JPH0322074B2 - - Google Patents

Info

Publication number
JPH0322074B2
JPH0322074B2 JP57038776A JP3877682A JPH0322074B2 JP H0322074 B2 JPH0322074 B2 JP H0322074B2 JP 57038776 A JP57038776 A JP 57038776A JP 3877682 A JP3877682 A JP 3877682A JP H0322074 B2 JPH0322074 B2 JP H0322074B2
Authority
JP
Japan
Prior art keywords
electronics module
cooling plate
electronics
electronic device
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57038776A
Other languages
Japanese (ja)
Other versions
JPS58155799A (en
Inventor
Noryuki Nakahara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3877682A priority Critical patent/JPS58155799A/en
Publication of JPS58155799A publication Critical patent/JPS58155799A/en
Publication of JPH0322074B2 publication Critical patent/JPH0322074B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)

Description

【発明の詳細な説明】 この発明は複数個のエレクトロニクスモジユー
ルを有し、内部に冷媒の流れる冷却板により上記
複数個のエレクトロニクスモジユールを冷却する
ように構成された電子機器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electronic device having a plurality of electronics modules and configured to cool the plurality of electronics modules by a cooling plate through which a refrigerant flows.

この種の電子機器の冷却には様々な方式があ
り、その1つとして電子機器の構成要素となるエ
レクトロニクスモジユール内の多数の各種電子部
品が発生する熱を伝熱板により、熱伝導によつて
導き、その後上記伝熱板に近接して設置された冷
却板内を流れる冷媒へと放熱する方式がある。こ
のような冷却方式は冷媒が完全に独立した密閉流
路内を流れるため冷媒が直接電子部品に触れる恐
れがなく、また伝熱板を介することによりエレク
トロニクスモジユールを個々に密閉実装し、外気
環境から電子部品を遮閉することが可能であるた
め特殊環境下でも機器の信頼性を損うことが少な
く、船舶、航空機搭載用電子機器には特に有利で
ある。しかし従来のこの種の機器においては、そ
の冷却性能を決定する大きな要因として、上記エ
レクトロニクスモジユールと冷却板間の接触熱抵
抗があり、冷却効率を良くするためには、上記接
触熱抵抗を減じる必要から、例えばエレクトロニ
クスモジユール、冷却板間に熱伝導性の良いコン
パウンドを介在させたり、エレクトロニクスモジ
ユールをネジ等により冷却板に締付ける構造とし
ていたため、エレクトロニクスモジユールの交換
やメンテナンスの際の着脱が容易でなく作業が手
間どるという問題があつた。
There are various methods for cooling this type of electronic equipment, one of which is to use a heat transfer plate to conduct heat generated by the many various electronic components in the electronics module that is the component of the electronic equipment. There is a method in which heat is radiated to a refrigerant flowing through a cooling plate installed close to the heat transfer plate. In this type of cooling method, the refrigerant flows in a completely independent sealed flow path, so there is no risk of the refrigerant coming into direct contact with electronic components, and the electronics modules are individually hermetically mounted through heat transfer plates, allowing them to be isolated from the outside environment. Since it is possible to shield electronic components from the air, the reliability of the equipment is less likely to be impaired even under special environments, and is particularly advantageous for electronic equipment mounted on ships and aircraft. However, in conventional equipment of this type, a major factor determining the cooling performance is the contact thermal resistance between the electronics module and the cooling plate, and in order to improve cooling efficiency, it is necessary to reduce the contact thermal resistance. Due to necessity, for example, a compound with good thermal conductivity was interposed between the electronics module and the cooling plate, and the electronics module was fastened to the cooling plate with screws, so it was difficult to attach and remove the electronics module when replacing or maintaining it. There was a problem that it was not easy and the work was time-consuming.

