JPH03221108A - Electrode for use in high density electroosmotic dehydration - Google Patents

Electrode for use in high density electroosmotic dehydration

Info

Publication number
JPH03221108A
JPH03221108A JP2016449A JP1644990A JPH03221108A JP H03221108 A JPH03221108 A JP H03221108A JP 2016449 A JP2016449 A JP 2016449A JP 1644990 A JP1644990 A JP 1644990A JP H03221108 A JPH03221108 A JP H03221108A
Authority
JP
Japan
Prior art keywords
electrode
resin
impregnated
carbonize
dehydration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016449A
Other languages
Japanese (ja)
Inventor
Shiro Kondo
史朗 近藤
Shigeru Sano
佐野 滋
Osamu Muroi
治 室井
Mikio Inoue
幹夫 井上
Atsushi Kitamura
厚 北村
Onori Kawachi
河内 大典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Pantec Co Ltd
Toray Industries Inc
Original Assignee
Shinko Pantec Co Ltd
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Pantec Co Ltd, Toray Industries Inc filed Critical Shinko Pantec Co Ltd
Priority to JP2016449A priority Critical patent/JPH03221108A/en
Publication of JPH03221108A publication Critical patent/JPH03221108A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Sludge (AREA)

Abstract

PURPOSE:To increase carbon density and permit a long time use by a method wherein a mixture of carbon fiber and resin is shaped into the form of an electrode, such shaped product is thereafter baked to carbonize the resin, the resulting electrode is impregnated with resin and baked to carbonize the impregnated resin and this carbonizing step is repeated. CONSTITUTION:The material to be dehydrated is placed between an anode (f) and a cathode (f) facing each other and subjected to compressive dehydration by pressing a compression diaphragm (e) behind the electrode and, at the same time, to electroosmotic dehydration by applying D.C. from behind the electrode. The electrode in this device is formed by a method wherein a mixture of carbon fiber and resin (e.g. polyester) is shaped into the form of an electrode, thus shaped product is baked to carbonize the resin, the resulting electrode is impregnated with phenol resin or the like and baked to carbonize the impregnated resin and such carbonizing step is repeated once or a plurality of times to increase the carbon density. As a result, this method provides a high strength and density and reduces the attrition effect on the electrode accompanying the application of current thereto and, therefore, the electrode can be used for a long period of time and the economics of electroosmotic dehydration can be enhanced with respect to waste liquors and sludge.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、下水汚泥等の高度脱水のため圧搾しながら直
流通電して脱水を促進する電気浸透脱水装置、特にフィ
ルタープレス形式の装置において有用性を発揮する電極
構成に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention is useful in electroosmotic dewatering equipment, particularly filter press type equipment, which promotes dehydration by applying direct current while squeezing sewage sludge for advanced dewatering. Regarding the electrode configuration that exhibits its properties.

(従来の技術) 添付図はフィルタープレス形式の装置による電気浸透脱
水の要領を示す。この装置は通液、通気路を形式した合
成樹脂製の濾板が列設されている。
(Prior Art) The attached diagram shows the procedure for electroosmotic dehydration using a filter press type device. This device is equipped with synthetic resin filter plates in the form of liquid passage and ventilation passages.

