度T1以上になると伸長し、第1バイアスバネ12の
バネ力に抗して弁体10を押動し第1流路14は開状態
となる。一方、第1形状記憶合金バネ13は設定変態温
度T2より低くなると、第1バイアスバネ12に押動さ
れた弁体10は弁座11に当たり、第1流路14は閉状
態となる。そのため、冷媒は第2絞り装置8しか流れる
ことができず、第2絞り装置8前後で減圧され、冷媒の
温度は低下する。また、第2形状記憶合金バネ16は設
定変態温度T4より低くなると、第2バイアスバネ15
のバネ力に抗することができず収縮する。弁座11は第
2バイアスバネ15により押動されるが、弁体10はス
トッパ17により止められてしまうため、弁座11の移
動距離を弁体10の移動距離よりも長くなるように第1
バイアスバネ12、第1形状記憶合金バネ13、第2バ
イアスバネ15、第2形状記憶合金バネ16の力を調整
すれば、第1流路14は開状態となる。
The first shape memory alloy spring 13 expands when the temperature exceeds the set transformation temperature T1, pushes the valve body 10 against the spring force of the first bias spring 12, and opens the first flow path 14. Become. On the other hand, when the first shape memory alloy spring 13 becomes lower than the set transformation temperature T2, the valve body 10 pushed by the first bias spring 12 hits the valve seat 11, and the first flow passage 14 is closed. Therefore, the refrigerant can only flow through the second expansion device 8, the pressure is reduced before and after the second expansion device 8, and the temperature of the refrigerant decreases. Further, when the second shape memory alloy spring 16 becomes lower than the set transformation temperature T4, the second bias spring 15 is released.
It cannot withstand the spring force of and contracts. The valve seat 11 is pushed by the second bias spring 15, but the valve body 10 is stopped by the stopper 17, so that the moving distance of the valve seat 11 becomes longer than the moving distance of the valve body 10.
If the forces of the bias spring 12, the first shape memory alloy spring 13, the second bias spring 15, and the second shape memory alloy spring 16 are adjusted, the first flow path 14 is opened.

【0040】次に冷凍装置運転時の制御弁18の動作を
説明する。
Next, the operation of the control valve 18 during operation of the refrigeration system will be described.

【0041】暖房運転時、室外気温が高く、制御弁18
を流れる冷媒の温度が設定変態温度T2より高い時は、
図10のように第1形状記憶合金バネ13は第1バイア
スバネ12のバネ力に抗して弁体10を押動し第1バイ
アスバネ12を圧縮し、第2形状記憶合金バネ16は第
2バイアスバネ15のバネ力に抗して弁座11を押動し
第2バイアスバネ15を圧縮するため、第1流路14は
開状態となる。冷媒は第2絞り装置8を流れないため減
圧されず、制御弁18前後で冷媒温度の差は生じない。
During the heating operation, the outdoor temperature is high and the control valve 18
When the temperature of the refrigerant flowing through is higher than the set transformation temperature T2,
As shown in FIG. 10, the first shape memory alloy spring 13 pushes the valve body 10 against the spring force of the first bias spring 12 to compress the first bias spring 12, and the second shape memory alloy spring 16 is Since the valve seat 11 is pushed against the spring force of the second bias spring 15 and the second bias spring 15 is compressed, the first flow path 14 is opened. Since the refrigerant does not flow through the second expansion device 8, the refrigerant is not decompressed, and there is no difference in refrigerant temperature before and after the control valve 18.

【0042】しかし室外気温が低くなると、蒸発器とし
て作用する第1室外熱交換器5、第2室外熱交換器7の
温度は室外気温より低くなり、大気から吸熱するが、非
共沸混合冷媒を用いると、その非等温性のために冷媒の
乾き度が大きくなるに従い冷媒温度は上昇する。そのた
め、第1室外熱交換器5の中央から出口までや第2室外
熱交換器7の温度が0℃以上な場合でも、第1室外熱交
換器5の入口は0℃以下に低下し第1室外熱交換器5の
入口のみに着霜が始まる。そして、制御弁18を流れる
冷媒の温度が第1形状記憶合金バネ13の設定変態温度
T2より低く第2形状記憶合金バネ16の設定変態温度
T4より高いと、図12のように第1形状記憶合金バネ
13は第1バイアスバネ12に押動され弁体10を弁座
11に押し当て、第2形状記憶合金バネ16は第2バイ
アスバネ15のバネ力に抗して弁座11を押し第2バイ
アスバネ15を圧縮するため、第1流路14は閉状態と
なる。その結果、冷媒は第2絞り装置8しか流れること
ができず第2絞り装置8前後で圧力差が生じる。この
時、第2室外熱交換器7の大きさは第1室外熱交換器5
より大きいため、第2室外熱交換器7の冷媒圧力は余り
変化せず、第1室外熱交換器5の冷媒圧力が上昇し、第
1室外熱交換器5の入口冷媒温度も上昇する。従って、
第1室外熱交換器5の入口の霜は解け成長しない。
However, when the outdoor air temperature becomes low, the temperatures of the first outdoor heat exchanger 5 and the second outdoor heat exchanger 7 acting as evaporators become lower than the outdoor air temperature, and the heat is absorbed from the atmosphere, but the non-azeotropic mixed refrigerant. With the use of, due to its non-isothermal property, the refrigerant temperature rises as the dryness of the refrigerant increases. Therefore, even when the temperature from the center of the first outdoor heat exchanger 5 to the outlet or the temperature of the second outdoor heat exchanger 7 is 0 ° C or higher, the inlet of the first outdoor heat exchanger 5 is lowered to 0 ° C or lower and Frost starts only at the entrance of the outdoor heat exchanger 5. When the temperature of the refrigerant flowing through the control valve 18 is lower than the set transformation temperature T2 of the first shape memory alloy spring 13 and higher than the set transformation temperature T4 of the second shape memory alloy spring 16, the first shape memory is set as shown in FIG. The alloy spring 13 is pushed by the first bias spring 12 to push the valve body 10 against the valve seat 11, and the second shape memory alloy spring 16 pushes the valve seat 11 against the spring force of the second bias spring 15. Since the 2 bias spring 15 is compressed, the first flow path 14 is closed. As a result, the refrigerant can only flow through the second expansion device 8 and a pressure difference occurs before and after the second expansion device 8. At this time, the size of the second outdoor heat exchanger 7 is equal to that of the first outdoor heat exchanger 5.
Since it is larger, the refrigerant pressure in the second outdoor heat exchanger 7 does not change much, the refrigerant pressure in the first outdoor heat exchanger 5 rises, and the inlet refrigerant temperature of the first outdoor heat exchanger 5 also rises. Therefore,
Frost at the inlet of the first outdoor heat exchanger 5 does not thaw and grow.