また、逆にメンテナンスの作業性を良くするた
めに、エレクトロニクスモジユールを冷却板とは
独立に着脱構造とした場合、必然的にエレクトロ
ニクスモジユールと冷却板間にはわずかな間隙が
でき、その間隙を介在する空気層により上記接触
熱抵抗が増大して冷却効率が悪くなり、しいては
冷媒の二次熱交換器等の付帯の機器が大きなもの
となるという問題があつた。
On the other hand, if the electronics module is designed to be attached and detached independently of the cooling plate in order to improve maintenance workability, a small gap will inevitably be created between the electronics module and the cooling plate. The intervening air layer increases the contact thermal resistance, resulting in poor cooling efficiency, and the problem is that incidental equipment such as a secondary heat exchanger for the refrigerant becomes bulky.

この発明は上記のような問題点を改善し、エレ
クトロニクスモジユールの着脱が容易でかつ冷却
効率のよい電子機器を提案するものである。
The present invention solves the above-mentioned problems and proposes an electronic device in which the electronics module can be easily attached and detached and has good cooling efficiency.

なお、ここでは説明の便宜上、アクテイブ電子
走査アンテナを例としてこの発明の詳細を説明す
る。アクテイブ電子走査アンテナにおいては、そ
の構成上、伝熱板をかねた筐体中に各種電子部品
を有する数百〜数千のエレクトロニクスモジユー
ルが所定のピツチで高密度に配列されるため、こ
のエレクトロニクスモジユール群に多量の発熱が
集中する。したがつて上記エレクトロニクスモジ
ユール内の電子部品の保護や安定した特性を得る
ためには、上記電子部品の発生する熱を効率よく
除去する必要がある。以下図を用いて説明する。
For convenience of explanation, the details of the present invention will be explained using an active electronic scanning antenna as an example. Due to the structure of an active electronic scanning antenna, hundreds to thousands of electronic modules containing various electronic components are arranged densely at a predetermined pitch in a housing that also serves as a heat transfer plate. A large amount of heat is concentrated in the module group. Therefore, in order to protect the electronic components in the electronics module and obtain stable characteristics, it is necessary to efficiently remove the heat generated by the electronic components. This will be explained below using figures.

第1図はアクテイブ電子走査アンテナにおい
て、内部に冷媒の流れる冷却板を用いた、上記エ
レクトロニクスモジユール群の冷却部の一例を示
す図である。第1図において1はフレームであ
り、支持板2,3と結合されている。4は伝熱板
としての筐体中に各種電子部品を有するエレクト
ロニクスモジユールであり、上記支持板2に所定
のピツチで設けられた穴5をガイドとして層状に
配列され、矢印aの方向に上記支持板2側より着
脱され、コネクタ6と嵌合後ネジ等により支持板
2に固定される。また上記エレクトロニクスモジ
ユール4の各層間には内部を冷媒の流れる冷却板
7が上記エレクトロニクスモジユール4にわずか
な間隙をあけて設置されていて、上記エレクトロ
ニクスモジユール4内の電子部品の発生熱は伝熱
板としての筐体と上記冷却板7を介して上記冷却
板7内を流れる冷媒へと放熱される。
FIG. 1 is a diagram showing an example of a cooling section of the electronics module group using a cooling plate through which a coolant flows in an active electronic scanning antenna. In FIG. 1, reference numeral 1 denotes a frame, which is connected to support plates 2 and 3. Reference numeral 4 denotes an electronics module having various electronic components in a housing serving as a heat transfer plate, which are arranged in layers using holes 5 provided at a predetermined pitch in the support plate 2 as guides, and are arranged in layers in the direction of arrow a. It is attached and detached from the support plate 2 side, and after being fitted with the connector 6, it is fixed to the support plate 2 with screws or the like. Further, between each layer of the electronics module 4, a cooling plate 7 through which a coolant flows is installed with a slight gap between the electronics module 4, and the heat generated by the electronic components in the electronics module 4 is reduced. Heat is radiated to the refrigerant flowing inside the cooling plate 7 via the casing as a heat transfer plate and the cooling plate 7.