先ず、第1図に示すように、対をなす濾板(a)(a)
を間に濾布(b)(b)を挟み込んで閉合し、被脱水処
理物の汚泥を原液ポンプにより原液入口(C)を経由し
て濾布(b)(b)間に形成されている濾室内に圧入し
濾布を透過した濾水を集水して出口(d)から排出して
、ポンプ圧力加圧濾過により予備脱水しなからなるべく
多量の汚泥を濾室内に打込む。次に第2図に示すように
濾布と同時に挟みこまれるゴム等の可撓性の圧搾膜(e
)の背後に圧力空気を導入して前方に加圧し電極(f)
(f)を介して濾布(b) (b)間の汚泥ケーキを圧
搾圧力により追加脱水する。この圧搾脱水により脱水ケ
ーキの含水率は80〜85%にまで低下するが、これが
圧搾脱水の到達限度である。最後に圧搾脱水を継続しな
がら電極(f)(f)に背後に接続される給電部から直
流電圧を印加し、濾布を経由して汚泥ノーキに通電して
電気浸透作用により脱水を促力する。40V程度の直流
電圧を印加し約15分間i電すれば脱水ケーキの含水率
は50%程度まで(1下する。こうして脱水が終われば
第3図に示1ように濾板を開き濾布を引下げて脱水ケー
キ(εを機外に取出し処分に回付する。脱水ケーキ番=
体積、重量が半減し固態のため、処分が容易マ負担がか
らない。
First, as shown in Fig. 1, a pair of filter plates (a) (a)
are closed with filter cloths (b) and (b) sandwiched between them, and the sludge from the material to be dehydrated is passed through the raw solution inlet (C) by a stock solution pump to form between the filter cloths (b) and (b). The filtrate that has been pressurized into the filter chamber and passed through the filter cloth is collected and discharged from the outlet (d), and as much sludge as possible is thrown into the filter chamber without preliminary dewatering by pump pressure filtration. Next, as shown in Figure 2, a flexible compressed membrane (e.
) and pressurize it forward by introducing pressure air behind the electrode (f).
The sludge cake between the filter cloths (b) and (b) is additionally dehydrated by squeezing pressure through the filter cloth (f). The moisture content of the dehydrated cake is reduced to 80 to 85% by this press dehydration, which is the limit of press dehydration. Finally, while continuing compression dewatering, a DC voltage is applied from the power supply unit connected behind the electrodes (f) and (f), and electricity is applied to the sludge through the filter cloth to promote dewatering by electroosmotic action. do. By applying a DC voltage of about 40 V and running it for about 15 minutes, the moisture content of the dehydrated cake will drop to about 50% (1 drop). When the dehydration is finished, open the filter plate and remove the filter cloth as shown in Figure 3. Pull down and remove the dehydrated cake (ε) from the machine and send it for disposal. Dehydrated cake number =
Since the volume and weight are reduced by half and the product is in a solid state, it is easy to dispose of and does not require a burden on the operator.

電気浸透圧水装置用の電極としては、前記Cように、圧
搾脱水のための大きな加圧力を受4J電解賞等を含む汚
泥水の電気化学作用を伴う席蝕環境に曝され、また圧搾
膜の背後からの電極板への給電はその間に電圧降下が起
こらないようにして行わなければならないので、要求さ
れる条件が酷しい。従来、金属板、炭素焼結板等の各種
材料および構造からなる電極が提案され使用されている
が、それぞれ次項に記載の問題がある。
As an electrode for an electroosmotic water device, as shown in C above, it is exposed to an erosion environment accompanied by the electrochemical action of sludge water that is subjected to a large pressurizing force for pressing dewatering, such as 4J electrolysis, and is also suitable for pressing membranes. Since power must be supplied to the electrode plate from behind the electrode plate in such a way that no voltage drop occurs during that time, the required conditions are severe. Conventionally, electrodes made of various materials and structures such as metal plates and carbon sintered plates have been proposed and used, but each has the problems described in the following section.

(発明が解決しようとする問題点) 電気浸透脱水装置では、電極は通電のため電気的な機能
がすぐれ、圧搾圧力に耐える機械的強度が充分であるだ
けでなく、概して高価であるので、電気化学的作用によ
り消耗して寿命が短縮されることの少ないことが、経済
的運転を可能とする上で支配的重要性を持つ。この観点
に立って従来技術の代表的な電極を検討すると次の問題
がある。
(Problems to be Solved by the Invention) In electroosmotic dehydration equipment, the electrodes are electrically conductive, so they not only have excellent electrical functions and sufficient mechanical strength to withstand squeezing pressure, but also are generally expensive. The low resistance to chemical wear and shortening of life is of predominant importance in enabling economical operation. When typical electrodes of the prior art are examined from this viewpoint, the following problems arise.

機械的強度の点では、耐蝕性金属板の比較的安価なステ
ンレス鋼、ニッケル鋼等の電極は充分な強度を保有する
が直流通電によりイオン化して汚泥中に溶出し消耗する
ので寿命が短く、さらに溶出する金属イオン、特にクロ
ムは二次公害の問題を起こす。白金等の高価貴金属で被
覆したチタニウム合金からなる特殊金属電極板は金属の
溶出が少なく電極消耗が少なく耐蝕性のすぐれたもので
あるが、実用的にあまりにも高価でその上電気浸透脱水
の効果を上げるにはプロセス中に直流通電の極性を逆に
することが有用な場合があり、この場合逆極性時に白金
被覆が剥がれるという問題がある。
In terms of mechanical strength, electrodes made of relatively inexpensive corrosion-resistant metal plates such as stainless steel and nickel steel have sufficient strength, but they have a short lifespan because they are ionized by direct current, dissolve into the sludge, and wear out. Furthermore, eluted metal ions, especially chromium, cause secondary pollution problems. Special metal electrode plates made of titanium alloy coated with high-value precious metals such as platinum have low metal elution, low electrode wear, and excellent corrosion resistance, but they are too expensive for practical use and have poor electroosmotic dehydration effects. In order to increase this, it may be useful to reverse the polarity of the DC current during the process, but in this case there is a problem that the platinum coating will peel off when the polarity is reversed.