【0043】さらに、制御弁18の冷媒の温度が第2形
状記憶合金バネ16の設定変態温度T4より低くなる
と、第1および第2室外熱交換器5、7全体に着霜が成
長する状態であるため、図13のように第2形状記憶合
金バネ16は第2バイアスバネ15のバネ力に抗すこと
ができず収縮し、弁座11は第2バイアスバネ15に押
動されるが、弁体10はストッパ17により止められて
しまうため、第1流路14は開状態となる。冷媒は第2
絞り装置8を流れず減圧されないため、制御弁18前後
で冷媒温度の差は生じない。このように制御弁18前後
で圧力差は付かないため、第1、第2室外熱交換器5、
7を有効に利用し効率の良い暖房運転を可能にできる。
Further, when the temperature of the refrigerant in the control valve 18 becomes lower than the set transformation temperature T4 of the second shape memory alloy spring 16, in a state where frost grows on the entire first and second outdoor heat exchangers 5, 7. Therefore, as shown in FIG. 13, the second shape memory alloy spring 16 cannot withstand the spring force of the second bias spring 15 and contracts, and the valve seat 11 is pushed by the second bias spring 15. Since the valve body 10 is stopped by the stopper 17, the first flow path 14 is opened. Refrigerant is second
Because the pressure does not flow through the expansion device 8 and the pressure is not reduced, there is no difference in refrigerant temperature before and after the control valve 18. Since there is no pressure difference before and after the control valve 18, the first and second outdoor heat exchangers 5,
It is possible to effectively use 7 to enable efficient heating operation.

【0044】また、制御弁18の温度が低く、図13の
ように第1、第2バイアスバネ12、15に押動され、
第1、第2形状記憶合金バネ13、16が変態し収縮
し、制御弁18が開いている状態から、室外気温が上昇
する等で制御弁18を流れている冷媒の温度が上昇し、
第2形状記憶合金バネ16の設定変態温度T3より高く
なり、第1および第2室外熱交換器5、7全体に着霜せ
ず、第1室外熱交換器5の入口のみに着霜するような状
態になると、図12のように第2形状記憶合金バネ16
は変態し伸び第2バイアスバネ15を圧縮し弁座11を
弁体10に押し当てるため、第1流路14は閉状態とな
る。その結果、冷媒は第2絞り装置8しか流れることが
できず第2絞り装置8前後で圧力差が生じ、第1室外熱
交換器5の冷媒圧力が上昇し、第1室外熱交換器5の入
口冷媒温度も上昇する。従って、第1室外熱交換器5の
入口の霜は解け成長しない。
Further, the temperature of the control valve 18 is low and is pushed by the first and second bias springs 12 and 15 as shown in FIG.
From the state in which the first and second shape memory alloy springs 13 and 16 are transformed and contracted and the control valve 18 is open, the temperature of the refrigerant flowing through the control valve 18 rises due to an increase in the outdoor temperature,
The temperature becomes higher than the set transformation temperature T3 of the second shape memory alloy spring 16, so that the first and second outdoor heat exchangers 5 and 7 are not frosted entirely, but only the inlet of the first outdoor heat exchanger 5 is frosted. In this state, as shown in FIG. 12, the second shape memory alloy spring 16
Transforms and expands, compresses the second bias spring 15 and presses the valve seat 11 against the valve body 10, so that the first flow path 14 is closed. As a result, the refrigerant can only flow through the second expansion device 8, and a pressure difference is generated before and after the second expansion device 8, the refrigerant pressure in the first outdoor heat exchanger 5 increases, and the refrigerant in the first outdoor heat exchanger 5 The inlet refrigerant temperature also rises. Therefore, the frost at the inlet of the first outdoor heat exchanger 5 does not thaw and grow.

【0045】さらに、室外気温が上昇し、第1室外熱交
換器5に着霜が起こらないような状態で、制御弁18を
流れる冷媒の温度が第1形状記憶合金バネ13の設定変
態温度T1より高くなると、図10のように第1形状記
憶合金バネ13は変態し伸び第1バイアスバネ12を圧
縮し弁体10を弁座11から離して、第1流路14は開
状態となる。冷媒は第2絞り装置8を流れず減圧されな
いため、制御弁18前後で冷媒温度の差は生じない。
Further, the temperature of the refrigerant flowing through the control valve 18 is set to the set transformation temperature T1 of the first shape memory alloy spring 13 in a state where the outdoor air temperature rises and frost does not occur on the first outdoor heat exchanger 5. When the temperature becomes higher, as shown in FIG. 10, the first shape memory alloy spring 13 transforms, expands, compresses the first bias spring 12, separates the valve body 10 from the valve seat 11, and the first flow path 14 is opened. Since the refrigerant does not flow through the second expansion device 8 and is not decompressed, there is no difference in refrigerant temperature before and after the control valve 18.

【0046】このように、室外熱交換器の部分的な着霜
を防ぎ、また、室外熱交換器全体に着霜するような状態
では制御弁を開き効率の良い暖房運転が可能となる。
As described above, partial frosting of the outdoor heat exchanger is prevented, and in a state where the entire outdoor heat exchanger is frosted, the control valve is opened to enable efficient heating operation.

【0047】(実施例4)図14は、本発明の冷凍装置
の第4の実施例における冷凍サイクル図である。
(Embodiment 4) FIG. 14 is a refrigerating cycle diagram in the fourth embodiment of the refrigerating apparatus of the present invention.

【0048】図14において、1は圧縮機、2は四方
弁、3は室内熱交換器、4は絞り装置、5は第1室外熱
交換器、19は制御弁、7は第2室外熱交換器で、順次
環状に接続されて冷凍サイクルを構成し、第2室外熱交
換器の大きさは第1室外熱交換器より大きい。ここで、
第2の実施例と異なるのは制御弁19の構造で、減圧機
構を持つことである。
In FIG. 14, 1 is a compressor, 2 is a four-way valve, 3 is an indoor heat exchanger, 4 is a throttle device, 5 is a first outdoor heat exchanger, 19 is a control valve, and 7 is a second outdoor heat exchanger. The second outdoor heat exchanger has a size larger than that of the first outdoor heat exchanger. here,
The difference from the second embodiment is that the structure of the control valve 19 has a pressure reducing mechanism.

