JPH03220407A - Inclination detector - Google Patents

Inclination detector

Info

Publication number
JPH03220407A
JPH03220407A JP2015486A JP1548690A JPH03220407A JP H03220407 A JPH03220407 A JP H03220407A JP 2015486 A JP2015486 A JP 2015486A JP 1548690 A JP1548690 A JP 1548690A JP H03220407 A JPH03220407 A JP H03220407A
Authority
JP
Japan
Prior art keywords
detected
measured
laser light
reflecting plane
sor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015486A
Other languages
Japanese (ja)
Other versions
JP2742462B2 (en
Inventor
Fumiaki Sato
文昭 佐藤
Kazuhiro Ito
一博 伊藤
Yoshiyuki Tomita
良幸 冨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2015486A priority Critical patent/JP2742462B2/en
Publication of JPH03220407A publication Critical patent/JPH03220407A/en
Application granted granted Critical
Publication of JP2742462B2 publication Critical patent/JP2742462B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To enable measurement of the inclination of the face of a substance to be measured, without necessitating virtually any special space on the substance side, by applying a laser light along a reference axis from a remote place and by measuring a reflected light at a position being apart from the substance to be measured. CONSTITUTION:A laser light is emitted from a laser head 11, so as to form a laser light spot on a reflecting plane 7 on a substance 5 to be measured, and a reflected light is bent downward by a beam bender 12 and detected by a position-sensitive detecting element 14. The position of the laser light detected by the element 14 when the reflecting plane 7 is disposed vertically to the laser light is made to be a reference position, and how much the detected position is shifted on the element 14 when the reflecting plane 7 is inclined is detected. The shift of the position detected on the element 14 when the normal line of the reflecting plane 7 is inclined at an angle thetafrom the optical axis of the laser light can be expressed as r.sin(2theta) when a distance between the reflecting plane 7 and the element 14 is denoted by (r). As the result, a minute inclination can be detected with ease. Accordingly, no measuring device other than the reflecting plane needs to be set in the vicinity of a face to be measured, and therefore the degree of freedom of design is increased.

Description

【発明の詳細な説明】 二産業上の利用分野] 本発明は傾き検出装!に関し、特にSOR露光装置にお
けるマスクやウェーハ等の被測定体の面の法線かSOR
光軸等の基準軸に対してなす傾きを検出するための傾き
検出装置に関する。
[Detailed Description of the Invention] Two Industrial Application Fields] The present invention is a tilt detection device! Regarding SOR exposure equipment, especially the normal to the surface of the object to be measured such as a mask or wafer,
The present invention relates to a tilt detection device for detecting a tilt relative to a reference axis such as an optical axis.

次世代超LSIの露光装置用精密ステージの位置決め精
度は、現在の0.1μmオーダがら約1桁以上向上させ
て0.01μm以下の領域に入れることが必要であると
考えられる。たとえば次世代超LSI露光装置の1つと
してSOR光を利用したX線露光装置が開発されている
が、同露光装置においてはサブミクロンのオーダでのマ
スクおよびウェハの位置決めか要求されている。これら
を裁置するステージの位置決め精度は、さらに1桁上の
o、oiμmの精度が望まれている。
It is thought that the positioning accuracy of the precision stage for next-generation VLSI exposure equipment needs to be improved by about one order of magnitude or more from the current 0.1 μm order to be in the range of 0.01 μm or less. For example, an X-ray exposure device using SOR light has been developed as one of the next-generation VLSI exposure devices, but this exposure device requires mask and wafer positioning on the order of submicrons. The positioning accuracy of the stage on which these are placed is desired to be one order of magnitude higher than o, oi μm.

[従来の技術〕 従来の光ステッパ等の光露光装置では光源とマスクステ
ージ、露光ステージは同一の横遺体内に形成されていた
ので、光軸に対するステージの面の傾きは組立時、調整
時に行えば十分である。
[Prior art] In conventional optical exposure devices such as optical steppers, the light source, mask stage, and exposure stage are formed in the same horizontal body, so the inclination of the stage surface with respect to the optical axis must be adjusted during assembly and adjustment. That's enough.