非金属の炭素焼結板からなる電極は、通電による溶出は
少ないが、電気化学的に発生期の酸素によりバインダコ
ークス部が選択的に酸化消耗を受は侵食されて炭素質の
物理的脱落が起こり消耗か多いので、やはり寿命は充分
でなく、機械的に弱くて圧搾圧力により破損する問題が
ある。
Electrodes made of non-metallic carbon sintered plates are less likely to elute when energized, but electrochemically, the binder coke is selectively oxidized and consumed by the nascent oxygen, causing physical drop-off of the carbonaceous material. Since there is a lot of wear and tear, the lifespan is not long enough, and there is a problem that it is mechanically weak and can be damaged by compression pressure.

また非金属電極の強度上の弱点を補うため、例えば特開
昭60−147208号には導電性繊維と合成樹脂との
堰合物を加圧成型した電極が開示されているが、電極内
に絶縁物である合成樹脂を含むため導電性が低下し電極
内部での電圧降下が大となり、その結果、電気浸透脱水
に必要な電気量を通ずるためには印加電圧を高くしなけ
ればならず、用役コストが嵩むばかりでなく電極寿命も
短くなり、決して経済的でなく、しかも水を扱う作業環
境で高い電圧を用いることは感電の危険性があるため望
ましいことではない。
In addition, in order to compensate for the weak points in the strength of nonmetallic electrodes, for example, Japanese Patent Laid-Open No. 147208/1983 discloses an electrode made of a pressure-molded composite of conductive fibers and synthetic resin, but there is no insulation inside the electrode. Because it contains a synthetic resin, the conductivity decreases and the voltage drop inside the electrode becomes large.As a result, the applied voltage must be increased in order to pass the amount of electricity required for electroosmotic dehydration, making it difficult to use. This not only increases costs but also shortens the life of the electrodes, making it uneconomical and, moreover, using high voltages in working environments where water is handled is not desirable because of the risk of electric shock.

電気浸透脱水では、機械的圧搾脱水のみのフィルタープ
レスに較べ、所要圧搾圧力を低くしてもよい。しかしフ
ィルタープレス形式の電気浸透脱水装置では、電極の通
電面積を大きくとることができる点で有利であるが、そ
の反面、曲げに対する強度条件が酷しくなくなり、また
大きい電極面積へ給電するための構造が難しくなる。
In electroosmotic dehydration, the required pressing pressure may be lower than that in a filter press that uses only mechanical compression dehydration. However, filter press type electroosmotic dehydration equipment has the advantage of being able to increase the current-carrying area of the electrodes, but on the other hand, the strength conditions against bending are not as severe, and the structure for supplying power to a large electrode area is disadvantageous. becomes difficult.

特開昭64−30613号に開示した炭素繊維を含有す
る炭素材料からなる全炭素電極は、これらの諸要件によ
く適合するものであるが、通電に伴う電極の消耗は絶無
ではないので長時間の通電の継続により消耗が進んで薄
層化したときには機械的強度が不足気味となる懸念があ
り、そのため電極を早目に交換しなければならなくなる
という問題がある。
The all-carbon electrode made of a carbon material containing carbon fibers disclosed in Japanese Patent Application Laid-Open No. 64-30613 satisfies these requirements, but the electrode wears out due to energization, so it cannot be used for long periods of time. If the electrode becomes thinner due to continued energization, there is a concern that the mechanical strength will be insufficient, and therefore the electrode will have to be replaced sooner.