【0049】図15は、制御弁19の断面図である。FIG. 15 is a sectional view of the control valve 19.

【0050】図15において、9は弁本体、10は弁
体、11は弁座、12はバイアスバネ、13は第1形状
記憶合金バネ、14は第1流路、20は第2流路であ
る。
In FIG. 15, 9 is a valve body, 10 is a valve body, 11 is a valve seat, 12 is a bias spring, 13 is a first shape memory alloy spring, 14 is a first flow passage, and 20 is a second flow passage. is there.

【0051】第1形状記憶合金バネ13の温度−ひずみ
曲線(ヒステリシス曲線)は、図7の第2の実施例のも
のと同一である。
The temperature-strain curve (hysteresis curve) of the first shape memory alloy spring 13 is the same as that of the second embodiment shown in FIG.

【0052】上記構成において、制御弁19の動作を説
明する。
The operation of the control valve 19 in the above structure will be described.

【0053】第1形状記憶合金バネ13は設定した変態
温度T1以上になると伸長し、バイアスバネ12のバネ
力に抗して弁体10を押動し第1流路14は開状態とな
り、冷媒は第1流路14を流れる。一方、第1形状記憶
合金バネ13は設定変態温度T2より低くなると、バイ
アスバネ12に押動され弁体10は弁座11に当たり、
第1流路14は閉状態となる。そのため、冷媒は第2流
路20しか流れることができず流路が狭められるため、
減圧され、冷媒の温度は低下する。
The first shape memory alloy spring 13 expands when the temperature exceeds the set transformation temperature T1 and pushes the valve body 10 against the spring force of the bias spring 12 to open the first flow path 14 and the refrigerant. Flows through the first flow path 14. On the other hand, when the first shape memory alloy spring 13 becomes lower than the set transformation temperature T2, it is pushed by the bias spring 12 and the valve body 10 hits the valve seat 11,
The first flow path 14 is closed. Therefore, since the refrigerant can flow only in the second flow path 20 and the flow path is narrowed,
The pressure is reduced and the temperature of the refrigerant is lowered.

【0054】次に冷凍装置運転時の制御弁19の動作を
説明する。
Next, the operation of the control valve 19 during operation of the refrigeration system will be described.

【0055】暖房運転時、室外気温が高く、制御弁19
を流れる冷媒の温度が設定変態温度T2より高い時は、
図15のように第1形状記憶合金バネ13はバイアスバ
ネ12のバネ力に抗して弁体10を押動しバイアスバネ
12を圧縮するため、第1流路14は開状態となる。冷
媒は制御弁19により減圧されず、制御弁19前後で冷
媒温度の差は生じない。
During the heating operation, the outdoor temperature is high and the control valve 19
When the temperature of the refrigerant flowing through is higher than the set transformation temperature T2,
As shown in FIG. 15, the first shape memory alloy spring 13 pushes the valve body 10 against the spring force of the bias spring 12 and compresses the bias spring 12, so that the first flow path 14 is opened. The refrigerant is not decompressed by the control valve 19, and there is no difference in refrigerant temperature before and after the control valve 19.

【0056】しかし室外気温が低くなると、蒸発器とし
て作用する第1室外熱交換器5、第2室外熱交換器7の
温度は室外気温より低くなり、大気から吸熱するが、非
共沸混合冷媒を用いると、その非等温性のために冷媒の
乾き度が大きくなるに従い冷媒温度は上昇する。そのた
め、第1室外熱交換器5の中央から出口までや第2室外
熱交換器7の温度が0℃以上な場合でも、第1室外熱交
換器5の入口は0℃以下に低下し第1室外熱交換器5の
入口のみに着霜が始まる。そして、制御弁19を流れる
冷媒の温度が第1形状記憶合金バネ13の設定変態温度
T2より低くなると、図16のように第1形状記憶合金
バネ13はバイアスバネ12に押動され弁体10を弁座
11に押し当て、第1流路14は閉状態となる。冷媒は
第2流路20しか流れることができず流路が狭められる
ため、制御弁19前後で圧力差が生じる。この時、第2
室外熱交換器7の大きさは第1室外熱交換器5より大き
いため、第2室外熱交換器7の冷媒圧力は余り変化せ
ず、第1室外熱交換器5の冷媒圧力が上昇し、第1室外
熱交換器5の入口冷媒温度も上昇する。従って第1室外
熱交換器5の入口の霜は解け成長しない。
However, when the outdoor air temperature becomes low, the temperatures of the first outdoor heat exchanger 5 and the second outdoor heat exchanger 7 acting as evaporators become lower than the outdoor air temperature, and the heat is absorbed from the atmosphere, but the non-azeotropic mixed refrigerant. With the use of, due to its non-isothermal property, the refrigerant temperature rises as the dryness of the refrigerant increases. Therefore, even when the temperature from the center of the first outdoor heat exchanger 5 to the outlet or the temperature of the second outdoor heat exchanger 7 is 0 ° C or higher, the inlet of the first outdoor heat exchanger 5 is lowered to 0 ° C or lower and Frost starts only at the entrance of the outdoor heat exchanger 5. When the temperature of the refrigerant flowing through the control valve 19 becomes lower than the set transformation temperature T2 of the first shape memory alloy spring 13, the first shape memory alloy spring 13 is pushed by the bias spring 12 as shown in FIG. Is pressed against the valve seat 11, and the first flow path 14 is closed. Since the refrigerant can flow only in the second flow passage 20 and the flow passage is narrowed, a pressure difference occurs before and after the control valve 19. At this time, the second
Since the size of the outdoor heat exchanger 7 is larger than that of the first outdoor heat exchanger 5, the refrigerant pressure of the second outdoor heat exchanger 7 does not change much, and the refrigerant pressure of the first outdoor heat exchanger 5 increases. The inlet refrigerant temperature of the first outdoor heat exchanger 5 also rises. Therefore, the frost at the inlet of the first outdoor heat exchanger 5 does not melt and grow.

【0057】また、制御弁19が動作している状態で、
室外気温が上昇する等して第1室外熱交換器5に着霜が
起こらないような状態で、制御弁19の冷媒温度が第1
形状記憶合金バネ13の設定変態温度T1より高くなる
と、図15のように第1形状記憶合金バネ13は変態し
伸びバイアスバネ12を圧縮し弁体10を弁座11から
離して、第1流路14は開状態となる。冷媒は減圧され
ないため、制御弁19前後で冷媒温度の差は生じない。
Further, with the control valve 19 operating,
In a state where the first outdoor heat exchanger 5 is not frosted due to an increase in the outdoor temperature, the refrigerant temperature of the control valve 19 is set to the first temperature.
When the temperature exceeds the set transformation temperature T1 of the shape memory alloy spring 13, the first shape memory alloy spring 13 transforms and compresses the extension bias spring 12 to separate the valve body 10 from the valve seat 11 as shown in FIG. The path 14 is opened. Since the refrigerant is not depressurized, there is no difference in refrigerant temperature before and after the control valve 19.