しかし、SOR光利用の露光装置においては、光源とス
テージとは少なくとも数m、多くは10m程度は離れて
配置される4そのため十分な剛性を有する共通ベース体
上に光源と・ステージとを載せることは誰しく、露光装
置に対してSOR光軸か一定せず、変化することになる
。従って、s。
However, in exposure equipment that uses SOR light, the light source and the stage are placed at least several meters apart, often about 10 meters apart4.Therefore, it is necessary to place the light source and stage on a common base with sufficient rigidity. The SOR optical axis is not constant and changes with respect to the exposure device. Therefore, s.

R光軸等の基準軸を常に計測する必要が生じる。It becomes necessary to constantly measure a reference axis such as the R optical axis.

また、SOR,i光用マスクは通常、第2図(A)に示
すような補遺を有している。すなわちマスク20は、中
央部をくり抜いたたとえば厚さ2n1程度の81ウエー
ハ21と、その上に形成した厚さ数μm程度のSiN膜
等のSOR光に対して透過率の高いメンブレン22と、
その上に形成した^UやTa等SOR光に対して高い吸
収係数を持つ吸収材で形成したSOR光吸収パターン2
3を有している。
Further, the SOR, i-light mask usually has an addendum as shown in FIG. 2(A). That is, the mask 20 includes an 81 wafer 21 having a thickness of, for example, about 2n1 with a hollowed out center portion, and a membrane 22 formed on the 81 wafer 21 having a thickness of about several μm and having high transmittance for SOR light, such as an SiN film.
SOR light absorption pattern 2 formed on top of this is made of an absorbing material such as U or Ta that has a high absorption coefficient for SOR light.
It has 3.

ところが、Siウェーハ21と、SOR光透過メンブレ
ン22とを合わせた厚さをマスク全面で高精度に均一に
作成することは極めて難しい、加工上数μm程度のバラ
ツキが生じることは防ぎにくい。
However, it is extremely difficult to make the combined thickness of the Si wafer 21 and the SOR light transmitting membrane 22 uniform over the entire surface of the mask with high precision, and it is difficult to prevent variations on the order of several μm from occurring during processing.

たとえば、第2図(B)に示すように厚さがマスク20
の一方の端から他方の端に向がって徐マに減少したり、
第2図(C)に示すように厚さが一旦増加し、再び減少
するような厚さ分布か生じる。
For example, as shown in FIG.
gradually decreases from one end to the other,
As shown in FIG. 2(C), a thickness distribution occurs in which the thickness increases once and then decreases again.

このような厚さ分布はマスク毎に変化する。Such thickness distribution varies from mask to mask.

半導体装置の露光工程においては、所望の露光パターン
に応じてマスクを交換する。すると、マスク毎に厚さ分
布か変化する。このマスク毎の形状変化に応じて、マス
ク面を光軸に合わせることか要求される。そのためには
、マスク毎にマスク面を計測し、その計測結果に従って
マスク面を調整する必要がある。
In an exposure process for semiconductor devices, masks are exchanged depending on a desired exposure pattern. Then, the thickness distribution changes for each mask. Depending on this shape change for each mask, it is required to align the mask surface with the optical axis. To do this, it is necessary to measure the mask surface for each mask and adjust the mask surface according to the measurement results.

このような、変動し得る基準軸に対する面の傾きを検出
する方法しては、エアマイクロ、静電容量センサ等があ
るが、それぞれ取り付はスペースを要し、応答速度にも
問題があった。
There are air micro sensors, capacitive sensors, and other methods for detecting the inclination of a surface relative to a reference axis that can fluctuate, but each requires space to install and has problems with response speed. .

[発明か解決しようとする課U] 以上説明したように、相対的に位置を変動し得る基準軸
と被測定物の面とのなす角を取り付はスペースをほとん
ど必要とせずに測定しようとすると、従来の技術で適応
できるものはなかった。
[Invention or problem to be solved U] As explained above, an attempt is made to measure the angle formed between the reference axis whose position can be changed relatively and the surface of the object to be measured without requiring much mounting space. Then, there was no conventional technology that could be applied.

本発明の目的は、基準軸に対する被測定物の面の傾きを
、被測定物側では特別のスペースをほとんど要すること
なく測定することのできる傾き測定装置を提供すること
である。
SUMMARY OF THE INVENTION An object of the present invention is to provide an inclination measuring device that can measure the inclination of a surface of an object to be measured with respect to a reference axis without requiring almost any special space on the side of the object.

′L課題を解決するための手段コ 対象とする被測定物の面に、反射面を形成する。'LMeans to solve the problem A reflective surface is formed on the surface of the object to be measured.

基準軸にそって遠方からレーザ光を反射面に照射し、反
射光を被測定物から離れた位置で測定する。
Laser light is irradiated onto a reflective surface from a distance along a reference axis, and the reflected light is measured at a position away from the object to be measured.

;作用〕 反射光を離れた位置で測定すると、面が傾くと、反射光
は光梃の原理によって大きく移動する。したがって、微
少な面の傾きを高精度で検出することかできる。
; Effect] When the reflected light is measured at a distant position, when the surface is tilted, the reflected light moves significantly due to the principle of light leverage. Therefore, minute inclinations of surfaces can be detected with high precision.

3実施例コ 第1図は本発明の実施例による傾き検出装置の構成を示
す概略図である。SORリング1は、はぼ光速に加速さ
れた電子の軌道を含み、軌道放射光を水平方向にSOR
光軸2に冶って発射する。
Third Embodiment FIG. 1 is a schematic diagram showing the configuration of a tilt detection device according to an embodiment of the present invention. The SOR ring 1 contains orbits of electrons accelerated to almost the speed of light, and SORs the orbital synchrotron radiation in the horizontal direction.
Focus on optical axis 2 and fire.

SORリングlから発射されたSOR光は、SOR光軸
2にそって直進する。SOR光軸2上に露光装置3が配
置される。露光装置3はステージ4ヲ有し、その上にマ
スクやウェハ等の被測定′#R5を載置している。
The SOR light emitted from the SOR ring l travels straight along the SOR optical axis 2. An exposure device 3 is arranged on the SOR optical axis 2. The exposure apparatus 3 has a stage 4, on which a measured object '#R5 such as a mask or a wafer is placed.

露光装置においては、対象物であるウェハやマスクの面
は入射光に対して垂直に配!するのか好ましい、第1図
に示した系の場合は、SOR光軸2が被測定物5の面に
垂直になることが好ましい。
In exposure equipment, the surface of the target object, such as a wafer or mask, is placed perpendicular to the incident light! In the case of the system shown in FIG. 1, it is preferable that the SOR optical axis 2 be perpendicular to the surface of the object to be measured 5.

この被測定物であるマスクやウェハの測定面上にアルミ
ニウム層等の反射面7か形成されている。
A reflective surface 7 such as an aluminum layer is formed on the measurement surface of the mask or wafer that is the object to be measured.

SOR光の進む方向をX方向とし、図中上方に向かう方
向をY方向としたとき、反射面7の法線のX軸方向から
の傾きを測定し、調整する。ステージ4には、X方向の
高さを調整するためのレベルアクチュエータ8が少なく
とも3つ設けられており、ステージの面法線をillす
ることができるようにされている。尚、ステージ4には
他の自由度についても調整装置が設けられているが、説
明および図示を省略する。
Assuming that the direction in which the SOR light travels is the X direction, and the upward direction in the figure is the Y direction, the inclination of the normal to the reflective surface 7 from the X-axis direction is measured and adjusted. The stage 4 is provided with at least three level actuators 8 for adjusting the height in the X direction, so that the surface normal of the stage can be illuminated. Note that the stage 4 is also provided with adjustment devices for other degrees of freedom, but their explanation and illustration are omitted.

SORリング1のSOR光引き出し口近くにレーザーヘ
ッド11か固定されている。また、このし−ザヘ/ド1
1から発するレーザー光の光軸上にビームベンダ−12
およびビームベンダ−12で折り曲けられた反射光を検
出するための位置敏感型検出器14かSORリング1と
同一の構造物上に配置される。レーザヘッド11はSO
R光軸2に対して所定の位置関係で配置され、SOR光
軸と平行にレーザー光を発するように初期調整される。
A laser head 11 is fixed near the SOR light extraction port of the SOR ring 1. Also, Konoshi-zahe/do 1
A beam bender 12 is placed on the optical axis of the laser beam emitted from 1.
A position sensitive detector 14 for detecting the reflected light bent by the beam bender 12 is placed on the same structure as the SOR ring 1. The laser head 11 is SO
It is arranged in a predetermined positional relationship with respect to the R optical axis 2, and is initially adjusted to emit laser light parallel to the SOR optical axis.

露光工程に先立って、シーブヘッド11からレーサー光
を発し、被測定物5上の反射面7にレーザ光スポットを
形成し、反射して同一光軸上を掃ってくる反射光をビー
ムベンダー12によって図中下方に折り曲げ、位置敏感
型検出素子14で検出する6位置敏感型検出素子14は
、たとえばPSD (position  5ensi
tive device) −CCD(charge 
coupled device ) +ホトタイオード
アレーなとて・構成し、面内の光照射位置検出に関して
十分な分解能を有する1反射面7がレーザ光に対して垂
直に配置されているとき位置敏感型検出素子14で検出
するレーザ光位置を基準位置とし、反射面7か傾いた時
、位置敏感型検出素子14上で検出位置かどれたけ移動
するかを検出する6反射面7の法線か、レーザ光の光軸
から角度θ傾いたときに、位置敏感型検出素子14上で
検出される位置の移動は、反射面7と位置敏感型検出素
子14の間の距離をrとしたとき、rs+n(2θ)と
表すことかできる。ここで反射光を測定することによっ
て傾きの角度θは2倍になり、更に反射面から距離を離
すことによって、測定値はr倍される。このような先板
作用によって微少な傾きが容易に検出できるようになる
0位置敏感型検出素子14は、数ミクロン以下の分解能
を有する事も容易であるので、秒単位の面の傾きを測定
する事も容易である。また、位置敏感型検出素子14上
で受光ビーム点がどの方向に移動するかを検出すること
によって、被対象物の反射面7がどの方向に傾いたかを
知ることかでき、この信号を制m口路15て鴇理し、マ
スク傾き補正用のアクチュエータ8にフィードバンクす
ることによって、被測定物5の面を常にSOR光軸2に
対して垂直に保つことかできる。なお、反射光の光路中
にビームスプリンタを設け、粗位置検出系を併設しても
よい 以上説明!た構成によれば、被測定面近傍には反射面以
外何ら測定器を設置しなくてよいので、設計の自由度か
増す、特に空間的制約の多いSOR露光装置等に好適で
ある6反射面は特に形成しなくてら、ある程度の反射率
を有する何らかの面かあれば測定は可能である。
Prior to the exposure process, a laser beam is emitted from the sheave head 11, a laser beam spot is formed on the reflective surface 7 on the object to be measured 5, and the reflected beam that is reflected and sweeps on the same optical axis is sent to the beam bender 12. The 6-position sensitive detection element 14, which is bent downward in the figure and detected by the position-sensitive detection element 14, is, for example, a PSD (position 5-ensi
tive device) -CCD(charge
(coupled device) + photodiode array configuration and has sufficient resolution for detecting the position of light irradiation within the plane 1 When the reflecting surface 7 is arranged perpendicular to the laser beam, it is a position-sensitive detection element. The position of the laser beam detected in step 14 is used as a reference position, and when the reflecting surface 7 is tilted, how far the detection position moves on the position sensitive detection element 14 is detected. The movement of the position detected on the position-sensitive detection element 14 when tilted at an angle θ from the optical axis of ) can be expressed as By measuring the reflected light, the angle of inclination θ is doubled, and by further increasing the distance from the reflecting surface, the measured value is multiplied by r. The zero position sensitive detection element 14, which can easily detect minute inclinations due to such tip plate action, can easily have a resolution of several microns or less, so it can measure the inclination of a surface in seconds. Things are also easy. Furthermore, by detecting in which direction the receiving beam point moves on the position sensitive detection element 14, it is possible to know in which direction the reflecting surface 7 of the object is tilted, and this signal can be controlled. The surface of the object to be measured 5 can always be kept perpendicular to the SOR optical axis 2 by feeding the mask through the port 15 and feeding it to the actuator 8 for correcting the mask inclination. Note that a beam splinter may be provided in the optical path of the reflected light, and a coarse position detection system may also be provided. According to this configuration, there is no need to install any measuring device other than the reflective surface near the surface to be measured, which increases the degree of freedom in design. Measurement is possible even if the surface is not specially formed, as long as it has some kind of surface with a certain degree of reflectance.

光路長を十分長くすることにより、容易に高分l!ギ能
が得られる。
By making the optical path length sufficiently long, it is easy to increase the height of l! You can get the ability.

なお、SOR光露光装置の実施例に沿って本発明を説明
したか、SOR光露光装置以外にも同機の技術を用いる
ことかできる。SOR光軸2のかわりに、何等かの直進
する性質を有するビームの基準軸を用い、これに平行に
し一ザヘンド11がちレーザ光を対象物上に照射するこ
とによって、同様に基準軸に対する被測定物の面の傾き
を測定することかできる。
It should be noted that although the present invention has been described along with the embodiment of the SOR light exposure apparatus, the technology of the same device can be used in other than the SOR light exposure apparatus. In place of the SOR optical axis 2, by using a reference axis of a beam that has the property of traveling in a straight line, and by irradiating the object with a laser beam parallel to this, the measured object can be similarly aligned with respect to the reference axis. Can measure the slope of an object's surface.

以上実施例にそって本発明を説明したが、本発明はこれ
らに制限されるものではない、たとえば種マの変更、改
良、組み合わせ等が可能な事は、当業者に自明であろう
Although the present invention has been described above in accordance with the examples, it will be obvious to those skilled in the art that the present invention is not limited to these examples, and that, for example, the seeds can be changed, improved, and combined.

こ発明の効果号 以上説明したように、本発明によれば、ウェハやマスク
等の被測定物の面の法線が、SOR光軸等の基準軸に対
して傾いた時、その傾きを高精度に検出することができ
る。
Effects of the Invention As described above, according to the present invention, when the normal to the surface of the object to be measured, such as a wafer or mask, is inclined with respect to a reference axis such as the SOR optical axis, the inclination can be increased. It can be detected with precision.

また、検出した傾きをフィードバックすることによって
、被測定物の対象面を常に所定の方向に較正することが
できる。
Furthermore, by feeding back the detected inclination, the target surface of the object to be measured can always be calibrated in a predetermined direction.

SOR露光装置等に於ける転写誤差を減少させることが
できる。
Transfer errors in SOR exposure equipment and the like can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例による傾き検出装置の概略ブロ
ック図である。 図において SORリング SOR光軸 SOR露光装置 ステージ 被測定物 反射面 レベリングアクチュエータ レーザヘッド ビームベンダ 位1敏感型検出素子 制御回路
FIG. 1 is a schematic block diagram of a tilt detection device according to an embodiment of the present invention. In the figure, SOR ring SOR optical axis SOR exposure device stage object to be measured reflective surface leveling actuator laser head beam bender position 1 sensitive detection element control circuit

Claims (1)

【特許請求の範囲】[Claims] (1)、所定の基準軸と、 該基準軸に対する面法線の傾きを検出しようとする面を
有し、前記面上に反射面を有する被測定物と、 前記基準軸に平行にレーザビームを発射し、前記反射面
に当てるレーザ光学系と、 前記反射面で反射したレーザ光を前記被測定物から離れ
た位置で、レーザ光の進行方向とほぼ直交する面で受け
、面内のレーザ光照射位置を検出する検出系と を有する傾き検出装置。
(1) A measured object having a predetermined reference axis, a surface whose inclination of the surface normal to the reference axis is to be detected, and a reflective surface on the surface, and a laser beam parallel to the reference axis. a laser optical system that emits a laser beam and hits the reflective surface; a laser optical system that receives the laser beam reflected by the reflective surface on a plane substantially perpendicular to the traveling direction of the laser beam at a position away from the object to be measured; A tilt detection device having a detection system for detecting a light irradiation position.
JP2015486A 1990-01-25 1990-01-25 Tilt detector for SOR exposure equipment Expired - Lifetime JP2742462B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015486A JP2742462B2 (en) 1990-01-25 1990-01-25 Tilt detector for SOR exposure equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015486A JP2742462B2 (en) 1990-01-25 1990-01-25 Tilt detector for SOR exposure equipment

Publications (2)

Publication Number Publication Date
JPH03220407A true JPH03220407A (en) 1991-09-27
JP2742462B2 JP2742462B2 (en) 1998-04-22

Family

ID=11890126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015486A Expired - Lifetime JP2742462B2 (en) 1990-01-25 1990-01-25 Tilt detector for SOR exposure equipment

Country Status (1)

Country Link
JP (1) JP2742462B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008120458A1 (en) * 2007-03-29 2008-10-09 Shin-Etsu Handotai Co., Ltd. Pedestal leveling method and pedestal leveling device
CN110057303A (en) * 2019-05-22 2019-07-26 广东工业大学 A kind of linear displacement measurement device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60144606A (en) * 1984-01-06 1985-07-31 Toshiba Corp Position measuring device
JPS62187214A (en) * 1986-02-14 1987-08-15 Nec Corp Micro-displacement detector

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60144606A (en) * 1984-01-06 1985-07-31 Toshiba Corp Position measuring device
JPS62187214A (en) * 1986-02-14 1987-08-15 Nec Corp Micro-displacement detector

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008120458A1 (en) * 2007-03-29 2008-10-09 Shin-Etsu Handotai Co., Ltd. Pedestal leveling method and pedestal leveling device
JP2008251577A (en) * 2007-03-29 2008-10-16 Shin Etsu Handotai Co Ltd Method and device for leveling mounting table
CN110057303A (en) * 2019-05-22 2019-07-26 广东工业大学 A kind of linear displacement measurement device

Also Published As

Publication number Publication date
JP2742462B2 (en) 1998-04-22

Similar Documents

Publication Publication Date Title
US4475223A (en) Exposure process and system
KR100471018B1 (en) Gap adjustment apparatus and gap adjustment method for adjusting gap between two objects
US7122814B2 (en) Arrangement for the stabilization of the radiation emission of a plasma
US6624879B2 (en) Exposure apparatus and method for photolithography
JPS6352453B2 (en)
US4420233A (en) Projecting apparatus
JPH08145645A (en) Inclination detector
JP2756331B2 (en) Interval measuring device
JPS63140989A (en) Positioning device
JPH03220407A (en) Inclination detector
JP3023893B2 (en) Angle shift detection method, apparatus therefor, and exposure apparatus
JP2513300B2 (en) Position detection device
JP4025049B2 (en) Gap adjustment device
JP2698446B2 (en) Interval measuring device
JPH04162337A (en) Electron beam device
JP2805239B2 (en) SOR-X-ray exposure equipment
JPH07332954A (en) Method and apparatus for measuring displacement and inclination
JP2698388B2 (en) Position detection device
JP2840303B2 (en) Exposure equipment
JP2556559B2 (en) Interval measuring device
JPH0412523A (en) Position detector
JP2513281B2 (en) Alignment device
JP2827250B2 (en) Position detection device
JPS59107515A (en) Gap control type exposure method
JPH01293518A (en) Aligner having device for detecting variation of height of substrate