JPH0299107A - Electrode for use in electroosmosis dehydration and electroosmosis dehydration process - Google Patents

Electrode for use in electroosmosis dehydration and electroosmosis dehydration process

Info

Publication number
JPH0299107A
JPH0299107A JP63229250A JP22925088A JPH0299107A JP H0299107 A JPH0299107 A JP H0299107A JP 63229250 A JP63229250 A JP 63229250A JP 22925088 A JP22925088 A JP 22925088A JP H0299107 A JPH0299107 A JP H0299107A
Authority
JP
Japan
Prior art keywords
electrode
dehydration
carbon
carbonaceous material
electrolyzed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63229250A
Other languages
Japanese (ja)
Other versions
JPH0732849B2 (en
Inventor
Shiro Kondo
史朗 近藤
Shigeru Sano
佐野 滋
Kishio Miwa
輝之男 三輪
Tamotsu Takizawa
瀧沢 保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Pantec Co Ltd
Toray Industries Inc
Original Assignee
Shinko Pantec Co Ltd
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Pantec Co Ltd, Toray Industries Inc filed Critical Shinko Pantec Co Ltd
Priority to JP63229250A priority Critical patent/JPH0732849B2/en
Publication of JPH0299107A publication Critical patent/JPH0299107A/en
Publication of JPH0732849B2 publication Critical patent/JPH0732849B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Sludge (AREA)

Abstract

PURPOSE:To improve dehydration rate by causing electrode material composed of carbonaceous material to carry thereon organic compounds which are electrolyzed by energizing them With D.C. current. CONSTITUTION:Electrode material composed of carbonaceous material such as sintered carbon plate, glassy carbon etc., is caused to carry thereon organic compounds which are electrolyzed by energizing them with D.C. current (e.g., preferably, compounds containing carboxyl groups, such as formic acid, acetic acid, oxalic acid, tartaric acid, etc.), whereby oxidation reaction of carbon material due to nascent oxygen generated by electrochemical reactions between carbon material and water or electrolysis of water is reduced, resulting in prolonged life of electrodes, whereby economical electroosmosis dehydration is achieved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、下水汚泥等の被脱水処理物を挾み圧搾しなが
ら対向電極間に直流通電を行って脱水の促進を図る場合
に、これを有利条件のもとに実施することを可能とする
炭素質材料からなる電極の新規電極構成および電気浸透
脱水方法に関する。
Detailed Description of the Invention (Industrial Field of Application) The present invention is useful for promoting dewatering by applying direct current between opposing electrodes while sandwiching and squeezing a material to be dehydrated, such as sewage sludge. The present invention relates to a new electrode structure of an electrode made of a carbonaceous material and an electroosmotic dehydration method that enables the implementation of this under advantageous conditions.

(従来の技術) 第1図(イ)(ロ)および(ハ)は電気浸透脱水をフィ
ルタープレス形式脱水装置により実施する場合の操作過
程の主要段階を示す。
(Prior Art) Figures 1 (a), (b), and (c) show the main steps of the operating process when electroosmotic dehydration is carried out using a filter press type dehydrator.

第1図(イ)では、フィルタープレスの1対の濾板(a
)(a)間に濾布0))(b)、圧搾膜(C)を挾んで
閉合し、被脱水処理物である汚泥を原液ポンプにより原
液入口(d)から濾布間に圧入し、濾布を透過した脱水
液を濾液出口(e)から機外に排出する。
In Figure 1 (a), a pair of filter plates (a) of a filter press are shown.
) (a) Filter cloth 0)) (b) is sandwiched and closed with a compressed membrane (C), and sludge, which is the material to be dehydrated, is forced into the filter cloth from the raw solution inlet (d) using a raw solution pump, The dehydrated liquid that has passed through the filter cloth is discharged to the outside of the machine from the filtrate outlet (e).