【0058】このように、減圧機構を持つ制御弁を用い
ることで第2絞り装置は不要となり、室外熱交換器の部
分的な着霜を防ぎ、効率の良い暖房運転が可能となる。
As described above, by using the control valve having the pressure reducing mechanism, the second expansion device becomes unnecessary, partial frosting of the outdoor heat exchanger can be prevented, and efficient heating operation can be performed.

【0059】(実施例5)図17において、1は圧縮
機、2は四方弁、3は室内熱交換器、4は絞り装置、5
は第1室外熱交換器、21は制御弁、7は第2室外熱交
換器で、順次環状に接続されて冷凍サイクルを構成して
いる。なお、第2室外熱交換器7の大きさは第1室外熱
交換器5より大きい。ここで、第4の実施例と異なるの
は制御弁21の構造である。
(Embodiment 5) In FIG. 17, 1 is a compressor, 2 is a four-way valve, 3 is an indoor heat exchanger, 4 is a throttle device, and 5
Is a first outdoor heat exchanger, 21 is a control valve, and 7 is a second outdoor heat exchanger, which are sequentially connected in a ring to form a refrigeration cycle. The size of the second outdoor heat exchanger 7 is larger than that of the first outdoor heat exchanger 5. Here, what is different from the fourth embodiment is the structure of the control valve 21.

【0060】図18は、制御弁21の断面図である。FIG. 18 is a sectional view of the control valve 21.

【0061】図18において、10は弁体、11は摺動
可能な弁座、12は第1バイアスバネ、13は第1形状
記憶合金バネ、14は第1流路、15は第2バイアスバ
ネ、16は第2形状記憶合金バネ、17は弁体10の移
動を止めるストッパ、20は第2流路である。
In FIG. 18, 10 is a valve element, 11 is a slidable valve seat, 12 is a first bias spring, 13 is a first shape memory alloy spring, 14 is a first flow path, and 15 is a second bias spring. , 16 is a second shape memory alloy spring, 17 is a stopper for stopping the movement of the valve body 10, and 20 is a second flow path.

【0062】第1形状記憶合金バネ13と第2形状記憶
合金バネ16の温度−ひずみ曲線(ヒステリシス曲線)
は第3の実施例の図11と同一である。
Temperature-strain curve (hysteresis curve) of the first shape memory alloy spring 13 and the second shape memory alloy spring 16.
Is the same as FIG. 11 of the third embodiment.

【0063】上記構成において、制御弁21の動作を説
明する。
The operation of the control valve 21 in the above structure will be described.

【0064】第1形状記憶合金バネ13は設定した変態
温度T1以上になると伸長し、第1バイアスバネ12の
バネ力に抗して弁体10を押動し第1流路14は開状態
となる。一方、第1形状記憶合金バネ13は設定変態温
度T2より低くなると、第1バイアスバネ12に押動さ
れた弁体10は弁座11に当たり、第1流路14は閉状
態となる。そのため、冷媒は第2流路20しか流れるこ
とができず流路が狭められるため、減圧され、冷媒の温
度は低下する。
The first shape memory alloy spring 13 expands when the temperature exceeds the set transformation temperature T1, pushes the valve body 10 against the spring force of the first bias spring 12, and opens the first flow path 14. Become. On the other hand, when the first shape memory alloy spring 13 becomes lower than the set transformation temperature T2, the valve body 10 pushed by the first bias spring 12 hits the valve seat 11, and the first flow passage 14 is closed. Therefore, the refrigerant can flow only in the second flow path 20 and the flow path is narrowed, so that the pressure is reduced and the temperature of the refrigerant is lowered.

【0065】また、第2形状記憶合金バネ16は設定変
態温度T4より低くなると、第2バイアスバネ15のバ
ネ力に抗すことができず収縮する。弁座11は第2バイ
アスバネ15により押動されるが、弁体10はストッパ
17により止められてしまうため、弁座11の移動距離
を弁体10の移動距離よりも長くなるように第1バイア
スバネ12、第1形状記憶合金バネ13、第2バイアス
バネ15、第2形状記憶合金バネ16の力を調整すれ
ば、第1流路14は開状態となる。
When the temperature of the second shape memory alloy spring 16 becomes lower than the set transformation temperature T4, the spring force of the second bias spring 15 cannot be resisted and the second shape memory alloy spring 16 contracts. The valve seat 11 is pushed by the second bias spring 15, but the valve body 10 is stopped by the stopper 17, so that the moving distance of the valve seat 11 becomes longer than the moving distance of the valve body 10. If the forces of the bias spring 12, the first shape memory alloy spring 13, the second bias spring 15, and the second shape memory alloy spring 16 are adjusted, the first flow path 14 is opened.

【0066】次に冷凍装置運転時の制御弁21の動作を
説明する。
Next, the operation of the control valve 21 during operation of the refrigeration system will be described.

【0067】暖房運転時、室外気温が高く、制御弁21
を流れる冷媒の温度が設定変態温度T2より高い時は、
図18のように第1形状記憶合金バネ13は第1バイア
スバネ12のバネ力に抗して弁体10を押動し第1バイ
アスバネ12を圧縮し、第2形状記憶合金バネ16は第
2バイアスバネ15のバネ力に抗して弁座11を押動し
第2バイアスバネ15を圧縮するため、第1流路14は
開状態となり、冷媒は減圧されず、制御弁21前後で冷
媒温度の差は生じない。
During the heating operation, the outdoor temperature is high and the control valve 21
When the temperature of the refrigerant flowing through is higher than the set transformation temperature T2,
As shown in FIG. 18, the first shape memory alloy spring 13 pushes the valve body 10 against the spring force of the first bias spring 12 to compress the first bias spring 12, and the second shape memory alloy spring 16 moves to the first shape memory alloy spring 16. Since the valve seat 11 is pushed against the spring force of the 2 bias spring 15 to compress the 2nd bias spring 15, the 1st flow path 14 will be in an open state, the refrigerant will not be decompressed, and the refrigerant will flow before and after the control valve 21. There is no difference in temperature.