第2図、第3図および第4図は、この発明の特
徴をなす第1図に示した冷却板7の構成の一例を
示すものである。第2図、第3図および第4図に
おいて、4は冷却すべエレクトロニクスモジユー
ルであり、冷却板7は冷媒の流れる流路溝8を加
工した薄肉平板7aと均一厚さの極めて薄い平板
7bを接合して構成されている。
2, 3, and 4 show an example of the configuration of the cooling plate 7 shown in FIG. 1, which is a feature of the present invention. In FIGS. 2, 3, and 4, reference numeral 4 denotes an electronics module to be cooled, and the cooling plate 7 is composed of a thin flat plate 7a with grooves 8 through which the coolant flows and an extremely thin flat plate 7b of uniform thickness. It is constructed by joining.

したがつて、上記冷却板7内には第3図に示す
ような薄肉平板で囲まれた矩形断面の流路9が構
成され、この内部を第2図に示す矢印の方向へと
冷媒が流れる。エレクトロニクスモジユール4着
脱時には第3図に示すように冷媒の供給が止めら
れ流れのない状態のため、冷却板内の内圧は低
く、流路9は矩形断面を維持し、したがつてエレ
クトロニクスモジユール4と冷却板7間には着脱
が容易となるように設けたわずかな間隙10が再
現する。しかしエレクトロニクスモジユール4挿
着後、流路9内に冷媒が流れだすと、冷却板7内
の内圧が上昇し、先に述べたように流路9は極め
て薄肉の平板で囲まれているため、第4図に示す
ようにその内圧上昇により2枚の平板7a,7b
が膨張して、その表面がエレクトロニクスモジユ
ール4に密着し、しいてはエレクトロニクスモジ
ユール4と冷却板7間の空気層を減じ、接触熱抵
抗を減じることとなる。
Therefore, a rectangular cross-section channel 9 surrounded by thin flat plates as shown in FIG. 3 is formed in the cooling plate 7, and the coolant flows inside this channel in the direction of the arrow shown in FIG. . When the electronics module 4 is installed or removed, the supply of refrigerant is stopped and there is no flow as shown in Figure 3, so the internal pressure inside the cooling plate is low and the flow path 9 maintains a rectangular cross section, so that the electronics module A slight gap 10 is created between the cooling plate 4 and the cooling plate 7 to facilitate attachment and detachment. However, when the refrigerant begins to flow into the flow path 9 after the electronics module 4 is inserted, the internal pressure within the cooling plate 7 increases, and as mentioned earlier, the flow path 9 is surrounded by an extremely thin flat plate. , as shown in FIG. 4, due to the increase in internal pressure, two flat plates 7a and 7b
expands and its surface comes into close contact with the electronics module 4, thereby reducing the air layer between the electronics module 4 and the cooling plate 7 and reducing the contact thermal resistance.

上記冷却板7はこのようにエレクトロニクスモ
ジユール4着脱時には、エレクトロニクスモジユ
ール4と冷却板7間の間隙10を維持して、着脱
の容易さをそこなうことなく、また動作時には上
記間隙10を減少せしめ、エレクトロニクスモジ
ユール4内の電子部品の発生した熱を効率よく放
熱することができる。また、第2図に示した一例
では、冷却板7内の流路9が各エレクトロニクス
モジユール4毎に長手方向に沿つて走つているた
め、各流路9内を流れる冷媒温度のばらつきが少
なく、各エレクトロニクスモジユール4内の電子
部品の各モジユール間の温度のばらつきを減ら
し、特性の安定をはかることができる。
In this way, the cooling plate 7 maintains the gap 10 between the electronics module 4 and the cooling plate 7 when the electronics module 4 is attached or detached, without impairing the ease of attachment or detachment, and reduces the gap 10 during operation. , heat generated by electronic components within the electronics module 4 can be efficiently radiated. In addition, in the example shown in FIG. 2, the channels 9 in the cooling plate 7 run along the longitudinal direction for each electronics module 4, so there is little variation in the temperature of the coolant flowing in each channel 9. , it is possible to reduce temperature variations among the electronic components in each electronics module 4 and to stabilize the characteristics.

尚、本実施例では冷却板を構成する二平板の片
側の板に溝を設け、他は均一厚さの平板とした
が、同一厚さの二平板に対称となるべき溝加工を
施し接合して構成してもよく、また流路のパター
ンはエレクトロニクスモジユール内の発熱分布に
あわせて変えることができ、上記例に限らぬこと
は言うまでもない。
Note that in this example, grooves were provided on one side of the two flat plates constituting the cooling plate, and the other plates were flat plates of uniform thickness. It goes without saying that the pattern of the flow paths can be changed according to the heat generation distribution within the electronics module, and is not limited to the above example.

第5図はこの発明の特徴をなす冷却板の他の実
施例を示す図であり、第2図と同様に4は冷却す
べきエレクトロニクスモジユール、7a,7bは
冷却板7を構成する二枚の平板である。平板7a
に流路溝8を設け、均一厚さの平板7bを接合し
て冷却板7内部に矩形状断面の流路9を形成して
いるのは第2図と同様であるが、さらに平板7
a,7bにはエレクトロニクスモジユール4に対
向する側に各エレクトロニクスモジユール4毎に
その長手方向に沿つて凸部11が設けてあり、ま
たエレクトロニクスモジユール4には上記凸部1
1に係合するように凹部12が設けてある。した
がつて冷却時には冷却板7内の内圧の上昇により
二平板7a,7bが膨張してエレクトロニクスモ
ジユール4と冷却板7間の間隙を減少し接触熱抵
抗を減じるとともに、上記凸部11と凹部12に
よりエレクトロニクスモジユール4、冷却板7間
の伝熱面積が増大しているため、エレクトロニク
スモジユール4より冷却板7への放熱がより効率
のよいものとなる。
FIG. 5 is a diagram showing another embodiment of the cooling plate, which is a feature of the present invention. Similarly to FIG. It is a flat plate. Flat plate 7a
As shown in FIG. 2, a flow path 8 is provided in the cooling plate 7 and a flat plate 7b of uniform thickness is bonded to form a flow path 9 with a rectangular cross section inside the cooling plate 7.
a, 7b are provided with a convex portion 11 along the longitudinal direction of each electronics module 4 on the side facing the electronics module 4, and the electronics module 4 is provided with a convex portion 11 along the longitudinal direction.
A recess 12 is provided to engage with the recess 1 . Therefore, during cooling, the two flat plates 7a and 7b expand due to an increase in the internal pressure within the cooling plate 7, reducing the gap between the electronics module 4 and the cooling plate 7 and reducing the contact thermal resistance, as well as increasing the distance between the convex portion 11 and the concave portion. 12 increases the heat transfer area between the electronics module 4 and the cooling plate 7, so that heat radiation from the electronics module 4 to the cooling plate 7 becomes more efficient.

第6図、第7図はこの発明の特徴をなす冷却板
のさらに他の実施例を示すものである。第2図、
第5図と同様に4は冷却すべきエレクトロニクス
モジユールであり、二平板7a,7bにより内部
に矩形状断面の流路9を有する冷却板7が構成さ
れていて、さらに二平板7a,7bにはエレクト
ロニクスモジユール4に対向する面に熱伝導性樹
脂たとえばシリコンラバーシート13が貼られて
いる。したがつて冷却時には、第7図に示すよう
に冷媒が冷却板内を流れるため、内圧の上昇によ
り冷却板の流路9を構成する二平板7a,7bが
膨張し、上記シリコンラバーシート13はエレク
トロニクスモジユール4と冷却板7間にはさまれ
てわずかに収縮し、冷却板表面はシリコンラバー
シート13を介してエレクトロニクスモジユール
4と接触する。
FIGS. 6 and 7 show still another embodiment of the cooling plate which is a feature of the present invention. Figure 2,
Similarly to FIG. 5, reference numeral 4 denotes an electronics module to be cooled, and two flat plates 7a and 7b constitute a cooling plate 7 having a rectangular cross-sectional flow path 9 therein. A thermally conductive resin such as a silicone rubber sheet 13 is pasted on the surface facing the electronics module 4. Therefore, during cooling, as the refrigerant flows inside the cooling plate, as shown in FIG. It is sandwiched between the electronics module 4 and the cooling plate 7 and contracts slightly, and the surface of the cooling plate comes into contact with the electronics module 4 via the silicone rubber sheet 13.

したがつて、エレクトロニクスモジユール4の
筐体と冷却板の接触面の面粗さによる接触熱抵抗
のばらつきをシリコンラバーシート13が緩和
し、また冷却板7内の冷媒の流れの上流部と下流
部の内圧上昇の差や冷媒供給元圧変動による接触
熱抵抗の変動をシリコンラバーシート13がその
収縮により緩和するので、エレクトロニクスモジ
ユール4より冷却板7への放熱を有効かつ均一で
安定なものとすることができる。
Therefore, the silicon rubber sheet 13 alleviates variations in contact thermal resistance due to the surface roughness of the contact surface between the housing of the electronics module 4 and the cooling plate, and also reduces the variation in the contact thermal resistance caused by the surface roughness of the contact surface between the housing of the electronics module 4 and the cooling plate. The silicone rubber sheet 13 reduces variations in contact thermal resistance due to differences in internal pressure rise between parts and fluctuations in refrigerant supply source pressure through its contraction, making heat dissipation from the electronics module 4 to the cooling plate 7 effective, uniform, and stable. It can be done.

したがつて第1図にその一例を示したごとく上
記3つの実施例に示した内部に冷媒の流れる冷却
板を冷却を要するエレクトロニクスモジユールに
接するが如くに設置したこの発明による電子機器
はエレクトロニクスモジユールの着脱が容易にで
き、かつエレクトロニクスモジユール内の電子部
品の発生熱を効率よく取り除くことができるとい
う特徴を有している。
Therefore, as shown in FIG. 1, the electronic equipment according to the present invention, in which the cooling plate through which the refrigerant flows inside the electronic equipment shown in the above three embodiments is installed so as to be in contact with the electronics module that requires cooling, is an electronics module. It has the characteristics that the Yule can be easily attached and detached, and that the heat generated by the electronic components in the electronics module can be efficiently removed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明による電子機器の一実施例を
示す概略図、第2図、第3図および第4図はこの
発明の特徴をなす冷却板の一実施例を示す図、第
5図はこの発明の特徴をなす冷却板の他の実施例
を示す図、第6図および第7図はこの発明の特徴
をなす冷却板のさらに他の実施例を示す図であ
り、1はフレーム、2,3は支持板、4はエレク
トロニクスモジユール、5は穴、6はコネクタ、
7は冷却板、7a,7bは薄肉平板、8は流路
溝、9は流路、10は間隙、11は凸部、12は
凹部、13はシリコンラバーシートである。尚図
中同一または相当部分には同一符号を付してあ
る。
FIG. 1 is a schematic diagram showing an embodiment of an electronic device according to the present invention, FIGS. 2, 3, and 4 are diagrams showing an embodiment of a cooling plate that is a feature of the present invention, and FIG. FIGS. 6 and 7 are diagrams showing still other embodiments of the cooling plate that is a feature of the present invention, in which 1 is a frame; , 3 is a support plate, 4 is an electronics module, 5 is a hole, 6 is a connector,
7 is a cooling plate, 7a and 7b are thin flat plates, 8 is a channel groove, 9 is a channel, 10 is a gap, 11 is a convex portion, 12 is a concave portion, and 13 is a silicon rubber sheet. In the drawings, the same or corresponding parts are designated by the same reference numerals.

Claims (1)

【特許請求の範囲】 1 エレクトロニクスモジユールを複数個組合せ
て構成される電子機器において、上記エレクトロ
ニクスモジユールの配列に応じて各々、または数
個毎に、内部に冷媒の流路を有し、且つ、上記エ
レクトロニクスモジユールと対向し、冷媒供給に
伴なう上記流路の内圧上昇により上記エレクトロ
ニクスモジユールと密着するように膨張する一
方、冷媒供給停止に伴なう上記流路の内圧減少に
より上記エレクトロニクスモジユールが着脱可能
となる間隙を上記エレクトロニクスモジユールと
の間で形成するように収縮、復元する冷却板外皮
を有する薄板からなるパネル状の冷却板を上記エ
レクトロニクスモジユール表面と所定の間隙をも
つて設置したことを特徴とする電子機器。 2 冷却板の外皮に凹凸部を設けると共に、エレ
クトロニクスモジユールに前記凹凸部に係合する
凹凸を設けたことを特徴とする特許請求の範囲第
1項記載の電子機器。 3 エレクトロニクスモジユール及び冷却板の互
いに接する面に熱伝導性樹脂を介在させたことを
特徴とする特許請求の範囲第1項あるいは第2項
記載の電子機器。
[Scope of Claims] 1. In an electronic device configured by combining a plurality of electronics modules, each or every several electronics modules have an internal refrigerant flow path depending on the arrangement of the electronics modules, and , faces the electronics module, and expands so as to be in close contact with the electronics module due to an increase in the internal pressure of the flow path due to the supply of refrigerant, while the internal pressure of the flow path decreases due to the stoppage of the refrigerant supply. A panel-shaped cooling plate made of a thin plate having a cooling plate outer skin that contracts and restores itself so as to form a gap between the electronics module and the electronics module so that the electronics module can be attached and detached is placed between the electronics module surface and a predetermined gap. An electronic device characterized in that it is installed with a handle. 2. The electronic device according to claim 1, wherein the outer skin of the cooling plate is provided with an uneven portion, and the electronics module is provided with an uneven portion that engages with the uneven portion. 3. The electronic device according to claim 1 or 2, characterized in that a thermally conductive resin is interposed between the surfaces of the electronics module and the cooling plate that are in contact with each other.
JP3877682A 1982-03-11 1982-03-11 Electronic device Granted JPS58155799A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3877682A JPS58155799A (en) 1982-03-11 1982-03-11 Electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3877682A JPS58155799A (en) 1982-03-11 1982-03-11 Electronic device

Publications (2)

Publication Number Publication Date
JPS58155799A JPS58155799A (en) 1983-09-16
JPH0322074B2 true JPH0322074B2 (en) 1991-03-26

Family

ID=12534690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3877682A Granted JPS58155799A (en) 1982-03-11 1982-03-11 Electronic device

Country Status (1)

Country Link
JP (1) JPS58155799A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5482667A (en) * 1977-12-14 1979-07-02 Fujitsu Ltd Method of cooling circuit board
JPS5619694A (en) * 1979-07-26 1981-02-24 Mitsubishi Electric Corp Method of dissipating heat of circuit part

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5482667A (en) * 1977-12-14 1979-07-02 Fujitsu Ltd Method of cooling circuit board
JPS5619694A (en) * 1979-07-26 1981-02-24 Mitsubishi Electric Corp Method of dissipating heat of circuit part

Also Published As

Publication number Publication date
JPS58155799A (en) 1983-09-16

Similar Documents

Publication Publication Date Title
US5655189A (en) Image device having thermally stable light emitting/receiving arrays and opposing lenses
US20030230400A1 (en) Cold plate assembly
JPS62260346A (en) Heat exchanger
US20240314980A1 (en) Cold plate with integrated sliding pedestal and processing system including the same
KR102593882B1 (en) Heat dissipation device
EP3647902A1 (en) Liquid-cooled integrated circuit system
US12082368B2 (en) Cooling device and method of manufacturing the same
US11778775B2 (en) Cooling device and method of manufacturing the same
JP2006032850A (en) Thermoelectric conversion module
JPH0322074B2 (en)
CN218446599U (en) Heat dissipation assembly and server
CN217213253U (en) Optical module and optical communication device
CN113316376B (en) Heat dissipation device and electronic equipment
CN212006296U (en) TEC heat dissipation assembly for direct-insertion type multi-element area array detector
JPH07111378A (en) Packaging structure of double-sided packaging board
US20240318927A1 (en) Large-size liquid-cooling cooler for electric vehicle
JPS6089946A (en) Semiconductor element cooling structure
JP2001053342A (en) Thermoelectric heater and cooler
JPH10241556A (en) Cooling device for plasma display
CN111818252A (en) Electronic equipment and camera module thereof
CN220456875U (en) Laser heat abstractor and laser radar
WO2024012339A1 (en) Electronic assembly and electronic device
CN221575914U (en) Liquid cooling temperature control device
JPH11121958A (en) Electronic equipment
CN218728541U (en) Camera with camera lens