(問題点を解決するための手段) 本発明は、電気浸透脱水用の電極として従来技術で到達
されている最適の特性の特開昭64−30613号の炭
素繊維を含有する炭素材料からなる電極を、電極材料の
面からさらに最適化することを目的としてなされたもの
である。すなわち、この従来技術の全炭素材電極は、強
度を付与するための炭素繊維が主体で、炭素短繊維を抄
造した担体に結合炭素となる炭素化し得る樹脂を含浸さ
せ、乾燥ののちホットプレスで樹脂を硬化させて電極形
状に底形し、のち2500℃程度の高温で焼成して樹脂
を炭素化させてつくられる。
(Means for Solving the Problems) The present invention provides an electrode made of a carbon material containing carbon fibers as described in JP-A No. 64-30613, which has the optimum characteristics achieved in the prior art as an electrode for electroosmotic dehydration. This was done with the aim of further optimizing the electrode material. In other words, the all-carbon material electrode of this prior art is mainly made of carbon fiber for imparting strength, and a carrier made of short carbon fibers is impregnated with a carbonizable resin that becomes bonded carbon, and after drying, it is hot-pressed. It is made by hardening the resin to shape the bottom into the shape of an electrode, and then firing it at a high temperature of about 2,500°C to carbonize the resin.

高温焼成による樹脂部分の分解および炭素以外の成分の
逸散により、樹脂部分は体積収縮し気孔化している。こ
の従来技術の電極の気孔率は約40%程度である。
Due to the decomposition of the resin part and the escape of components other than carbon due to high-temperature firing, the resin part shrinks in volume and becomes porous. The porosity of this prior art electrode is about 40%.

本発明では、結合炭素によりこの気孔を充填して高密度
化を計り、充填結合炭素による炭素繊維の結合強化によ
り電極体強度を増大し、全炭素性を損なわない高密度化
により導電性の向上を図る。
In the present invention, the pores are filled with bonded carbon to increase the density, and the strength of the electrode body is increased by strengthening the bonding of carbon fibers with the filled bonded carbon, and the conductivity is improved by increasing the density without impairing the total carbon property. We aim to

このことを達成する解決手段として、本発明は、前記の
ように形成した炭素質電極、すなわち電極体にさらに炭
素化し得る樹脂を含浸し、乾燥ののち高温焼成し含浸樹
脂を炭素化させる。
As a solution to achieve this, the present invention impregnates the carbonaceous electrode, that is, the electrode body formed as described above, with a resin that can be further carbonized, and after drying, it is fired at a high temperature to carbonize the impregnated resin.

この操作を必要回数繰返して、本発明の高密度化電気浸
透脱水用電極とする。
This operation is repeated a necessary number of times to obtain the densified electrode for electroosmotic dehydration of the present invention.

すなわち、本発明の高密度化電気浸透脱水用電極は、対
向する陽極と陰極との間に被脱水処理物を挟み、電極背
後の圧搾膜からの加圧により圧搾脱水するとともに、電
極背後からの給電により直流通電しても電気浸透脱水す
る装置の電極であって、炭素繊維と樹脂との混合物を電
極形状に形成したのち焼成して樹脂を炭素化させてなる
電極体に、樹脂を含浸し焼成して含浸樹脂を炭素化させ
る操作を1乃至複数回繰返して炭素密度を増大させてな
ることを特徴とする。
That is, in the high-density electroosmotic dehydration electrode of the present invention, the material to be dehydrated is sandwiched between an anode and a cathode that face each other, and the material to be dehydrated is compressed and dehydrated by applying pressure from the compression membrane behind the electrode, and the material is compressed and dehydrated from behind the electrode. This is an electrode for a device that performs electroosmotic dehydration even when DC current is applied by power supply, and the electrode body is impregnated with resin by forming a mixture of carbon fiber and resin into an electrode shape and then firing it to carbonize the resin. It is characterized in that the carbon density is increased by repeating the operation of carbonizing the impregnated resin by firing one or more times.

炭素繊維と樹脂との混合物は、たとえば、長さ2〜20
m程度の炭素短繊維と樹脂とを、炭素短繊維が10〜5
0重量%を占めるように混合してなるものとして用意す
ることができる。このような混合物は、金型などを用い
て加熱、加圧成形することで電極形状にすることができ
る。
The mixture of carbon fiber and resin has a length of 2 to 20 mm, for example.
About 10 to 5 m of short carbon fibers and resin are combined.
It can be prepared by mixing it so that it accounts for 0% by weight. Such a mixture can be formed into an electrode shape by heating and pressurizing it using a mold or the like.

混合物はまた、上記の炭素短繊維と抄造用バインダを含
む抄造媒体とを混合、撹拌し、織物や金網上に抄造し、
乾燥させたものに樹脂を含浸してなるものとして用意す
ることができる。
The mixture can also be prepared by mixing and stirring the above-mentioned short carbon fibers and a paper-making medium containing a binder for paper-making, and forming the mixture onto a fabric or wire mesh.
It can be prepared by impregnating a dried product with a resin.

炭素短繊維は、抄造によって、実質的に2次元平面内に
おいてランダムな方向に分散される。
The short carbon fibers are dispersed in random directions within a substantially two-dimensional plane by papermaking.

抄造用バインダとしては、ポリビニルアルコール、ヒド
ロキシエチルセルロース、ポリエチレンオキシド、ポリ
アクリルア業ド、ポリエステルなどを使用し、水などで
希釈して抄造媒体とする。樹脂もまた、メタノールなど
で希釈して使用するのがよい。このような、いわゆる中
間基材は、必要な厚みが得られるよう複数枚積層し、ホ
ントブレスすることによって電極形状にすることができ
る。
As the binder for papermaking, polyvinyl alcohol, hydroxyethyl cellulose, polyethylene oxide, polyacrylic acid, polyester, etc. are used, and the papermaking medium is obtained by diluting with water or the like. The resin is also preferably used after being diluted with methanol or the like. Such a so-called intermediate base material can be formed into an electrode shape by laminating a plurality of sheets to obtain the required thickness and pressing them together.

屓合物における樹脂や、電極体への含浸樹脂としては、
フェノール樹脂、エポキシ樹脂、フラン樹脂、ピッチや
、それらの混合樹脂などを用いることができる。これら
の樹脂は、いずれも、焼成によって炭素化する。
As the resin in the composite and the resin impregnated into the electrode body,
Phenol resin, epoxy resin, furan resin, pitch, mixed resins thereof, etc. can be used. All of these resins are carbonized by firing.

電極体の形成のための焼成や、電極体への含浸樹脂を炭
素化するための焼成は、窒素やアルゴンなどの不活性雰
囲気または真空雰囲気下にて、樹脂の種類などにもよる
が、650〜3000″Cで行う。
Firing to form the electrode body or carbonizing the resin impregnated into the electrode body is performed in an inert atmosphere such as nitrogen or argon or in a vacuum atmosphere, depending on the type of resin, etc. Perform at ~3000″C.

本発明においては、樹脂にさらに炭素粉を含ませておい
てもよい。
In the present invention, the resin may further contain carbon powder.

(作用) 電気浸透脱水装置において、本発明の高密度化電極を使
用すると、その炭素繊維がより多くの結合炭素により結
合を強化されているので、脱水操作中にそれに加わる圧
搾圧力等による曲げ等に対抗する強度が向上し、さらに
通電の継続に伴う電極の消耗が高密度化に反比例して軽
減されて強度低下が少なくなるので、電極強度が長期間
保全され、寿命が延長される。さらに高密度化のために
は、従来技術で用いた電極形成施設を利用できるので、
技術的困難が加わらず費用増加も少なくて済む。
(Function) When the densified electrode of the present invention is used in an electro-osmotic dehydration device, the carbon fibers have stronger bonds with more bonded carbon, so they will not bend due to squeezing pressure etc. applied to them during the dehydration operation. In addition, the wear and tear of the electrode due to continued energization is reduced in inverse proportion to the higher density, and the decrease in strength is reduced, so the electrode strength is maintained for a long period of time and the lifespan is extended. In order to further increase the density, the electrode formation facility used in the conventional technology can be used.
There is no additional technical difficulty and the cost increase is small.

(実施例) 以下、本発明の高密度化電気浸透脱水用電極を実施例に
より従来技術の特開昭64−30613号に準拠した電
気浸透脱水用電極と比較してその特質を明らかにする。
(Example) Hereinafter, the characteristics of the high-density electroosmotic dehydration electrode of the present invention will be clarified by comparing it with the conventional electrode for electroosmotic dehydration according to Japanese Patent Application Laid-Open No. 64-30613 using Examples.

比較例 東し株式会社製ポリアクリロニトリル系炭素繊維(商品
名゛トレカ“’ Ta2O)を12mm長さの短繊維に
切断し、これを水中に分散させて抄造した炭素繊維抄造
紙に対し、坑底により炭素化し得る樹脂としてフェノー
ル樹脂を含浸し、乾燥させたのち重ね合わせホントブレ
スによりフェノール樹脂を硬化させて電極形状に形成し
た。
Comparative Example Polyacrylonitrile-based carbon fiber (trade name: ``Toreca'' Ta2O) manufactured by Toshi Co., Ltd. was cut into short fibers of 12 mm length, and carbon fiber paper was made by dispersing the short fibers in water. The electrode was impregnated with a phenol resin as a resin that can be carbonized by the method, dried, and then cured by stacking and pressing to form an electrode shape.