【0068】しかし室外気温が低くなると、蒸発器とし
て作用する第1室外熱交換器5、第2室外熱交換器7の
温度は室外気温より低くなり、大気から吸熱するが、非
共沸混合冷媒を用いると、その非等温性のために冷媒の
乾き度が大きくなるに従い冷媒温度は上昇する。そのた
め、第1室外熱交換器5の中央から出口までや第2室外
熱交換器7の温度が0℃以上な場合でも、第1室外熱交
換器5の入口は0℃以下に低下し第1室外熱交換器5の
入口のみに着霜が始まる。そして、制御弁21を流れる
冷媒の温度が第1形状記憶合金バネ13の設定変態温度
T2より低く第2形状記憶合金バネ16の設定変態温度
T4より高いと、図19のように第1形状記憶合金バネ
13は第1バイアスバネ12に押動され弁体10を弁座
11に押し当て、第2形状記憶合金バネ16は第2バイ
アスバネ15のバネ力に抗して弁座11を押し第2バイ
アスバネ15を圧縮するため、第1流路14は閉状態と
なる。その結果、冷媒は第2流路20しか流れることが
できず流路が狭められるため、制御弁21前後で圧力差
が生じる。この時、第2室外熱交換器7の大きさは第1
室外熱交換器5より大きいため、第2室外熱交換器7の
冷媒圧力は余り変化せず、第1室外熱交換器5の冷媒圧
力が上昇し、第1室外熱交換器5の入口冷媒温度も上昇
する。従って、第1室外熱交換器5の入口の霜は解け成
長しない。
However, when the outdoor air temperature becomes low, the temperatures of the first outdoor heat exchanger 5 and the second outdoor heat exchanger 7 acting as evaporators become lower than the outdoor air temperature, and the heat is absorbed from the atmosphere, but the non-azeotropic mixed refrigerant. With the use of, due to its non-isothermal property, the refrigerant temperature rises as the dryness of the refrigerant increases. Therefore, even when the temperature from the center of the first outdoor heat exchanger 5 to the outlet or the temperature of the second outdoor heat exchanger 7 is 0 ° C or higher, the inlet of the first outdoor heat exchanger 5 is lowered to 0 ° C or lower and Frost starts only at the entrance of the outdoor heat exchanger 5. When the temperature of the refrigerant flowing through the control valve 21 is lower than the set transformation temperature T2 of the first shape memory alloy spring 13 and higher than the set transformation temperature T4 of the second shape memory alloy spring 16, the first shape memory is set as shown in FIG. The alloy spring 13 is pushed by the first bias spring 12 to push the valve body 10 against the valve seat 11, and the second shape memory alloy spring 16 pushes the valve seat 11 against the spring force of the second bias spring 15. Since the 2 bias spring 15 is compressed, the first flow path 14 is closed. As a result, the refrigerant can flow only in the second flow passage 20 and the flow passage is narrowed, so that a pressure difference occurs before and after the control valve 21. At this time, the size of the second outdoor heat exchanger 7 is the first
Since it is larger than the outdoor heat exchanger 5, the refrigerant pressure of the second outdoor heat exchanger 7 does not change so much, the refrigerant pressure of the first outdoor heat exchanger 5 rises, and the inlet refrigerant temperature of the first outdoor heat exchanger 5 increases. Also rises. Therefore, the frost at the inlet of the first outdoor heat exchanger 5 does not thaw and grow.

【0069】さらに、制御弁21の冷媒の温度が第2形
状記憶合金バネ16の設定変態温度T4より低くなる
と、第1および第2室外熱交換器5、7全体に着霜が成
長する状態であるため、図20のように第2形状記憶合
金バネ16は第2バイアスバネ15のバネ力に抗すこと
ができず収縮し、弁座11は第2バイアスバネ15に押
動されるが、弁体10はストッパ17により止められて
しまうため、第1流路14は開状態となる。冷媒は減圧
されないため、制御弁21前後で冷媒温度の差は生じな
い。このように制御弁21前後で圧力差は付かないた
め、第1、第2室外熱交換器5、7を有効に利用し効率
の良い暖房運転を可能にできる。
Further, when the temperature of the refrigerant in the control valve 21 becomes lower than the set transformation temperature T4 of the second shape memory alloy spring 16, frost is grown on the entire first and second outdoor heat exchangers 5, 7. Therefore, as shown in FIG. 20, the second shape memory alloy spring 16 cannot withstand the spring force of the second bias spring 15 and contracts, and the valve seat 11 is pushed by the second bias spring 15. Since the valve body 10 is stopped by the stopper 17, the first flow path 14 is opened. Since the refrigerant is not depressurized, there is no difference in refrigerant temperature before and after the control valve 21. In this way, since there is no pressure difference before and after the control valve 21, it is possible to effectively utilize the first and second outdoor heat exchangers 5 and 7 and enable efficient heating operation.

【0070】また、制御弁21の温度が低く図20のよ
うに、第1、第2バイアスバネ12、15に押動され、
第1、第2形状記憶合金バネ13、16が変態し収縮
し、制御弁21が開いている状態から、室外気温が上昇
する等で制御弁21を流れている冷媒の温度が上昇し、
第2形状記憶合金バネ16の設定変態温度T3より高く
なり、第1および第2室外熱交換器5、7全体に着霜せ
ず、第1室外熱交換器5の入口のみに着霜するような状
態になると、図19のように第2形状記憶合金バネ16
は変態し伸び第2バイアスバネ15を圧縮し弁座11を
弁体10に押し当てるため、第1流路14は閉状態とな
る。その結果、冷媒は第2流路20しか流れることがで
きず流路が狭められるため、制御弁21前後で圧力差が
生じ、第1室外熱交換器5の冷媒圧力が上昇し、第1室
外熱交換器5の入口冷媒温度も上昇する。従って、第1
室外熱交換器5の入口の霜は解け成長しない。
Further, the temperature of the control valve 21 is low and is pushed by the first and second bias springs 12 and 15 as shown in FIG.
From the state where the first and second shape memory alloy springs 13 and 16 are transformed and contracted, and the control valve 21 is open, the temperature of the refrigerant flowing through the control valve 21 rises due to an increase in the outdoor air temperature,
The temperature becomes higher than the set transformation temperature T3 of the second shape memory alloy spring 16, so that the first and second outdoor heat exchangers 5 and 7 are not frosted entirely, but only the inlet of the first outdoor heat exchanger 5 is frosted. In this state, as shown in FIG. 19, the second shape memory alloy spring 16
Transforms and expands, compresses the second bias spring 15 and presses the valve seat 11 against the valve body 10, so that the first flow path 14 is closed. As a result, the refrigerant can flow only in the second flow path 20 and the flow path is narrowed, so that a pressure difference occurs before and after the control valve 21, the refrigerant pressure in the first outdoor heat exchanger 5 rises, and the first outdoor heat exchanger 5 increases. The refrigerant temperature at the inlet of the heat exchanger 5 also rises. Therefore, the first
Frost at the inlet of the outdoor heat exchanger 5 does not melt and grow.