第1図(ロ)では、濾布外側の圧搾膜をその背後に導入
した圧搾圧力により膨張させて前面の1次脱水汚泥を加
圧し固化汚泥ケーキからさらに水を搾り出す。この圧搾
脱水の後期には、濾布外側の電極(f)げ)間に濾布を
通して被脱水処理物に直流通電して電極浸透作用により
追加脱水し脱水率を高くする。第1図(ハ)では濾板を
開き濾布を引下して脱水ケーキ(g)を機外に取出す。
In FIG. 1(B), the squeeze membrane on the outside of the filter cloth is expanded by the squeeze pressure introduced behind it, pressurizes the primary dewatered sludge in the front, and squeezes out more water from the solidified sludge cake. In the latter stage of this pressing dehydration, direct current is applied to the material to be dehydrated through the filter cloth between the electrodes (f) on the outside of the filter cloth, and additional dehydration is performed by the electrode osmosis action to increase the dehydration rate. In FIG. 1 (c), the filter plate is opened, the filter cloth is pulled down, and the dehydrated cake (g) is taken out of the machine.

電気浸透脱水はベルトプレス装置等で実施することも可
能である(例えば特開昭60−14208、特開昭62
−61608号参照)。
Electroosmotic dehydration can also be carried out using a belt press device, etc.
-61608).

このように、下水汚泥等の難脱水性の有機質を多く含む
汚泥を圧搾脱水する過程で汚泥中に直流電流を通ずると
、単に圧搾しただけでは脱水できない汚泥中の水分も電
気浸透作用により陰極側に吸引されて外部に移動し脱水
が促進され、圧搾圧力のみによる脱水に較べて脱水ケー
キの含水率を著しく低下させることができる。
In this way, when a direct current is passed through the sludge in the process of compressing and dewatering sludge that contains a large amount of organic matter that is difficult to dewater, such as sewage sludge, water in the sludge that cannot be dehydrated simply by pressing is transferred to the cathode side by electroosmosis. The water content of the dehydrated cake can be significantly lowered compared to dehydration using only squeezing pressure.

例えば、凝集、水切りにより予備凝縮した下水汚脱をフ
ィルタープレスに供給して3kgf/c111の圧搾圧
力で約20分間脱水処理を行うと、脱水ケーキの含水率
は80〜85%となりこれ以上の圧力、時間をかけても
脱水ケーキ含水率の低下にさほどの効果はない。これに
対し脱水の途中で40V程度の直流電圧を印加して約1
5分間通電を行うと、脱水ケーキの含水率は50%程度
にまで低下し、脱水ケーキの体積は172以下に減少す
る。
For example, if pre-condensed sewage condensation through coagulation and draining is supplied to a filter press and dehydrated for about 20 minutes at a compression pressure of 3 kgf/c111, the water content of the dehydrated cake will be 80-85%, and if the pressure is higher than this, the moisture content of the dehydrated cake will be 80-85%. However, even if it takes a long time, there is no significant effect on reducing the moisture content of the dehydrated cake. On the other hand, during dehydration, a DC voltage of about 40V is applied to
When electricity is applied for 5 minutes, the moisture content of the dehydrated cake decreases to about 50%, and the volume of the dehydrated cake decreases to 172 or less.

汚泥の導電性が低くて電気浸透脱水の適用が困難となる
場合には、例えば予OI濃縮した汚泥中に食塩、塩化カ
ルシウム、硫酸ソーダ、硝酸ナトリウム等の無機塩を添
加し汚泥の電気伝導度を向上させれば処理できるので、
汚泥の性状面からする制約は殆ど受けない。
If the electrical conductivity of the sludge is low and it is difficult to apply electroosmotic dewatering, for example, inorganic salts such as common salt, calcium chloride, sodium sulfate, and sodium nitrate may be added to the pre-OI concentrated sludge to increase the electrical conductivity of the sludge. It can be processed by improving the
There are almost no restrictions due to the properties of sludge.

ところで電気浸透脱水に使用する電極は各種の機械的、
電気的、電気化学的な要求特性を充足する必要があって
、従来使用可能な電極としては金属板、炭素焼結板等が
あるが、これは寿命の点では未だ満足なものではない。
By the way, the electrodes used for electroosmotic dehydration are of various mechanical,
It is necessary to satisfy required electrical and electrochemical characteristics, and conventionally usable electrodes include metal plates and carbon sintered plates, but these are still unsatisfactory in terms of life.

例えばステンレス鋼、ニッケル鋼等の金属板電極は直流
通電によりイオン化して溶出消耗して寿命が短いばかり
でな(、特にクロムの溶出は二次公害を起こす問題があ
る。またチタニウム合金に白金被覆した金属電極は陽極
として通電消耗が少なく通電性能は良いが、非常に高価
であり、また逆極性通電時に白金の剥離が起こるので使
用できない。また従来使用される一般的な炭素焼結板の
電極は、ステンレス鋼、ニッケル鋼等の金属板電極に比
較して電気化学的な腐蝕の程度は少ないが、それでも次
の反応式、 c+2L O−+COt +4H” +4 eにより水
と電気化学的に反応するし、また発生期の酸素により酸
化消耗を受はバインダコークス部が選択的に電蝕されて
炭素質の物理的脱落が多いため、やはり寿命が充分でな
い。
For example, metal plate electrodes made of stainless steel, nickel steel, etc. are ionized by DC current, elute and wear out, and have a short lifespan (in particular, chromium elution poses a problem of secondary pollution.Also, titanium alloys are plated with platinum). The metal electrode used as an anode has low current consumption and good current carrying performance, but it is very expensive and the platinum peels off when reverse polarity current is applied, so it cannot be used. Although the degree of electrochemical corrosion is lower than that of metal plate electrodes such as stainless steel and nickel steel, it still reacts electrochemically with water according to the following reaction formula, c+2L O−+COt +4H” +4 e However, when the binder coke is subjected to oxidative consumption due to oxygen during the generation stage, the binder coke portion is selectively electrolytically eroded, resulting in many physical drop-offs of carbonaceous material, so that the life is still insufficient.

(発明が解決しようとする課題) 従来技術の電気浸透脱水用電極の前記問題点を解決する
ための一環として、先に炭素繊維を含有する炭素質材料
からなる電気浸透脱水用電極を新たに開発し特許出願し
た(特願昭62−186315号)。この電極は陽極、
陰極の何れにも使用可能であり、その脱水効率を高度に
発揮させるための極性変化による電気浸透脱水方法を新
たに開発し特許出願した(特願昭62−186316号
)。この電極は、電蝕性試験の結果によれば、従来技術
の実用金属板電極、カーボン電極の何れと比較しても腐
蝕減量が顕著に小さく 、0.03g/AHの程度であ
る。同条件のもとで、従来技術のステンレス鋼電極の腐
蝕減量は0.1175g/AH1従来技術のカーボン電
極各種のそれは0.06〜0.11g/AHの程度であ
る。
(Problems to be Solved by the Invention) In order to solve the above-mentioned problems of the conventional electrode for electroosmotic dehydration, we first developed a new electrode for electroosmotic dehydration made of a carbonaceous material containing carbon fibers. A patent application was filed (Japanese Patent Application No. 186315-1982). This electrode is an anode,
We have developed a new electroosmotic dehydration method by changing the polarity that can be used for any cathode, and have applied for a patent (Japanese Patent Application No. 186316/1982) in order to maximize the dehydration efficiency. According to the results of the galvanic corrosion test, this electrode has a significantly smaller corrosion loss than either conventional metal plate electrodes or carbon electrodes, which is about 0.03 g/AH. Under the same conditions, the corrosion loss of the stainless steel electrode of the prior art is 0.1175 g/AH, and that of various types of prior art carbon electrodes is about 0.06-0.11 g/AH.

電気浸透脱水を経済的に優位なものにするたφには、そ
の主要役割を受持つ電極が同時に装置費用の大きな部分
を占めるものでもあるので、前記電極の一層の寿命の向
上が支配点重要性を持つ。
In order to make electroosmotic dehydration economically advantageous, the electrodes that play the main role also account for a large portion of the equipment cost, so further improving the lifespan of the electrodes is important. have sex.

本発明は、前記の従来技術および先行技術の電極に較べ
て、他の各種特性の点で不利を招かず、電極の寿命に関
し一層改善された結果を得ることのできる電気浸透脱水
用電極および電気浸透脱水方法を提供し、以て電気浸透
脱水を経済的に一層有利な条件のもとに実施可能である
ようにすることを課題とする。
The present invention provides an electrode for electroosmotic dehydration and an electric current which, compared to the prior art and prior art electrodes described above, are not disadvantageous in terms of other properties and which provide improved results with respect to electrode life. It is an object of the present invention to provide an osmotic dehydration method, thereby making it possible to carry out electroosmotic dehydration under economically more advantageous conditions.

(課題を解決するための手段) 上記課題に対し、本発明は、電気浸透脱水に使用する電
極の構成として、炭素質材料からなる電極材に直流通電
により電気分解する有機化合物を担持させたことを特徴
とする。
(Means for Solving the Problems) In order to solve the above problems, the present invention provides an electrode structure for use in electroosmotic dehydration in which an electrode material made of a carbonaceous material supports an organic compound that is electrolyzed by direct current. It is characterized by

さらに同じ作用、効果を発揮させる電気浸透脱水方法と
して、被脱水処理物を挾んで炭素質材料からなる1対の
陽極および陰極間に直流通電して電気浸透脱水する場合
に、直流通電により電気分解する有機化合物を陽極に接
触させることを特徴とする。
Furthermore, as an electroosmotic dehydration method that exhibits the same action and effect, when the material to be dehydrated is sandwiched and a direct current is applied between a pair of anode and cathode made of carbonaceous material for electroosmotic dehydration, electrolysis by direct current is applied. The organic compound is brought into contact with the anode.

課題の解決手段としては、実施上次の諸事項を考慮する
As a means of solving the problem, the following matters should be considered in implementation.

宜U化金生■橿且 通電によって電極表面で電気化学的に反応する有機化学
物を使用する。水溶性であり容易に入手できるこの種有
機化合物として、カルボオキシル基を含む化合物が好ま
しく、この種の化合物としては、ギ酸、酢酸、シュウ酸
、酒石酸、りんご酸、こはく酸等の有機酸およびそれら
のナトリウム塩、カルシウム塩、カリウム塩、マグネシ
ウム塩、アンモニウム塩等があげられる。
It uses organic chemicals that react electrochemically on the electrode surface when energized. As this type of organic compound that is water-soluble and easily available, compounds containing a carboxyl group are preferable, and examples of this type of compound include organic acids such as formic acid, acetic acid, oxalic acid, tartaric acid, malic acid, and succinic acid; Examples include sodium salts, calcium salts, potassium salts, magnesium salts, and ammonium salts.

さらには、アルコール類やアルデヒド類の有機化合物を
これらに添加してもよい。これら有機化合物の電気化学
的な反応を促進させるために触媒を電極表面に存在させ
たり、予め電極内部に混入させてもよい。
Furthermore, organic compounds such as alcohols and aldehydes may be added to these. In order to promote the electrochemical reaction of these organic compounds, a catalyst may be present on the electrode surface or may be mixed into the electrode in advance.

これらは実施を有利にする具体例を示したものであるか
ら、これら例示によって本発明は限定されない。
Since these are specific examples that are advantageous for implementation, the present invention is not limited by these examples.

極との ゛のヒ 上記の有機化合物を電極材に担持させるには、次に例示
するようにする。
The above organic compound can be supported on the electrode material in the following manner.

すなわち、多孔質の炭素質材料あるいは炭素繊維を含有
する多孔質の炭素質材料の内部に、上記有機化合物の水
溶液またはエマルシヨンを真空および/または加圧によ
り含浸させる。上記水溶液には、例えばポリビニールア
ルコール等の粘結剤を添加するのがよい。そして炭素多
孔質の内部に含浸させた後に、乾燥して溶媒を除去する
That is, a porous carbonaceous material or a porous carbonaceous material containing carbon fibers is impregnated with an aqueous solution or emulsion of the organic compound by vacuum and/or pressure. It is preferable to add a binder such as polyvinyl alcohol to the aqueous solution. After impregnating the inside of the carbon porous material, the solvent is removed by drying.

あるいは、ポリエチレン、ポリプロピレン樹脂等の熱可
塑性合成樹脂中に炭素粉末とともに上記有機化合物の粉
末を混入し賦形して電極とする。
Alternatively, the above-mentioned organic compound powder is mixed with carbon powder into a thermoplastic synthetic resin such as polyethylene or polypropylene resin and shaped into an electrode.

他方、上記有機化合物を電極と別体にして電気浸透脱水
の際に電極の表面に接触させる場合には、次に例示する
ようにする。
On the other hand, when the organic compound is made separate from the electrode and brought into contact with the surface of the electrode during electroosmotic dehydration, the following example is used.

すなわち、下水汚泥等の被脱水処理物を凝集、水切りに
より予備濃縮し電極を備えたフィルタープレス型脱水機
を使用して先ず圧搾脱水し次いで電気浸透脱水する過程
において、予備濃縮した汚泥中に上記有機化合物を添加
する。このようにすれば圧搾脱水過程で上記有機化合物
が水の移動に伴われて電極表面に接触する状態となる。
That is, in the process of pre-concentrating the material to be dewatered such as sewage sludge by coagulating and draining, first compressing it using a filter press type dehydrator equipped with electrodes, and then electro-osmotic dehydration, the above-mentioned substances are added to the pre-concentrated sludge. Add organic compound. In this way, the organic compound comes into contact with the electrode surface as water moves during the compression dehydration process.

あるいは、圧搾脱水まで行った後に、−旦プレスを開い
て汚泥ケーキ、濾布、陽極表面を上記有機化合物の水溶
液で濡らし、プレスを閉じて電気浸透脱水を実施する。
Alternatively, after pressing and dewatering, the press is opened, the sludge cake, the filter cloth, and the anode surface are wetted with the aqueous solution of the organic compound, and the press is closed to perform electroosmotic dehydration.

からなる  の種 とそれとの 本発明において、炭素質材料からなる電極材としては、
炭素焼結板、グラジ−カーボン材、炭素粉末を混入させ
て導電性を付与したプラスチックの振動成形カーボン材
等を使用することもできるが、特に好ましいのは前出特
願昭62−186315号にかかる炭素繊維を含有する
炭素質材料からなる電極であって、具体的には、炭素質
の10〜15重量%が繊維長2〜20mmであり、かつ
実質的に二次元平面内にランダムな方向に分散されて積
層されており、炭素繊維が炭素によって結着している炭
素質電極が好ましい。
In the present invention, the electrode material made of carbonaceous material is
It is also possible to use carbon sintered plates, grady carbon materials, plastic vibration molded carbon materials mixed with carbon powder to give conductivity, but particularly preferred is the method described in the aforementioned Japanese Patent Application No. 186315/1983. An electrode made of a carbonaceous material containing such carbon fibers, specifically, 10 to 15% by weight of the carbonaceous material has a fiber length of 2 to 20 mm, and is distributed in substantially random directions within a two-dimensional plane. It is preferable to use a carbonaceous electrode in which the carbon fibers are dispersed and laminated, and the carbon fibers are bound by carbon.

かかる炭素質電極は、例えばポリアクリロニトリル系の
単糸径4〜15μm、繊維長2〜20胴の炭素短繊維を
使用し、ポリビニールアルコール等の抄造用バインダー
を水で希釈した抄造媒体と混合、撹拌してシート状、板
状に抄造し、乾燥して溶媒を除去して中間基材とし、こ
れにフェノール樹脂等の炭素化し得る樹脂の溶液を含浸
し、ホットプレス成形して樹脂を硬化させ、のち不活性
ガス雰囲気中で1000〜3000″Cに加熱して含浸
樹脂を炭化させることにより得られる。
Such a carbonaceous electrode is made by using, for example, polyacrylonitrile-based short carbon fibers with a single fiber diameter of 4 to 15 μm and a fiber length of 2 to 20 fibers, mixed with a papermaking medium in which a binder for papermaking such as polyvinyl alcohol is diluted with water, The material is stirred and made into sheets or plates, dried to remove the solvent, and used as an intermediate base material. This is impregnated with a solution of a carbonizable resin such as phenol resin, and hot press molded to harden the resin. , and then heated to 1000 to 3000''C in an inert gas atmosphere to carbonize the impregnated resin.

このようにして得る炭素質電極あるいはその他の多孔質
電極に対しては、電極板を電気浸透脱水装置に組込んだ
後に、例えば毛細管現象によって気孔部に上記有機化合
物の水溶液を含浸させてもよい。
For carbonaceous electrodes or other porous electrodes obtained in this way, the pores may be impregnated with an aqueous solution of the organic compound by capillary action, for example, after the electrode plate is installed in an electroosmotic dehydration device. .

五機化豆批至1 本発明は上記有機化合物の量を限定するものではないが
、例えば予備濃縮した下水汚泥に添加する場合、該汚泥
の固形分に対して10重量%以上添加するのが好ましい
The present invention does not limit the amount of the organic compound, but for example, when adding it to pre-concentrated sewage sludge, it is recommended to add it in an amount of 10% by weight or more based on the solid content of the sludge. preferable.

(作 用) 本発明によると、電気浸透脱水機の炭素質材料からなる
陽極の表面または内部に、直流通電によつて電気分解す
る有機化合物を担持または接触させることによって、炭
素材と水との電気化学的反応や水の電気分解によって発
生する発生期の酸素による炭素材の酸化反応が減少し、
電極寿命が向上するものと思われる。
(Function) According to the present invention, an organic compound that is electrolyzed by direct current is supported or brought into contact with the surface or inside of the anode made of a carbonaceous material of an electroosmotic dehydrator. The oxidation reaction of carbon materials due to nascent oxygen generated by electrochemical reactions and water electrolysis is reduced,
It is thought that the electrode life will be improved.

(実施例) (1)電極の実施例 東し株式会社製ポリアクリロニトリル系炭素繊維、トレ
カーT−300を長さ12mn+に切断し、ポリビニー
ルアルコールの水溶液に分散させて抄造した。次いで抄
造紙にフェノール樹脂を含浸させ乾燥させたのちホット
プレスにより樹脂を硬化させた。次いで窒素雰囲気中に
て1600°Cで加熱焼成してフェノール樹脂を炭化し
、厚さ約1胴、見掛密度1.05g/crA、気孔率約
40%の炭素繊維を含有する炭素質材料からなる電極、
すなわち基体電極CB)を得た。この基体電極(B)の
試料は先行特願昭62−186315号にかかるもので
あり、圧縮破壊強度100 kg/af1以上の強度、
電気抵抗値0.015Ωcmの導電性を持つ。
(Example) (1) Electrode Example Polyacrylonitrile carbon fiber Torecar T-300 manufactured by Toshi Co., Ltd. was cut into lengths of 12 mm+ and dispersed in an aqueous solution of polyvinyl alcohol to form paper. Next, the paper was impregnated with a phenolic resin, dried, and then hot pressed to harden the resin. Then, the phenol resin is carbonized by heating and baking at 1600°C in a nitrogen atmosphere, and a carbonaceous material containing carbon fibers having a thickness of about 1 cylinder, an apparent density of 1.05 g/crA, and a porosity of about 40% is made. electrode,
That is, a base electrode CB) was obtained. This sample of the base electrode (B) is related to the prior patent application No. 186315/1982, and has a compressive breaking strength of 100 kg/af1 or more,
It has conductivity with an electrical resistance value of 0.015Ωcm.

この基体電極(B)に対し、ポリビニールアルコール0
.5重量%を含む水溶液中に直流通電により電気分解す
る有機化合物としての酒石酸を飽和溶解させた液を真空
含浸させて100°Cで乾燥させる操作を5回繰返して
、炭素質材料電極(B)の多孔部に酒石酸を担持させて
本発明電極(A)の試料を得た。
For this base electrode (B), polyvinyl alcohol 0
.. A carbonaceous material electrode (B) was obtained by repeating the procedure of vacuum impregnation with a saturated solution of tartaric acid as an organic compound that can be electrolyzed by direct current in an aqueous solution containing 5% by weight and drying at 100°C five times. A sample of the electrode (A) of the present invention was obtained by supporting tartaric acid in the pores of the electrode.

(I[)電気浸透脱水のための直流通電とそれによる電
極の腐蝕減量試験 (n−1)比較例 前記の基体電極(B)の試料を用い、第2図に示すよう
に陽極(1)および陰極(2)とし、食塩4g/lの水
溶液(3)中で直流電源(4)、電圧計(5)により0
.02A/dの電流密度で20分間隔で極性変換させな
がら3時間通電した。
I and a cathode (2), in an aqueous solution (3) containing 4 g/l of common salt, and a DC power supply (4) and a voltmeter (5).
.. Current was applied for 3 hours at a current density of 0.02 A/d while changing the polarity at 20 minute intervals.

電極の消耗量は0.0258/AHであった。The amount of electrode consumption was 0.0258/AH.

(n−2)実施例(A) 本発明電極(八)の試料を用い、食塩4g/2を含む水
溶液中で比較例(1)と同様の試験条件で直流通電を実
施した。
(n-2) Example (A) Using a sample of the electrode (8) of the present invention, direct current was applied in an aqueous solution containing 4 g/2 of common salt under the same test conditions as in Comparative Example (1).