次いでこれを窒素雰囲気中で2500°Cで加熱焼成し
フェノール樹脂を炭素化させて比較例電極体を得た。
Next, this was heated and baked at 2500° C. in a nitrogen atmosphere to carbonize the phenol resin, thereby obtaining a comparative electrode body.

実施例A 前記比較例電極体にフェノール樹脂を含浸して乾燥させ
たのち再び2500“Cで坑底して含浸フェノール樹脂
を炭素化させ、本発明の高密度化電気浸透脱水用電極(
A)を得た。
Example A The electrode body of the comparative example was impregnated with a phenolic resin and dried, and then brought to the bottom of the hole again at 2500"C to carbonize the impregnated phenolic resin.
A) was obtained.

実施例B 前記比較例電極にフェノール樹脂を含浸し、乾燥ののち
800″Cで坑底して含浸フェノール樹脂を炭素化させ
、本発明の高密度電気浸透脱水用電極(B)を得た。
Example B The electrode of the comparative example was impregnated with a phenol resin, and after drying, the impregnated phenol resin was carbonized at 800''C to obtain an electrode (B) for high-density electroosmotic dehydration.

実施例C 比較例の加熱焼成を2500°Cで行なう代わりに80
0″Cで加熱焼成した電極体にフェノール樹脂を含浸し
、乾燥ののち800°Cで加熱焼成してフェノール樹脂
を炭素化させて本発明の高密度化電気浸透脱水用電極(
C)を得た。
Example C Instead of heating and firing at 2500°C in the comparative example,
The electrode body heated and fired at 0''C is impregnated with phenol resin, and after drying, the phenol resin is carbonized by heating and firing at 800°C to obtain the densified electrode for electroosmotic dehydration of the present invention (
C) was obtained.

上記の本発明実施例電極および比較例電極の特性比較を
次表に示す。
The following table shows a comparison of the characteristics of the electrodes of the embodiments of the present invention and the electrodes of comparative examples.

この表から知られるように、比較例電極に較べ本発明電
極は曲げ強度が大きく、また通電による消耗に伴う強度
の低下も、見掛は密度が大きいため、消耗割合が小さく
すなわち残存電極量が多いので、強度低下の影響を受け
ることが少ないことが判る。
As can be seen from this table, the bending strength of the electrode of the present invention is greater than that of the comparative example electrode, and the strength decrease due to wear due to energization is apparently larger, so the wear rate is smaller, that is, the amount of remaining electrode is smaller. It can be seen that there is little influence of strength reduction.

(発明の効果) 以上のように、本発明による高密度化電気浸透脱水用電
極は、従来技術の炭素繊維を主体とする炭素材からなる
最適電気浸透脱水用電極に較べて、強度が高く、密度も
高くて電極の通電に伴う消耗の影響を受けることが少な
いため、長期間の使用が可能となり、電気浸透脱水の経
済性を高めることができる効果がある。
(Effects of the Invention) As described above, the high-density electrode for electroosmotic dehydration according to the present invention has higher strength than the optimal electrode for electroosmotic dehydration made of a carbon material mainly composed of carbon fibers of the prior art. Since it has a high density and is less affected by wear and tear caused by energization of the electrode, it can be used for a long period of time and has the effect of increasing the economic efficiency of electroosmotic dehydration.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はフィルタープレス形式の装置による電気浸透脱
水の要領を示すその最初の段階の図、第2図はその中間
段階の図、第3図はその最後の段階の図である。 (a)・・・濾板、(b)・・・濾布、(C)・・・原
液人口、(d)・・・出口、(e)・・・圧搾膜、(f
)・・・電極、(g)・・・脱水ケーキ。
FIG. 1 is a diagram showing the first stage of electroosmotic dehydration using a filter press type device, FIG. 2 is a diagram of the intermediate stage, and FIG. 3 is a diagram of the final stage. (a)...filter plate, (b)...filter cloth, (C)...undiluted solution population, (d)...outlet, (e)...press membrane, (f
)... Electrode, (g)... Dehydrated cake.

Claims (1)

【特許請求の範囲】[Claims]  対向する陽極と陰極との間に被脱水処理物を挟み、電
極背後の圧搾膜からの加圧により圧搾脱水するとともに
電極背後からの給電により直流通電して電気浸透脱水す
る装置の電極であって、炭素繊維と樹脂との混合物を電
極形状に形成したのち焼成して樹脂を炭素化させてなる
電極体に、樹脂を含浸し焼成して含浸樹脂を炭素化させ
る操作を1乃至複数回繰返して炭素密度を増大させてな
ることを特徴とする高密度化電気浸透脱水用電極。
An electrode for an apparatus in which a material to be dehydrated is sandwiched between an anode and a cathode facing each other, and the material to be dehydrated is compressed and dehydrated by applying pressure from a compressing membrane behind the electrode, and at the same time, the material is subjected to electro-osmotic dehydration by applying direct current through power supply from behind the electrode. , an electrode body made by forming a mixture of carbon fiber and resin into an electrode shape and then firing it to carbonize the resin is impregnated with resin and firing it to carbonize the impregnated resin, which is repeated one or more times. A high-density electroosmotic dehydration electrode characterized by increasing carbon density.
JP2016449A 1990-01-25 1990-01-25 Electrode for use in high density electroosmotic dehydration Pending JPH03221108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016449A JPH03221108A (en) 1990-01-25 1990-01-25 Electrode for use in high density electroosmotic dehydration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016449A JPH03221108A (en) 1990-01-25 1990-01-25 Electrode for use in high density electroosmotic dehydration

Publications (1)

Publication Number Publication Date
JPH03221108A true JPH03221108A (en) 1991-09-30

Family

ID=11916555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016449A Pending JPH03221108A (en) 1990-01-25 1990-01-25 Electrode for use in high density electroosmotic dehydration

Country Status (1)

Country Link
JP (1) JPH03221108A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101823820A (en) * 2010-04-06 2010-09-08 张凯茵 Method and device for assisting in hydrolyzing and sterilizing sludge by press filter with electric motive force

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6430613A (en) * 1987-07-24 1989-02-01 Shinko Pfaudler Electrode for electroendosmotic dehydration

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6430613A (en) * 1987-07-24 1989-02-01 Shinko Pfaudler Electrode for electroendosmotic dehydration

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101823820A (en) * 2010-04-06 2010-09-08 张凯茵 Method and device for assisting in hydrolyzing and sterilizing sludge by press filter with electric motive force

Similar Documents

Publication Publication Date Title
US4894355A (en) Flexible, water-repellent baked carbon plate, its production, fuel cell electrode, fuel cell electrode plate and its production and fuel cell
EP1942536B1 (en) Porous carbon electrode substrate
CN107408706B (en) Porous carbon electrode substrate, method for producing same, gas diffusion layer, and membrane-electrode assembly for fuel cell
JP3356534B2 (en) Electrolyte holding plate and method for manufacturing the same
CN111799475A (en) Special-shaped fuel cell gas diffusion layer, preparation method, fuel cell and assembly method
JPH03221108A (en) Electrode for use in high density electroosmotic dehydration
JP3332980B2 (en) Manufacturing method of polarizable electrode material
JP2001196071A (en) Carbon electrode material assembly and manufacturing method thereof
CN111082069A (en) Implanted gradient composite electrode, production method and application thereof
JP4001673B2 (en) Porous carbon electrode for water treatment
US5092974A (en) Electrode and method for compressive and electro-osmotic dehydration
JPH0785766B2 (en) Electroosmotic dehydration electrode
JP3616882B2 (en) Electroosmotic dehydration electrode plate
JP4080095B2 (en) Manufacturing method of thick porous carbon material
JPH03221107A (en) Electroosmotic dehydration electrode
JP3132098B2 (en) Manufacturing method of polarizable electrode material
JPH0299107A (en) Electrode for use in electroosmosis dehydration and electroosmosis dehydration process
JPH0773646B2 (en) Batch electroosmosis dehydration method
JPH1081575A (en) Production of porous carbon material
JPS5848036B2 (en) gas diffusion electrode
JP3183681B2 (en) Method for producing highly conductive porous carbon material
JPH0859360A (en) Production of porous carbon material
Kordesch et al. The technology of PTFE-bonded carbon electrodes
JP3159754B2 (en) Electric double layer capacitor
Kordesch et al. Carbon electrode manufacturing techniques