【0071】さらに、室外気温が上昇し、第1室外熱交
換器5に着霜が起こらないような状態で、制御弁21を
流れる冷媒の温度が第1形状記憶合金バネ13の設定変
態温度T1より高くなると、図18のように第1形状記
憶合金バネ13は変態し伸び第1バイアスバネ12を圧
縮し弁体10を弁座11から離して、第1流路14は開
状態となる。冷媒は減圧されないため、制御弁21前後
で冷媒温度の差は生じない。
Further, the temperature of the refrigerant flowing through the control valve 21 is set to the set transformation temperature T1 of the first shape memory alloy spring 13 in a state where the outdoor air temperature rises and frost does not occur on the first outdoor heat exchanger 5. When the temperature becomes higher, the first shape memory alloy spring 13 transforms and expands, compresses the first bias spring 12 to separate the valve body 10 from the valve seat 11, and the first flow path 14 is opened, as shown in FIG. Since the refrigerant is not depressurized, there is no difference in refrigerant temperature before and after the control valve 21.

【0072】このように、室外熱交換器の部分的な着霜
を防ぎ、また、室外熱交換器全体に着霜するような状態
では制御弁21を開き効率の良い暖房運転が可能とな
る。
In this way, partial frosting of the outdoor heat exchanger is prevented, and in a state where frost is formed on the entire outdoor heat exchanger, the control valve 21 is opened to enable efficient heating operation.

【0073】[0073]

【発明の効果】上記実施例より明らかなように請求項
1、請求項5、請求項6記載の発明によれば、第1室外
熱交換器、第2室外熱交換器の間に制御弁と、その制御
弁と並列に第2絞り装置と弁制御装置を設けることで、
第1室外熱交換器が着霜を起こすような温度条件下にお
いて、制御弁が動作すると、冷媒は第2絞り装置に流
れ、第2絞り装置の前後で冷媒に差圧が生じ、第1室外
熱交換器の圧力は第2室外熱交換器の圧力より高くなり
第1室外熱交換器を流れる冷媒の温度は高くなるため、
第1熱交換器入口の着霜を防ぐことができ、効率の良い
暖房運転を可能にできる。
As is apparent from the above embodiment, according to the inventions of claims 1, 5, and 6, a control valve is provided between the first outdoor heat exchanger and the second outdoor heat exchanger. By providing the second throttle device and the valve control device in parallel with the control valve,
When the control valve operates under a temperature condition in which the first outdoor heat exchanger causes frost formation, the refrigerant flows to the second expansion device, and a differential pressure is generated between the refrigerant before and after the second expansion device, and the first outdoor Since the pressure of the heat exchanger is higher than the pressure of the second outdoor heat exchanger and the temperature of the refrigerant flowing through the first outdoor heat exchanger is high,
Frost formation at the inlet of the first heat exchanger can be prevented, and efficient heating operation can be performed.

【0074】また、請求項2、請求項3、請求項4記載
の発明のように、第1室外熱交換器、第2室外熱交換器
の間に減圧機構を有し形状記憶合金バネを内蔵した制御
弁を設けることで、室外熱交換器が着霜を起こすような
条件下において形状記憶合金バネが変態しバイアスバネ
により押されてたわみ、弁体を弁座に押しつけ冷媒の流
路を狭めると、冷媒は制御弁の前後で冷媒に差圧が生
じ、第1室外熱交換器の圧力は第2室外熱交換器の圧力
より高くなり第1室外熱交換器を流れる冷媒の温度は高
くなるため、第1熱交換器の着霜を防ぐことができ、効
率の良い暖房運転を可能にできるとともに、別の絞り装
置が不要となる。
According to the second, third and fourth aspects of the present invention, a pressure reducing mechanism is provided between the first outdoor heat exchanger and the second outdoor heat exchanger and a shape memory alloy spring is built in. By providing such a control valve, the shape memory alloy spring transforms under the condition that the outdoor heat exchanger causes frosting and is bent by the bias spring to bend and press the valve body against the valve seat to narrow the refrigerant flow path. Then, a differential pressure occurs between the refrigerant before and after the control valve, the pressure of the first outdoor heat exchanger becomes higher than the pressure of the second outdoor heat exchanger, and the temperature of the refrigerant flowing through the first outdoor heat exchanger becomes high. Therefore, it is possible to prevent frost formation on the first heat exchanger, enable efficient heating operation, and eliminate the need for another expansion device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す冷凍装置の冷凍サイクル
FIG. 1 is a refrigeration cycle diagram of a refrigeration system showing an embodiment of the present invention.

【図2】本発明の実施例を示す冷凍装置の弁制御装置の
電気回路図
FIG. 2 is an electric circuit diagram of a valve control device for a refrigeration system showing an embodiment of the present invention.

【図3】本発明の実施例を示す冷凍装置の弁制御装置の
ブロック図
FIG. 3 is a block diagram of a valve control device of a refrigeration system showing an embodiment of the present invention.

【図4】本発明の実施例を示す冷凍装置の弁制御装置の
フローチャート
FIG. 4 is a flowchart of a valve control device of a refrigeration system showing an embodiment of the present invention.

【図5】本発明の他の実施例を示す冷凍装置の冷凍サイ
クル図
FIG. 5 is a refrigeration cycle diagram of a refrigeration system showing another embodiment of the present invention.

【図6】本発明の他の冷凍装置に用いる制御弁の断面図FIG. 6 is a sectional view of a control valve used in another refrigeration system of the present invention.

【図7】本発明の他の冷凍装置に用いる制御弁の形状記
憶合金バネの温度−ひずみ曲線図
FIG. 7 is a temperature-strain curve diagram of a shape memory alloy spring of a control valve used in another refrigeration system of the present invention.

【図8】本発明の他の冷凍装置に用いる制御弁の動作を
示す断面図
FIG. 8 is a sectional view showing the operation of a control valve used in another refrigeration system of the present invention.

【図9】本発明の他の実施例を示す冷凍装置の冷凍サイ
クル図
FIG. 9 is a refrigeration cycle diagram of a refrigeration system showing another embodiment of the present invention.