通電終了後、上記電極を窒素雰囲気下で500°Cで熱
処理し、電極に担持されている残りの酒石酸およびポリ
ビニールアルコールを熱分解し、炭素質電極だけの腐蝕
減量を測定したところ0.005g/AHであった。
After energization, the electrode was heat-treated at 500°C in a nitrogen atmosphere to thermally decompose the remaining tartaric acid and polyvinyl alcohol supported on the electrode, and the corrosion loss of only the carbonaceous electrode was measured to be 0.005 g. /AH.

(ll−3)実施例(B) 基体電極(B)の試料を用い、直流通電により電気分解
する有機化合物である酒石酸4g/2の水溶液中で比較
例、実施例(1)と同様の試験条件で直流通電して本発
明方法を実施した。
(ll-3) Example (B) A test similar to Comparative Example and Example (1) using a sample of the base electrode (B) in an aqueous solution of 4 g/2 tartaric acid, which is an organic compound that is electrolyzed by direct current. The method of the present invention was carried out by applying direct current under the following conditions.

実験終了後、水溶液中の酒石酸濃度は電気化学的に反応
分解して約2 g/ lに半減しており、他方炭素質電
極の消耗量を測定したところ約0.006g/八Hであ
へた。
After the experiment was completed, the tartaric acid concentration in the aqueous solution was electrochemically decomposed and reduced by half to approximately 2 g/l, while the consumption of the carbonaceous electrode was measured to be approximately 0.006 g/8H. Ta.

上記の酒石酸の代わりに、取去の有機化合物を用いた場
合の炭素電極の消耗量も合わせて示す。
The amount of consumption of the carbon electrode when an organic compound is used instead of the tartaric acid described above is also shown.

(発明の効果) 以上のように、本発明によると、電気浸透脱水において
陽極表面に通電によって電気分解する有機化合物を存在
させることにより、特に炭素質材料からなる電極の消耗
量、寿命を顕著に改善し、経済的な電気浸透脱水を行い
得る効果がある。
(Effects of the Invention) As described above, according to the present invention, by providing an organic compound that is electrolyzed by electricity on the anode surface in electroosmotic dehydration, the amount of wear and life of the electrode made of carbonaceous material can be significantly reduced. It has the effect of improving and economical electroosmotic dehydration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(イ)は本発明に用いるフィルタープレス形式の
電気浸透脱水装置の最初の操作過程を示す図、第1図(
ロ)は操作工程途中の図、第1図(ハ)は最終の操作工
程の図、第2図は本発明の実験実施の通電試験に用いた
装置の概要を示す図である。 (1)・・・陽極、(2)・・・陰極、(3)・・・水
溶液、(4)・・・直流電源、(5)・・・電圧計、(
a)・・・濾板、(b)・・・濾布、(C)・・・圧搾
膜、(d)・・・原液入口、(e)・・・濾液出口、げ
)・・・電極、((2)・・・脱水ケーキ。
Figure 1 (a) is a diagram showing the initial operation process of the filter press type electroosmotic dehydration equipment used in the present invention;
B) is a diagram during the operation process, FIG. 1C is a diagram of the final operation process, and FIG. 2 is a diagram showing an outline of the apparatus used for the energization test in the experiment of the present invention. (1)... Anode, (2)... Cathode, (3)... Aqueous solution, (4)... DC power supply, (5)... Voltmeter, (
a)...filter plate, (b)...filter cloth, (C)...squeezed membrane, (d)...stock solution inlet, (e)...filtrate outlet, barb)...electrode , ((2)... dehydrated cake.

Claims (2)

【特許請求の範囲】[Claims] (1)電気浸透脱水に使用する電極として、炭素質材料
からなる電極材に直流通電により電気分解する有機化合
物を担持させたことを特徴とする電気浸透脱水用電極。
(1) An electrode for electroosmotic dehydration, characterized in that the electrode is made of a carbonaceous material and supports an organic compound that is electrolyzed by direct current.
(2)被脱水処理物を挾んで炭素質材料からなる1対の
陽極および陰極間に直流通電して電気浸透脱水する場合
に、直流通電により電気分解する有機化合物を陽極に接
触させることを特徴とする電気浸透脱水方法。
(2) When performing electroosmotic dehydration by applying direct current between a pair of anode and cathode made of a carbonaceous material while sandwiching the object to be dehydrated, the organic compound to be electrolyzed by the direct current is brought into contact with the anode. Electroosmotic dehydration method.
JP63229250A 1988-09-13 1988-09-13 Electroosmotic dehydration electrode and electroosmotic dehydration method Expired - Lifetime JPH0732849B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63229250A JPH0732849B2 (en) 1988-09-13 1988-09-13 Electroosmotic dehydration electrode and electroosmotic dehydration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63229250A JPH0732849B2 (en) 1988-09-13 1988-09-13 Electroosmotic dehydration electrode and electroosmotic dehydration method

Publications (2)

Publication Number Publication Date
JPH0299107A true JPH0299107A (en) 1990-04-11
JPH0732849B2 JPH0732849B2 (en) 1995-04-12

Family

ID=16889168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63229250A Expired - Lifetime JPH0732849B2 (en) 1988-09-13 1988-09-13 Electroosmotic dehydration electrode and electroosmotic dehydration method

Country Status (1)

Country Link
JP (1) JPH0732849B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005169165A (en) * 2003-12-08 2005-06-30 Fuji Electric Holdings Co Ltd Treatment method for organic waste and its system
WO2009016935A1 (en) * 2007-07-27 2009-02-05 Kurita Water Industries Ltd. Sludge dewatering method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005169165A (en) * 2003-12-08 2005-06-30 Fuji Electric Holdings Co Ltd Treatment method for organic waste and its system
WO2009016935A1 (en) * 2007-07-27 2009-02-05 Kurita Water Industries Ltd. Sludge dewatering method
JP2009028663A (en) * 2007-07-27 2009-02-12 Kurita Water Ind Ltd Sludge dewatering method

Also Published As

Publication number Publication date
JPH0732849B2 (en) 1995-04-12

Similar Documents

Publication Publication Date Title
WO2014127501A1 (en) Oxygen and nitrogen co-doped polyacrylonitrile-based carbon fiber and preparation method thereof
EP0092603A1 (en) Method of making electrodes
WO1980002162A1 (en) Process for producing hydrogen
JPS60114315A (en) Dehydrating method of organic sludge
FR2581082A1 (en) METHOD OF USING ANODES CONTAINING A NICO2O4 CATALYST FOR THE ELECTROLYSIS OF POTASSIUM HYDROXIDE SOLUTIONS AND METHOD OF MANUFACTURING SUCH ANODES
JPH0299107A (en) Electrode for use in electroosmosis dehydration and electroosmosis dehydration process
CN110372068B (en) Preparation method and application of COF-loaded metal hydroxide electrode
Skowroński et al. Electrooxidation of phenol at exfoliated graphite electrode in alkaline solution
JP4001673B2 (en) Porous carbon electrode for water treatment
JP4844942B2 (en) Hydrophilic porous carbon material and method for producing the same
KR20040051155A (en) Method to making the carbon electrode
US5092974A (en) Electrode and method for compressive and electro-osmotic dehydration
JPH0773646B2 (en) Batch electroosmosis dehydration method
JPS62240784A (en) Cathode film unit and its production
JPS58122085A (en) Dehydrating method
JPH0785766B2 (en) Electroosmotic dehydration electrode
JP3616882B2 (en) Electroosmotic dehydration electrode plate
Ren et al. Usage of anisomeric square pulse with fluctuating frequency for electrochemical generation of FeO42− in CS–CMC bipolar membrane electrolysis cell
CN105797483A (en) Graphene conductive composite filter cloth for electric sludge dewatering equipment and manufacturing method and installing and using methods of graphene conductive composite filter cloth
JPH03221108A (en) Electrode for use in high density electroosmotic dehydration
CN113981490B (en) Composite material of palladium-containing metal organic framework compound modified foam nickel and preparation method and application thereof
JPS6097012A (en) Dehydration treatment system of sludge
JPH03221107A (en) Electroosmotic dehydration electrode
JPH091199A (en) Electroosmotic sludge dehydration method and device therefor
JPS6229069A (en) Bfe-type electrode for fuel cell or the like