【図10】本発明の他の実施例を示す冷凍装置に用いる
制御弁の断面図
FIG. 10 is a sectional view of a control valve used in a refrigeration system showing another embodiment of the present invention.

【図11】本発明の他の実施例を示す冷凍装置に用いる
制御弁の形状記憶合金バネの温度−ひずみ曲線図
FIG. 11 is a temperature-strain curve diagram of a shape memory alloy spring of a control valve used in a refrigeration system showing another embodiment of the present invention.

【図12】本発明の他の実施例を示す冷凍装置に用いる
制御弁の動作を示す断面図
FIG. 12 is a cross-sectional view showing the operation of a control valve used in a refrigeration system showing another embodiment of the present invention.

【図13】本発明の他の実施例を示す冷凍装置に用いる
制御弁の動作を示す断面図
FIG. 13 is a cross-sectional view showing the operation of a control valve used in a refrigeration system showing another embodiment of the present invention.

【図14】本発明のさらに他の実施例を示す冷凍装置の
冷凍サイクル図
FIG. 14 is a refrigeration cycle diagram of a refrigeration system showing still another embodiment of the present invention.

【図15】本発明のさらに他の実施例を示す冷凍装置に
用いる制御弁の断面図
FIG. 15 is a sectional view of a control valve used in a refrigeration system showing still another embodiment of the present invention.

【図16】本発明のさらに他の実施例を示す冷凍装置に
用いる制御弁の動作を示す断面図
FIG. 16 is a sectional view showing the operation of a control valve used in a refrigeration system showing still another embodiment of the present invention.

【図17】本発明のさらに他の実施の形態を示す冷凍装
置の冷凍サイクル図
FIG. 17 is a refrigerating cycle diagram of a refrigerating apparatus showing still another embodiment of the present invention.

【図18】本発明のさらに他の実施の形態を示す冷凍装
置に用いる制御弁の断面図
FIG. 18 is a sectional view of a control valve used in a refrigeration system showing still another embodiment of the present invention.

【図19】本発明のさらに他の実施の形態を示す冷凍装
置に用いる制御弁の動作を示す断面図
FIG. 19 is a sectional view showing the operation of the control valve used in the refrigeration system showing still another embodiment of the present invention.

【図20】本発明のさらに他の実施の形態を示す冷凍装
置に用いる制御弁の動作を示す断面図
FIG. 20 is a cross-sectional view showing the operation of the control valve used in the refrigeration system showing still another embodiment of the present invention.

【図21】従来の冷凍装置の冷凍サイクル図FIG. 21 is a refrigeration cycle diagram of a conventional refrigeration system.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 四方弁 3 室内熱交換器 4 絞り装置 5 第1室外熱交換器 6 制御弁 7 第2室外熱交換器 8 第2絞り装置 9 制御弁 10 弁体 11 弁座 12 バイアスバネ 13 第1形状記憶合金バネ 14 第1流路 15 第2バイアスバネ 16 第2形状記憶合金バネ 17 ストッパ 18 制御弁 19 制御弁 20 第2流路 21 制御弁 22 弁制御装置 23 電源スイッチ 24 冷媒温度検出器 25 A/D変換装置 26 マイクロコンピュータ(LSI) 27 入力回路 28 CPU 29 メモリ 30 出力回路 31 電磁コイル 1 compressor 2 four-way valve 3 Indoor heat exchanger 4 Throttling device 5 First outdoor heat exchanger 6 control valve 7 Second outdoor heat exchanger 8 Second diaphragm device 9 control valve 10 valve body 11 seat 12 Bias spring 13 1st shape memory alloy spring 14 First flow path 15 Second bias spring 16 Second shape memory alloy spring 17 Stopper 18 Control valve 19 Control valve 20 Second channel 21 Control valve 22 valve controller 23 Power switch 24 Refrigerant temperature detector 25 A / D converter 26 Microcomputer (LSI) 27 Input circuit 28 CPU 29 memory 30 output circuit 31 electromagnetic coil

───────────────────────────────────────────────────── フロントページの続き (72)発明者 渡辺 伸二 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 沼本 浩直 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 渡邊 幸男 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 羽根田 完爾 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 小林 義典 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 薬丸 雄一 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 山口 成人 大阪府門真市大字門真1006番地 松下電器 産業株式会社内   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Shinji Watanabe             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. (72) Inventor Hironao Numamoto             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. (72) Inventor Yukio Watanabe             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. (72) Inventor Haneda Kanji             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. (72) Inventor Yoshinori Kobayashi             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. (72) Inventor Yuichi Yakumaru             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. (72) Inventor Yamaguchi Adult             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 非共沸混合冷媒を用い、圧縮機、四方
弁、室内熱交換器、絞り装置、第1室外熱交換器、制御
弁、第2室外熱交換器を環状に接続し、前記第1室外熱
交換器より前記第2室外熱交換器の大きさを大きくする
とともに、前記制御弁と並列に第2絞り装置を設けたこ
とを特徴とする冷凍装置。
1. A compressor, a four-way valve, an indoor heat exchanger, a throttle device, a first outdoor heat exchanger, a control valve, and a second outdoor heat exchanger are annularly connected using a non-azeotropic mixed refrigerant, and A refrigerating apparatus, wherein the size of the second outdoor heat exchanger is larger than that of the first outdoor heat exchanger, and a second expansion device is provided in parallel with the control valve.
【請求項2】 非共沸混合冷媒を用い、圧縮機、四方
弁、室内熱交換器、絞り装置、第1室外熱交換器、制御
弁、第2室外熱交換器を環状に接続した冷凍装置におい
て、前記第1室外熱交換器より前記第2室外熱交換器の
大きさを大きくし、前記制御弁に減圧機構を設けたこと
を特徴とする冷凍装置。
2. A refrigeration system in which a compressor, a four-way valve, an indoor heat exchanger, a throttle device, a first outdoor heat exchanger, a control valve, and a second outdoor heat exchanger are annularly connected using a non-azeotropic mixed refrigerant. In the refrigeration system, the size of the second outdoor heat exchanger is larger than that of the first outdoor heat exchanger, and the control valve is provided with a pressure reducing mechanism.
【請求項3】 前記制御弁は第1形状記憶合金バネと、
バイアスバネと、前記第1形状記憶合金バネと前記バイ
アスバネとの間に挟まれた摺動可能な弁体を有すること
を特徴とする請求項1または2記載の冷凍装置。
3. The control valve comprises a first shape memory alloy spring,
3. The refrigerating apparatus according to claim 1, further comprising a bias spring and a slidable valve element sandwiched between the first shape memory alloy spring and the bias spring.
【請求項4】 温度ヒステリシスが2〜3度で冷却時の
変態温度が−2〜−4℃で加熱時の変態温度が0〜−2
℃の第1形状記憶合金バネを前記制御弁に使用すること
を特徴とする請求項3記載の冷凍装置。
4. The temperature hysteresis is 2-3 degrees, the transformation temperature during cooling is -2 to -4 ° C., and the transformation temperature during heating is 0 to -2.
The refrigerating apparatus according to claim 3, wherein a first shape memory alloy spring of ℃ is used for the control valve.
【請求項5】 前記第1室外熱交換器の冷媒温度を検出
して出力する第1室外熱交換器冷媒温度検出手段と、前
記第1室外熱交換器冷媒温度と設定温度とを比較し、制
御信号を出力する比較手段と、前記制御弁の開閉を制御
する出力モードを記憶した記憶手段と、前記比較手段か
ら発生する出力信号により、前記記憶手段の出力モード
の一つを選択する選択手段と、前記記憶手段の出力モー
ドに従い前記制御弁の開閉を行う出力手段により構成し
た弁制御装置を設けたことを特徴とする請求項1または
2記載の冷凍装置。
5. A first outdoor heat exchanger refrigerant temperature detecting means for detecting and outputting a refrigerant temperature of the first outdoor heat exchanger, and the first outdoor heat exchanger refrigerant temperature and a set temperature are compared, A comparison means for outputting a control signal, a storage means for storing an output mode for controlling the opening and closing of the control valve, and a selection means for selecting one of the output modes of the storage means according to an output signal generated from the comparison means. 3. The refrigerating apparatus according to claim 1, further comprising a valve control device configured by an output unit that opens and closes the control valve according to an output mode of the storage unit.
【請求項6】 前記選択手段は、前記第1室外熱交換器
温度が前記第1設定温度より低い時は前記制御弁を開
き、第1設定温度より高く第2設定温度より低い時は前
記制御弁を閉じ、第3設定温度より高い時は前記制御弁
を開くを選択することを特徴とする請求項5記載の冷凍
装置。
6. The selecting means opens the control valve when the temperature of the first outdoor heat exchanger is lower than the first set temperature, and controls the control valve when the temperature is higher than the first set temperature and lower than the second set temperature. The refrigerating apparatus according to claim 5, wherein the valve is closed and the control valve is opened when the temperature is higher than the third preset temperature.
JP2002374387A 2002-12-25 2002-12-25 Refrigeration equipment Expired - Fee Related JP3738760B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002374387A JP3738760B2 (en) 2002-12-25 2002-12-25 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002374387A JP3738760B2 (en) 2002-12-25 2002-12-25 Refrigeration equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP33299395A Division JP3430761B2 (en) 1995-12-21 1995-12-21 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JP2003207237A true JP2003207237A (en) 2003-07-25
JP3738760B2 JP3738760B2 (en) 2006-01-25

Family

ID=27655999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002374387A Expired - Fee Related JP3738760B2 (en) 2002-12-25 2002-12-25 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JP3738760B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013253726A (en) * 2012-06-06 2013-12-19 Mitsubishi Heavy Ind Ltd Heat exchange system
CN104132474A (en) * 2014-07-14 2014-11-05 珠海格力电器股份有限公司 Environment conditioning device for low-temperature laboratory
WO2016098330A1 (en) * 2014-12-18 2016-06-23 株式会社デンソー Temperature control valve and refrigeration cycle system provided with same temperature control valve
JP2016118295A (en) * 2014-12-18 2016-06-30 株式会社デンソー Temperature control valve and refrigeration cycle system provided with temperature control valve
CN110397784A (en) * 2018-04-24 2019-11-01 Zf 腓德烈斯哈芬股份公司 Thermostatic valve
CN113738914A (en) * 2020-05-29 2021-12-03 比亚迪股份有限公司 Reversing valve

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013253726A (en) * 2012-06-06 2013-12-19 Mitsubishi Heavy Ind Ltd Heat exchange system
CN104132474A (en) * 2014-07-14 2014-11-05 珠海格力电器股份有限公司 Environment conditioning device for low-temperature laboratory
CN104132474B (en) * 2014-07-14 2017-01-25 珠海格力电器股份有限公司 Environment conditioning device for low-temperature laboratory
WO2016098330A1 (en) * 2014-12-18 2016-06-23 株式会社デンソー Temperature control valve and refrigeration cycle system provided with same temperature control valve
JP2016118295A (en) * 2014-12-18 2016-06-30 株式会社デンソー Temperature control valve and refrigeration cycle system provided with temperature control valve
CN110397784A (en) * 2018-04-24 2019-11-01 Zf 腓德烈斯哈芬股份公司 Thermostatic valve
CN113738914A (en) * 2020-05-29 2021-12-03 比亚迪股份有限公司 Reversing valve

Also Published As

Publication number Publication date
JP3738760B2 (en) 2006-01-25

Similar Documents

Publication Publication Date Title
JP3094997B2 (en) Refrigeration equipment
JP2007155230A (en) Air conditioner
WO1999010686A1 (en) Cooling cycle
JP5278452B2 (en) Refrigeration cycle apparatus and hot water heater using the same
US8205463B2 (en) Air conditioner and method of controlling the same
JP2003207237A (en) Refrigerator
JP3430761B2 (en) Refrigeration equipment
JP2019158308A (en) Refrigeration cycle device
JP3326898B2 (en) Control device for heat pump device
JP3082560B2 (en) Dual cooling system
JPH0282060A (en) Heat pump type air conditioner
JP2002061978A (en) Air conditioner
JPH1163687A (en) Air conditioner cycle
WO2013073070A1 (en) Refrigeration cycle device
US20200124328A1 (en) Refrigeration cycle device
AU2019457511B2 (en) Refrigeration cycle device
JPH05302765A (en) Multi-chamber type air conditioner
EP0247638B1 (en) Refrigeration cycle apparatus
JP2002039637A (en) Freezer and freezing method
JPS5969663A (en) Refrigeration cycle
JPH0363471A (en) Air conditioner
JP2004205142A (en) Refrigerating and air conditioning apparatus and its operation control method
JPH06109291A (en) Cold accumulation type air conditioner
JPH02195156A (en) Low temperature refrigerator
JPH01127866A (en) Cold and hot simultaneous type multi-chamber air conditioner

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051011

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051024

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111111

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121111

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131111

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees