JP2556559B2 - Interval measuring device - Google Patents

Interval measuring device

Info

Publication number
JP2556559B2
JP2556559B2 JP63226004A JP22600488A JP2556559B2 JP 2556559 B2 JP2556559 B2 JP 2556559B2 JP 63226004 A JP63226004 A JP 63226004A JP 22600488 A JP22600488 A JP 22600488A JP 2556559 B2 JP2556559 B2 JP 2556559B2
Authority
JP
Japan
Prior art keywords
wafer
mask
light
distance
fzp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63226004A
Other languages
Japanese (ja)
Other versions
JPH0274815A (en
Inventor
哲志 野瀬
直人 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP63226004A priority Critical patent/JP2556559B2/en
Priority to EP19890301477 priority patent/EP0336537B1/en
Priority to DE1989625142 priority patent/DE68925142T2/en
Publication of JPH0274815A publication Critical patent/JPH0274815A/en
Priority to US07/919,380 priority patent/US5327221A/en
Application granted granted Critical
Publication of JP2556559B2 publication Critical patent/JP2556559B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7003Alignment type or strategy, e.g. leveling, global alignment
    • G03F9/7023Aligning or positioning in direction perpendicular to substrate surface
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7049Technique, e.g. interferometric

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は2つの物体間の間隔を高精度に測定する間隔
測定装置に関し、例えば半導体製造装置において、マス
クとウエハとの間隔を測定し、所定の値に制御するとき
に好適なものである。
Description: TECHNICAL FIELD The present invention relates to a distance measuring device for measuring a distance between two objects with high accuracy. For example, in a semiconductor manufacturing apparatus, a distance between a mask and a wafer is measured, It is suitable when controlling to a predetermined value.

〔従来の技術〕[Conventional technology]

従来より半導体製造装置においては、マスクとウエハ
との間隔を間隔測定装置等で測定し、所定の間隔となる
ように制御した後、マスク面上のパターンをウエハ面上
に露光転写している。これにより高精度な露光転写を行
っている。
2. Description of the Related Art Conventionally, in a semiconductor manufacturing apparatus, a distance between a mask and a wafer is measured by a distance measuring device or the like, and a pattern on the mask surface is exposed and transferred onto the wafer surface after controlling the distance to be a predetermined distance. This allows highly accurate exposure and transfer.

第17図は特開昭61−111402号公報で提案されている間
隔測定装置の概略図である。同図においては第1物体と
してのマスクMと第2物体としてのウエハWとを対向配
置し、レンズL1によって光束をマスクMとウエハWとの
間の点PSに集光させている。
FIG. 17 is a schematic view of a distance measuring device proposed in Japanese Patent Laid-Open No. 61-111402. In the same figure, a mask M as a first object and a wafer W as a second object are arranged so as to face each other, and a light flux is condensed at a point P S between the mask M and the wafer W by a lens L1.

このとき光束マスクM面上とウエハW面上で各々反射
し、レンズL2を介してスクリーンS面上の点PW,PMに集
束投影されている。マスクMとウエハWとの間隔はスク
リーンS面上の光束の集光点PW,PMとの間隔を検出する
ことにより測定している。
At this time, they are reflected on the surface of the light flux mask M and on the surface of the wafer W, respectively, and are focused and projected onto the points P W and P M on the surface of the screen S via the lens L2. The distance between the mask M and the wafer W is measured by detecting the distance between the light converging points P W and P M on the screen S surface.

〔発明が解決しようとしている問題点〕[Problems that the invention is trying to solve]

しかしながら、同図に示す装置は、マスクMとウエハ
Wとが平行であれば双方の間隔を正しく測定することが
できるが一方が傾いて、例えばマスクMが点線で示す如
く傾いて非平行となった場合には、スクリーン面S面で
の光束の入射点は点PMより点PNへと変化し、測定誤差の
原因となってくる。
However, if the mask M and the wafer W are parallel to each other, the apparatus shown in the figure can accurately measure the distance between them, but one of them is tilted, for example, the mask M is tilted and becomes non-parallel as shown by a dotted line. In this case, the incident point of the light flux on the screen surface S changes from the point P M to the point P N , which causes a measurement error.

本願は前述従来例の欠点に鑑み、常に高精度な間隔測
定を可能にする間隔測定装置を提供する事を目的とす
る。
In view of the drawbacks of the above-mentioned conventional example, the present application aims to provide a distance measuring device that can always measure distance with high accuracy.

〔問題点を解決する為の手段〕[Means for solving problems]

本発明は間隔方向(第1物体と第2物体の対向方向)
に垂直な方向(横方向)に第1物体と第2物体とが相対
移動した時には入射位置が等しく移動し、対向方向に相
対移動した時には入射位置が異なった移動をする2つの
光束を用いて間隔を測定する事により常に高精度な間隔
測定を達成している。
In the present invention, the spacing direction (the facing direction of the first object and the second object)
When the first object and the second object move relative to each other in the direction perpendicular to the (lateral direction), the incident positions move equally, and when the relative movement moves in the opposite direction, the two incident light positions move differently. Highly accurate interval measurement is always achieved by measuring the interval.

〔実施例〕〔Example〕

第1図及び第2図はそれぞれ本発明を半導体製造装置
のマスクとウエハとの間隔を測定する装置に適用した場
合の1実施例の光学系の概略図及び装置構成の概略図で
ある。
FIG. 1 and FIG. 2 are a schematic diagram of an optical system and a schematic diagram of an apparatus configuration of an embodiment when the present invention is applied to an apparatus for measuring a distance between a mask and a wafer of a semiconductor manufacturing apparatus.

第1図および第2図において、1は例えばHe−Neレー
ザーや半導体レーザー或はLED等である光源1aからの光
束、2は第1物体で例えばマスク、3は第2物体で例え
ばウエハであり、マスクとウエハは間隔gm隔てて対向配
置にされている。8,8′は各々マスク2面上の1部に設
けた物理光学素子で、9,9′は各々ウエハ3上の1部に
設けた物理光学素子であり、これら物理光学素子8,8′,
9,9′はここでは光束を集光あるいは発散させる様に回
折するフレネルゾーンプレート(以下FZPと呼ぶ)であ
る。図では簡略化の為マスク2、ウエハ3がそれぞれFZ
P8,8′とFZP8,8′のみから構成されている様に表示され
ている。4は受光手段、10受光手段4からの信号を受け
てマスク2、ウエハ3の間隔を測定し、その結果に基づ
いて指令信号を発するCPU、100ウエハ3を支持し搬送す
るステージ、101はCPU10の指令信号に基づきステージ10
0をマスクとウエハの間隔方向(Z方向)に駆動させる
ステージドライバである。
In FIGS. 1 and 2, 1 is a light beam from a light source 1a such as a He-Ne laser, a semiconductor laser, or an LED, 2 is a first object such as a mask, and 3 is a second object such as a wafer. The mask and the wafer are opposed to each other with a gap g m therebetween. Reference numerals 8 and 8'represent physical optical elements provided on a part of the mask 2 surface, and reference numerals 9 and 9'represent physical optical elements provided on a part of the wafer 3, respectively. ,
9,9 'are Fresnel zone plates (hereinafter referred to as FZPs) that diffract the light so that it converges or diverges. In the figure, the mask 2 and the wafer 3 are FZ for simplification.
It is displayed as if it consists of only P8,8 'and FZP8,8'. 4 is a light receiving means, 10 is a CPU which receives a signal from the light receiving means 4, measures the distance between the mask 2 and the wafer 3, and issues a command signal based on the result, 100 A stage for supporting and carrying the wafer 3, 101 is a CPU 10 Stage 10 based on the command signal of
This is a stage driver that drives 0 in the gap direction (Z direction) between the mask and the wafer.

受光手段4は、ウエハ3からL0離れた位置に置かれて
いる。
The light receiving means 4 is placed at a position apart from the wafer 3 by L 0 .

尚、第1図は第2図で示したウエハ3からの反射回折
光の状況を示したものであり、説明の便宜上ウエハ3を
反射型と等価な透過型回折素子として図示してある。
Incidentally, FIG. 1 shows a state of reflected and diffracted light from the wafer 3 shown in FIG. 2, and the wafer 3 is shown as a transmissive diffraction element equivalent to a reflective type for convenience of explanation.

4はラインセンサーやエリアセンサーあるいはPSD等
から成り、入射光束のセンサー面内での重心位置やスポ
ツト形状などが検出できる。
Reference numeral 4 is composed of a line sensor, an area sensor, a PSD, or the like, and can detect the position of the center of gravity of the incident light flux on the sensor surface, the spot shape, and the like.

ここで光束の重心とは光束断面内において、断面内各
点のその点からの位置ベクトルにその点の光強度を乗算
したものを断面全面で積分したときに積分値が0ベクト
ルになる点のことであるが、別な例として、光強度がピ
ークとなる点の位置を検出してもよい。10のCPUは受光
手段4からの信号を用いて受光手段4面上に入射した光
束の重心位置やスポツト形状を求め、後述する様にマス
ク2とウエハ3との間隔gmを演算し求めている。
Here, the center of gravity of the light flux is the point in the light flux cross section at which the integrated value becomes 0 vector when the position vector of each point in the cross section is multiplied by the light intensity at that point and integrated over the entire cross section. However, as another example, the position of the point where the light intensity reaches a peak may be detected. The CPU 10 obtains the position of the center of gravity and the spot shape of the light beam incident on the surface of the light receiving means 4 using the signal from the light receiving means 4, and calculates the distance g m between the mask 2 and the wafer 3 as described later. There is.

受光手段4(必要に応じてCPU10も)はマスク2やウ
エハ3とは相対的に移動可能となっている。
The light receiving means 4 (and the CPU 10 if necessary) is movable relative to the mask 2 and the wafer 3.

本実施例においては、半導体レーザーからの光束1
(波長λ=8300Å)をマスク2面上のフレネルゾーンプ
レートに、マスク面の法線に対しyz面内でθの角度で平
面波で入射させる。第1図は第2図の状況を受光手段4
の長手方向に垂直な方向(y方向)からみた光線の回折
状況を、ウエハ3のフレネルゾーンプレート9,9′を反
射回折と等価な透過回折素子として図示したものであ
り、実際には、図面ウエハ3より右側に示した光束は、
方向成分に関し図面と逆方向に出射している。第2図
においてスポット7と7′の距離(7と7′の重心間
隔)が面間隔gmの情報になる。従って受光手段4でこの
スポツト7,7′間距離を測定したCPUでgmを検出する。原
理については後述する。第1図において、マスク2面上
のFZP8及び8′は焦点位置がF1及びF2にあり、この点を
発散原点として入射光束を発散する所謂凹レンズと同等
の回折作用を持つ1次回折光を有する様パターンが設け
られている。この1次回折光がウエハ面3に当たりこの
光を更にウエハ上からL0+gmだけ離れた検知手段4上の
所定位置に反射回折してスポツトを形成するようにFZP9
及び9′のパターンがウエハ3上に設けられている。逆
に言うとFZP8,8′,9,9′でこの様に回折する光が焦点を
結ぶ位置に検知手段4を配置する。FZP9及び9′から検
出手段4に達する前に実際には第2図に示す様にウエハ
3から反射回折された光はマス2を通って検知手段4に
至るが、マスク2を通るときは回折なしの所謂0次直接
通過光として通過する。
In the present embodiment, the luminous flux 1 from the semiconductor laser is
(Wavelength λ = 8300Å) is incident on the Fresnel zone plate on the mask 2 surface as a plane wave at an angle θ in the y z plane with respect to the normal to the mask surface. FIG. 1 shows the situation of FIG.
The Fresnel zone plates 9 and 9'of the wafer 3 are shown as a transmissive diffraction element equivalent to the reflection diffraction in the diffraction state of the light ray viewed from the direction (y direction) perpendicular to the longitudinal direction of the. The luminous flux shown on the right side of the wafer 3 is
The Z direction component is emitted in the direction opposite to the drawing. In FIG. 2, the distance between the spots 7 and 7 '(distance between the centers of gravity of 7 and 7') serves as information about the surface distance g m . Therefore, the CPU measuring the distance between the spots 7 and 7'in the light receiving means 4 detects g m . The principle will be described later. In FIG. 1, FZPs 8 and 8'on the surface of the mask 2 have focal points at F 1 and F 2 , and the first-order diffracted light having the same diffracting action as a so-called concave lens that diverges the incident light flux with this point as the divergence origin is used. There is a pattern to have. This first-order diffracted light strikes the wafer surface 3 and is reflected and diffracted to a predetermined position on the detecting means 4 which is further separated from the wafer by L 0 + g m to form a spot.
And 9'patterns are provided on the wafer 3. Conversely speaking, the detecting means 4 is arranged at a position where the light diffracted by the FZPs 8,8 ', 9,9' is focused. The light reflected and diffracted from the wafer 3 actually reaches the detecting means 4 through the mass 2 as shown in FIG. 2 before reaching the detecting means 4 from the FZPs 9 and 9 ', but when passing through the mask 2, it is diffracted. It is passed as so-called zero-order direct-passing light.

尚、本実施例においてギヤツプ測定を行う手順として
は、例えば次の方法を採ることができる。第1の方法と
しては2つの物体間の間隔ずれ量ΔZに対する受光手段
4検出面上で2光束の重心距離の信号を得、CPU10で重
心距離信号から双方の別体間との間隔ずれ量ΔZを求
め、そのときの位置ずれ量ΔZに相当する量だけステー
ジドライバ101でステージ100を移動させる。
Incidentally, as the procedure for measuring the gear gap in the present embodiment, for example, the following method can be adopted. As a first method, a signal of the distance between the centers of gravity of the two light fluxes is obtained on the detection surface of the light receiving means 4 with respect to the distance ΔZ between the two objects, and the CPU 10 calculates the distance ΔZ from the distance between the two bodies from the center distance signal. Is calculated, and the stage driver 101 moves the stage 100 by an amount corresponding to the positional displacement amount ΔZ at that time.

第2の方法としては受光手段4からの信号から間隔ず
れ量ΔZを打ち消す方向をCPU10で求め、その方向にス
テージドライバ101でステージ100を移動させて間隔ずれ
量ΔZが許容範囲内になるまで繰り返して行う。
As a second method, the CPU 10 finds the direction in which the distance deviation amount ΔZ is canceled from the signal from the light receiving means 4, and the stage driver 101 moves the stage 100 in that direction, and repeats until the distance deviation amount ΔZ falls within the allowable range. Do it.

以上の位置合わせ手順のフローチヤートを、それぞれ
第2図(B),(c)に示す。
Flow charts of the above alignment procedure are shown in FIGS. 2 (B) and 2 (c), respectively.

この様に構成されている装置において面間隔gmを計測
する原理について第1図及び第2図を参照しながら詳細
に説明していく。
The principle of measuring the surface spacing g m in the apparatus configured as described above will be described in detail with reference to FIGS. 1 and 2.

第1図において、マスク2上のFZP8の光軸を5,FZP9の
光軸を6とし、お互いの光軸はx方向にΔだけずれて
いるとする。又、FZP8′の光軸を5′、FZP9′の光軸を
6′とするとこれもお互いの光軸はx方向にΔだけず
れており、ずれの方向は第1図に示す通りである。又、
F1とマスク2の距離(FZP8の凹レンズとしての焦点距
離)をfM1、F2とマスク2の距離(FZP8′の凹レンズと
しての焦点距離)をfM2とする。
In FIG. 1, it is assumed that the optical axis of the FZP8 on the mask 2 is 5, the optical axis of the FZP9 is 6, and the optical axes of the two are offset by Δ 1 in the x direction. If the optical axis of the FZP8 'is 5'and the optical axis of the FZP9' is 6 ', the optical axes of these are also deviated by Δ 2 in the x direction, and the deviating direction is as shown in FIG. . or,
The distance between F 1 and the mask 2 (focal length of the FZP8 as a concave lens) is f M1 , and the distance between F 2 and mask 2 (focal length of the FZP8 ′ as a concave lens) is f M2 .

この時マスク2上のパターンFZP8および8′、ウエハ
3上のパターン(FZP)9および9′により回折されて
できるスポツトの位置7と7がそれぞれFZP8の光軸5お
よびFZP8′の光軸5′からg1およびg2だけずれた位置に
出来るとする。ウエハー上のパターン9および9′は各
々F1と7の位置およびF2と7′を共役関係にする様に1
次の回折光が発生する様に設計しておく。この時 の関係が成り立つ。g1,g2の光軸5及び5′に対する方
向は第1図に示す通りである。もし、マスク2とウエハ
3が間隔gm一定のままで各々xy面内に沿って互いにずれ
を発生した場合には、,式においてΔの値とΔ
の値にずれ量δを付加した場合に相当する式で表現でき
る。第1図の紙面内で上方にδだけウエハがずれるとき
はスポツト7,7′の光軸5,5′からのずれg1′,g2′(ず
れ方向はg1,g2と同じ)は で表わせる。即ちFZP8,9により集光される光束の検知手
段4上のスポツトはg1を減少させる方向、即ち第1図上
方向に だけ移動し、FZP8′,9′により集光される光束の検知手
段4上のスポツトはg2を増加させる方向、即ち第1図方
向に だけ移動する。従ってfM1=fM2となる様に各FZPを調整
しておけば、ずれδが生じても、スポツト7と7′の距
離は,式より不変であることがわかる。ウエハ3が
テイルト(傾き)を生じても、fM1=fM2としておけばス
ポツト7と7′の移動量は同じ方向に実質的に同量だけ
生じ、従って7と7′の距離は不変となる。
At this time, the positions 7 and 7 of the spots formed by the patterns FZP8 and 8'on the mask 2 and the patterns (FZP) 9 and 9'on the wafer 3 are the optical axis 5 of the FZP8 and the optical axis 5'of the FZP8 ', respectively. It is assumed that the positions can be shifted by g 1 and g 2 from. Patterns 9 and 9'on the wafer are 1 so that the positions of F 1 and 7 and F 2 and 7'are in a conjugate relationship.
Design so that the next diffracted light is generated. This time The relationship is established. The directions of g 1 and g 2 with respect to the optical axes 5 and 5'are as shown in FIG. If the mask 2 and the wafer 3 are displaced from each other along the xy plane while the gap g m is kept constant, the value of Δ 1 and Δ 2
It can be expressed by an equation corresponding to the case where the shift amount δ is added to the value of. When the wafer shifts upward by δ in the plane of Fig. 1, the deviation of the spots 7,7 'from the optical axes 5,5'g 1 ′, g 2 ′ (the deviation direction is the same as g 1 , g 2 ). Is Can be represented by That is, the spots on the detecting means 4 of the light flux condensed by the FZPs 8 and 9 are in the direction of decreasing g 1 , that is, in the upward direction of FIG. The spots on the detecting means 4 for the luminous flux which is moved by only the distance and is condensed by the FZPs 8 ', 9'are in the direction of increasing g 2 , that is, in the direction of FIG. Just move. Therefore, if each FZP is adjusted so that f M1 = f M2 , the distance between the spots 7 and 7 ′ can be found to be invariable from the equation even if the deviation δ occurs. Even if the wafer 3 is tilted, if f M1 = f M2 is set, the movement amounts of the spots 7 and 7 ′ are substantially the same amount in the same direction, so that the distance between 7 and 7 ′ is unchanged. Become.

一方、,式よりわかる様に、面間隔gmが変われば
それに応じてg1,g2の値は変わる。例えばL0がfM1,fM2
り大きい場合、gmの増加でg1,g2は減少し、gmが減少す
ればg1,g2は増加する。従って、スポツト7とスポツト
7′の距離はgmに応じて変化する。この事は、検知手段
4上のスポツト7と7′の距離を測定することによりマ
スクとウエハが面内で動いたり傾いたりしても、その影
響を受けずにマスクとウエハの面間隔情報を検出できる
事を意味する。マスク2とウエハ3の間隔gmとスポツト
7,7′の距離l1との関係式は以下の様になる。
On the other hand, as can be seen from the equation, if the surface spacing g m changes, the values of g 1 and g 2 change accordingly. For example, if L 0 is larger than f M1, f M2, g 1 , g 2 decreases with increasing g m, g 1, g 2 if g m decreases increases. Therefore, the distance between the spot 7 and the spot 7'changes according to g m . This means that by measuring the distance between the spots 7 and 7'on the detecting means 4, even if the mask and the wafer move or tilt in the plane, the surface distance information between the mask and the wafer is not affected by the influence. It means that it can be detected. Distance between mask 2 and wafer 3 g m and spot
The relational expression with the distance l 1 of 7,7 ′ is as follows.

ここでlMはFZP8とFZP8′の光軸距離であり、又fM1=fM2
であるとしている。
Where l M is the optical axis distance between FZP8 and FZP8 ′, and f M1 = f M2
It is said that.

次に実際に数値例を示す。 The following is a numerical example.

例えば、L0=18345.94μm,fM1=fM2=114.535μmと
した時面間隔gmとg11,g2の関係は となりΔ=Δ=10μmすると となり、スポツト7と7′の距離は、ギヤツプが71.5μ
mか61.5μmへと10μm変動すると、111.34μm変化す
る(=1055.67×2−1000×2)。従って、ギヤツプが
1μm変動すると7と7′のスポツト間隔の変動は11.1
3μmとなり、検出手段4に1次元ラインセンサーやPSD
を用いて、例えば1μmの分解能でスポツト7と7′の
間隔変動を検出できれば、マスク2とウエハ3の面間隔
の変化を0.09μmの分解能で検出可能となる。
For example, when L 0 = 18345.94 μm, f M1 = f M2 = 114.535 μm, the relationship between the surface spacing g m and g 1 / Δ 1 , g 2 / Δ 2 is When Δ 1 = Δ 2 = 10 μm The distance between spots 7 and 7'is 71.5μ for the gear
When it changes by 10 μm from m to 61.5 μm, it changes by 111.34 μm (= 1055.67 × 2-1000 × 2). Therefore, if the gear gap fluctuates by 1 μm, the fluctuation of the spot distance between 7 and 7'is 11.1
It becomes 3 μm, and a one-dimensional line sensor or PSD is used as the detection means 4.
If the variation in the distance between the spots 7 and 7'can be detected by using, for example, with a resolution of 1 .mu.m, the change in the surface distance between the mask 2 and the wafer 3 can be detected with a resolution of 0.09 .mu.m.

マスク2とウエハ3の間隔値とスポツト7,7′の距離
値との関係式中の各パラメーターをあらかじめ求めて
おけば、得られたスポツト7,7′の距離の測定値からこ
の関係式に基づいてマスク2とウエハ3の面間隔が求ま
る事になる。
If each parameter in the relational expression between the distance value between the mask 2 and the wafer 3 and the distance value of the spots 7 and 7'is obtained in advance, this relational expression is obtained from the obtained measured value of the distance of the spots 7 and 7 '. Based on this, the surface distance between the mask 2 and the wafer 3 is obtained.

尚、第2図に示したマスク上のFZPパターンとウエハ
上のFZPパターンの光軸の関係をマスク,ウエハ面の上
からみて図示したものが第3図である。図ではわかりや
すい様にFZP8,8′とFZP9,9′をy方向に並べて示してあ
るが、実際は紙面上下方向(z方向)に重なった状態に
なっている。図中8a,8′a,9a,9′aはそれぞれのFZPの
光軸を含むy軸に平行な線である。
Incidentally, FIG. 3 shows the relationship between the optical axes of the FZP pattern on the mask and the FZP pattern on the wafer shown in FIG. 2 as viewed from above the mask and wafer surfaces. In the figure, FZP8,8 'and FZP9,9' are shown side by side in the y direction for the sake of clarity, but in reality they are in a state of overlapping in the vertical direction of the paper (z direction). In the figure, 8a, 8'a, 9a, 9'a are lines parallel to the y-axis including the optical axis of each FZP.

又、第2図の受光手段4上に投射されたスポツト7,
7′の関係を示したものが第4図(A)である。この様
に受光手段4を1つのラインセンサとし、このラインセ
ンサ4上に2つのスポツト7,7′を形成して両者の間隔
を直接測定する様にした場合通常の場合に考え得るマス
ク,ウエハ間隔の範囲でスポツト間隔が0にならない様
マスク,ウエハ間隔gmとスポツト間隔l1との関係式の
各パラメータを設定する。これによってl1の値1つで必
ずgmの値が1つだけ求まる。
Further, the spots 7 projected on the light receiving means 4 in FIG.
FIG. 4 (A) shows the relationship of 7 '. Thus, when the light receiving means 4 is used as one line sensor and two spots 7 and 7'are formed on the line sensor 4 to directly measure the distance between them, masks and wafers that can be considered in the normal case Set each parameter of the mask and the relational expression of the wafer interval g m and the spot interval l 1 so that the spot interval does not become 0 within the interval range. As a result, for each value of l 1 , only one value of g m can be found.

第4図(B)は本発明の他の実施例における受光手段
4上に投射されたスポツト7,7′の関係を示したもので
ある。この様にy方向にずらした位置に設けられた2つ
のラインセンサ4a,4bそれぞれにスポツト4a,4bを形成
し、両者のx方向成分間隔l1を求めてマスク2,ウエハ3
間隔を求めても良い。この場合マスク2とウエハ3とが
設定間隔にある時にx方向成分間隔l1が0になる様にし
ても、間隔が設定間隔より大きいか小さいかはスポツト
7と7′とが図面の左右のどちら側に来ているかでわか
る。
FIG. 4 (B) shows the relationship between the spots 7 and 7'projected onto the light receiving means 4 in another embodiment of the present invention. In this way, spots 4a and 4b are formed on the two line sensors 4a and 4b, respectively, which are provided at positions displaced in the y-direction, and the x-direction component interval l 1 between them is obtained to obtain the mask 2 and the wafer 3
You may ask for the interval. In this case, even if the x-direction component interval l 1 is set to 0 when the mask 2 and the wafer 3 are at the set interval, whether the interval is larger or smaller than the set interval depends on whether the spots 7 and 7 ′ are on the left or right of the drawing. You can tell which side you are on.

ここで、第2図に示したFZP8,8′,9,9′はx,y方向共
にレンズ作用を有しているので、マスク2,ウエハ3がy
方向に相当移動するとその移動量に応じてスポツト7,
7′がラインセンサー4の幅方向に移動する。この為ラ
インセンサー4はマスク2とウエハ3の考え得る最大の
y方向ずれ生じてもスポツト7,7′がセンサー上にある
様充分な幅を持たせる。ラインセンサーの代りにy方向
に充分な幅を持つエリアセンサーを用いてスポツト7,
7′を検出しても良い。マスク,ウエハ上のFZPは少なく
とも1方向(ここではx方向)のパワー(屈折力)を有
する回折パターンであればよく、第2図に於いてy方向
のパワーはなくてもよい。第2図においてアライメント
方向(x方向)のみパワーを有し、アライメン方向に垂
直な方向(y方向)にはパワーをもたない場合で、入射
角θを17.5゜に設定したケースのマスク,ウエハ上のFZ
Pのパターン例を第5図に示す。
Here, since the FZPs 8, 8 ', 9, 9'shown in FIG. 2 have a lens function in both the x and y directions, the mask 2 and the wafer 3 are y-shaped.
When moving considerably in the direction, spot 7,
7'moves in the width direction of the line sensor 4. Therefore, the line sensor 4 has a sufficient width so that the spots 7 and 7'are located on the sensor even if the mask 2 and the wafer 3 are displaced in the maximum possible y direction. Instead of a line sensor, an area sensor with a sufficient width in the y direction is used for spot 7,
7'may be detected. The FZP on the mask and the wafer may be a diffraction pattern having a power (refractive power) in at least one direction (here, the x direction), and may not have the power in the y direction in FIG. In FIG. 2, the mask and the wafer have a power only in the alignment direction (x direction) and no power in the direction perpendicular to the alignment direction (y direction) and the incident angle θ is set to 17.5 °. FZ on
An example of the pattern of P is shown in FIG.

又、マスク,ウエハ上のパターン設定のエリア分割の
仕方は特に限定する必要はなく、パターンのパワー設定
からくる光軸の関係さえ明瞭に設定されていればよい。
Further, there is no particular limitation on the method of dividing the area of the pattern setting on the mask and the wafer, as long as the relationship between the optical axes derived from the power setting of the pattern is clearly set.

第6図に第3図に示したものの他のエリア分割の例を
示す。本実施例においてはFZP8と8′、FZP9と9′はそ
れぞれy方向に並列して設けてある。FZP8,8′の光軸は
x方向について一致した位置にあり、FZP9,9′の光軸は
それからそれぞれx方向にΔ1だけずらして設けて
ある。この様に並列方向を変えた場合も、回折光が受光
手段4上に集光する様入射光の入射角及びパターンによ
る回折光の屈折角を調整すれば前述実施例と同様の効果
が得られる。
FIG. 6 shows another example of area division of the one shown in FIG. In this embodiment, FZP8 and 8'and FZP9 and 9'are provided in parallel in the y direction. The optical axes of the FZPs 8 and 8'are located at the same position in the x direction, and the optical axes of the FZPs 9 and 9'are provided so as to be offset from each other by Δ 1 and Δ 2 in the x direction. Even when the parallel direction is changed in this way, the same effect as the above-described embodiment can be obtained by adjusting the incident angle of the incident light and the refraction angle of the diffracted light by the pattern so that the diffracted light is condensed on the light receiving means 4. .

更に、マスク,ウエハのFZPのパワー(屈折力)設定
は、第1図に示す様にレンズにたとえて言うと凹凸の組
合せの場合でなくてもよく、第7図に示す様に凸凹の組
合せであってもよい。
Further, the power (refractive power) of the FZP of the mask and the wafer need not be a combination of unevenness when compared to a lens as shown in FIG. 1, but a combination of unevenness as shown in FIG. May be

第7図において、第1図と同様にしてスポツト7,7′
の光軸5,5′からのずれ を示すと、 となる。ここに、M1,M2マスクのFZPの焦点距離、gm
マスク,ウエハの面間隔、 はそれぞれマスクのFZP8,8′の光軸とウエハのFZP9,9′
軸のずらし量である。この場合もマスク,ウエハのxy面
内ズレや、ウエハのチイルト発生に関係なしに、マス
ク,ウエハの面間隔がスポツト7,7′の距離を測る事に
より検出する事が出来るのは第1図と同様である。
In FIG. 7, the spots 7 and 7'are the same as in FIG.
From the optical axis 5, 5'of Is shown, Becomes Here, the focal length of FZP of M1 and M2 masks, g m
Mask and wafer spacing, Are the optical axes of the mask FZP8 and 8'and the wafer FZP9 and 9 ', respectively.
This is the amount of axis shift. Even in this case, it is possible to detect the surface distance between the mask and the wafer by measuring the distance between the spots 7 and 7 ', regardless of the xy plane shift of the mask and the wafer and the occurrence of the tilt of the wafer. Is the same as.

以上はマスク,ウエハの間隔変動によって間隔変化
し、マスク,ウエハのxy面内に沿って相対ずれやウエハ
チイルトによって間隔を変化させずに移動する2光束を
マスクとウエハの間の光軸ずれ量が異なる2組のFZP組
によって形成した場合である。次にこの2光束を、マス
ク側の2つのFZPに異なる方向へ光束屈折作用を持たせ
る事により形成し場合を説明する。
The above changes the gap between the mask and the wafer, and the two light fluxes that move along the xy plane of the mask and the wafer without changing the gap due to the relative shift or the wafer tilt cause the optical axis shift between the mask and the wafer. This is the case of being formed by two different FZP sets. Next, a case will be described in which the two light fluxes are formed by causing two FZPs on the mask side to have a light flux refracting action in different directions.

第8図がマスクのFZP8,8′に異なる屈折角を与えた場
合の1実施例を示す光路図である。第8図においてFZP
8,8′に入射した光束はそれぞれ光軸5,5′よりΔ′,
Δ′だけ離れた焦点F1,F2を発散原点とした発散光束
として出射し、それぞれ光軸がFZP8,8′よりΔ1
けずれた光軸を有するFZP9,9′に入射して、受光手段4
上に焦点を結んでスポツト7,7′を形成する。
FIG. 8 is an optical path diagram showing one embodiment when different refractive angles are given to the FZPs 8 and 8'of the mask. In Figure 8, FZP
The luminous fluxes incident on 8,8 ′ are Δ 1 ′,
It is emitted as a divergent light beam with focal points F 1 and F 2 separated by Δ 2 ′ as the divergence origin, and is incident on FZPs 9 and 9 ′ whose optical axes are deviated from ΔZ 1 and Δ 2 from FZPs 8 and 8 ′, respectively. Then, the light receiving means 4
Focus on the top to form spots 7,7 '.

マスクとウエハのFZPでできるスポツト7と7′のマ
スクのFZP8,8′のパターン軸からの距離g1,g2は次の式
で与えられる。
The distances g 1 and g 2 from the pattern axis of the FZPs 8 and 8'of the spots 7 and 7'of the mask and wafer FZP are given by the following equations.

,式においてΔの値とΔの値にずれ量δを付加
した場合ウポツト7,7′の光軸5,5′からのずれg1′,
g2′は、 で表わせ、fM1=fM2であれば前実施例同様スポツト7,
7′の距離はマスク,ウエハのxy面内ズレを依存するこ
とない。ウエハの傾きによってもこの距離は変化せず、
従って前実施例同様スポツト7,7′の距離を測定する事
により、xy面内ズレ,ウエハ傾きに影響されないマス
ク,ウエハ間隔測定ができる。尚、第8図はマスクのウ
エハのFZPのパワーの組合せは凹凸の場合であるが、こ
れは前述実施例同様凸凹であってもよい。,,,
式よりわかる様に、マスク,ウエハの各FZPの軸ズラ
シ量Δ1がともに0であっても同様の効果が得られ
る。
, If the deviation amount δ is added to the value of Δ 1 and the value of Δ 2 in the equation, the deviation g 1 ′ of the optical axis 7, 5 ′ from the optical axis 5, 5 ′,
g 2 ′ is If f M1 = f M2 , the spot 7,
The 7'distance does not depend on the xy plane shift of the mask and wafer. This distance does not change even if the wafer tilts,
Therefore, by measuring the distance between the spots 7 and 7'as in the previous embodiment, it is possible to measure the mask and wafer intervals that are not affected by the xy in-plane deviation and the wafer inclination. Although FIG. 8 shows the case where the combination of the powers of the FZP of the mask wafer is uneven, this may be uneven as in the above-mentioned embodiment. 、、、
As can be seen from the equation, the same effect can be obtained even if the axial deviation amounts Δ 1 and Δ 2 of the FZPs of the mask and the wafer are both 0.

これまではマスクとウエハ双方にFZPを設ける例につ
いて述べてきたが、マスクのみにFZPを設け、ウエハは
パターンなしの正反射面を用いる場合について次に述べ
る。第9図にこの例の装置構成を図示する。第9図にお
けるマスク上のパターンエリアの設定とFZPの光軸の関
係を第10図に示す。23,23′は入射側FZP、23a,23a′は
入射側FZP23,23′の光軸を含むy軸平行線、24a,24a′
はウエハ3より0次反射してきた光25,25′を再回折さ
せるマスク2上の出射側FZP24,24′のFZPの光軸を含む
y軸平行線である。この図に示す様に入射側FZP23,23′
と出射側FZP24,24′とでそれぞれ光軸をx方向に
Δ ,Δ だけずらしてある。第9図に示す状況
を、ウエハの正反射を等価な透過光線に置き換え光路図
として示したのが第11図である。第11図において、入射
側のマスクFZP光軸21,21′からのスポツト位置20の距離
g1 ,g2 はそれぞれ次の様に表現される。(fM1 ,fM2
はFZP23,23′の焦点距離) ,の関係によりかかる様に、この場合も前実施例同
様にマスク2とウエハ3の間隔gmはスポツト20と20′の
距離を検出する事によりxy面内ズレ、ウエハ傾きの影響
を受けずに得ることができる。
Up to now, the example in which the FZP is provided on both the mask and the wafer has been described, but the case where the FZP is provided only on the mask and the specular reflection surface without a pattern is used for the wafer will be described next. FIG. 9 illustrates the device configuration of this example. FIG. 10 shows the relationship between the setting of the pattern area on the mask and the optical axis of the FZP in FIG. 23 and 23 'are incident side FZPs, 23a and 23a' are y-axis parallel lines including the optical axes of the incident side FZPs 23 and 23 ', and 24a and 24a'.
Is a y-axis parallel line including the optical axis of the FZP on the emission side FZP 24, 24 'on the mask 2 for re-diffracting the light 25, 25' reflected by the wafer 3 in the 0th order. As shown in this figure, the incident side FZP23,23 '
And the output side FZPs 24 and 24 'have their optical axes shifted in the x direction by Δ 1 * and Δ 1 * , respectively. FIG. 11 shows the situation shown in FIG. 9 as an optical path diagram in which specular reflection of the wafer is replaced with an equivalent transmitted light beam. In Fig. 11, the distance of the spot position 20 from the mask FZP optical axis 21, 21 'on the incident side.
g 1 * and g 2 * are expressed as follows. (F M1 * , f M2
* Is the focal length of FZP23, 23 ') As described above, in this case as well, the distance g m between the mask 2 and the wafer 3 is not affected by the xy in-plane deviation and the wafer inclination by detecting the distance between the spots 20 and 20 'as in the previous embodiment. Can be obtained.

第9図,第10図,第11図に示した実施例は、ウエハの
0次正反射を用いた場合であったが、ウエハ3に直線格
子33を設けウエハ3上で回折方向を変える機能を持たせ
た実施例を第12図に示す。図中のFZP31,31′,32,32′は
直線格子33で回折された光束を受光手段4上に焦点を結
ばせる様設けられている事以外は第9図のFZP21,21′,2
2,22′と同様であり、それぞれの光軸を含むy軸平行線
31a,31a′,32a,32a′も図の様にそれぞれΔ ,Δ
だけx方向にずれている。第12図の例のマスクとウエ
ハのパターンエリアと光軸の関係を詳しく示したものが
第13図である。第3図同様マスク2、ウエハ3を上から
見た図で、わかりやすい様にマスク2とウエハ3をx方
向にずらしてある。この実施例の場合も第9図の実施例
とほぼ同様の効果が得られる。
Although the embodiment shown in FIGS. 9, 10, and 11 was the case where the 0th-order specular reflection of the wafer was used, a linear grating 33 is provided on the wafer 3 to change the diffraction direction on the wafer 3. FIG. 12 shows an embodiment in which the above is provided. The FZPs 31, 31 ', 32, 32' in the figure are provided so as to focus the luminous flux diffracted by the linear grating 33 on the light receiving means 4, except for the FZPs 21, 21 ', 2 in FIG.
Similar to 2,22 ', y-axis parallel line including each optical axis
31a, 31a ', 32a, 32a' are also Δ 1 * , Δ 2 respectively as shown in the figure.
Only * is shifted in the x direction. FIG. 13 shows in detail the relationship between the mask, the pattern area of the wafer and the optical axis in the example of FIG. Similar to FIG. 3, the mask 2 and the wafer 3 are viewed from above, and the mask 2 and the wafer 3 are displaced in the x direction for easy understanding. In the case of this embodiment, the same effect as that of the embodiment of FIG. 9 can be obtained.

以上はいずれも、X線リソグラフイーなどで利用され
ているプロキシテイーの場合について示したが、縮小型
の光ステツパーやエキシマ光を使用したステツパーの場
合に適用した例を次に示す。
Although all of the above have described the case of the proxy used in X-ray lithography, an example applied to the case of a reduction type optical stepper or a stepper using excimer light is shown below.

第14図は本発明を光ステツパー或いはエキシマの縮小
ステツパーに応用した例を示す構成概略図である。40は
レチクル、45はウエハ、41は投影光学系、43,43′,47,4
7′はレチクル上に設けられたFZPで、この例はウエハ上
の直線格子51で光束1の出射角を変える場合を示した。
スポツト48,48′の間隔がウエハ45の位置がレクチルと
近づいたり離れたりする時の変化量δに応じて変化す
る。レチクル40とウエハ45の間に光学系41を有するだけ
で原理的には第12図の実施例と同じであり、従って前述
と同様の効果が得られる。第15図も第14図同様本発明を
ステツパーに応用した例を示す構造概略図である。63,6
3′はレチクル上のFZP、64,64′はウエハ上のFZPであ
り、検出手段4上に出来た光スポツト65,65′の間隔を
計測することによりウエハ68の結像レンズ61の光軸方向
のずれ即ちレチクル60と間隔の計測ができる。これは原
理的には第2図の実施例と同様である。
FIG. 14 is a schematic configuration diagram showing an example in which the present invention is applied to an optical stepper or an excimer reduction stepper. 40 is a reticle, 45 is a wafer, 41 is a projection optical system, 43, 43 ', 47, 4
Reference numeral 7'denotes an FZP provided on the reticle. In this example, the linear grating 51 on the wafer changes the emission angle of the light beam 1.
The distance between the spots 48 and 48 'changes according to the amount of change .delta. When the position of the wafer 45 approaches or moves away from the reticle. In principle, the optical system 41 is provided between the reticle 40 and the wafer 45, which is the same as that of the embodiment shown in FIG. 12, and therefore the same effect as described above can be obtained. Like FIG. 14, FIG. 15 is also a structural schematic diagram showing an example in which the present invention is applied to a stepper. 63,6
3'is an FZP on the reticle, and 64, 64 'are FZPs on the wafer. By measuring the distance between the optical spots 65, 65' formed on the detecting means 4, the optical axis of the imaging lens 61 of the wafer 68 is measured. It is possible to measure the deviation of the direction, that is, the reticle 60 and the distance. This is the same as the embodiment of FIG. 2 in principle.

第16図はミラー縮小型のステツパーへの応用例であ
る。レチクル40とウエハ45は3群のミラー72,73,74に関
して共役(結像)関係にある。76,76′はレチクル上のF
ZPパターンエリア、78,78′はウエハ上のFZPパターンエ
リアである。4の受光手段でスポツト81と81′の間隔を
計る事によりウエハの光軸方向のズレを検出する。これ
も原理的に第2図の実施例と同様である。尚、マスクと
ウエハのFZPはレンズに例えていうと凸と凹の組合せ
や、凹と凸の組合せの例を示したが、検出手段上に出来
るスポツトが得られれば凸と凸或いは、凹と凹であって
もよい。少し広がりをもったスポツトでも重心検出など
が出来ればさしつかえない。
FIG. 16 shows an example of application to a mirror reduction type stepper. The reticle 40 and the wafer 45 have a conjugate (imaging) relationship with respect to the three groups of mirrors 72, 73, and 74. 76,76 ′ is F on the reticle
ZP pattern areas, 78 and 78 'are FZP pattern areas on the wafer. The deviation of the wafer in the optical axis direction is detected by measuring the distance between the spots 81 and 81 'by the light receiving means of No. 4. This is also similar in principle to the embodiment shown in FIG. The mask and the FZP of the wafer are shown as an example of a combination of convex and concave, or a combination of concave and convex when compared to a lens, but if a spot that can be made on the detecting means is obtained, convex and convex or concave and concave. May be Even if the spot has a little space, it will be okay if the center of gravity can be detected.

〔発明の効果〕〔The invention's effect〕

以上述べた様に、本発明によってマスク,ウエハ間の
xy面内に沿った相対ずれ、あるいはウエハの傾き等の影
響を受ける異なく、常に高精度な間隔測定が可能になっ
た。
As described above, according to the present invention, the space between the mask and the wafer is
It is now possible to measure highly accurate distances without being affected by relative displacement along the xy plane or wafer tilt.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の第1実施例の光路図、 第2図(A)は第1図の実施例の装置構成図、 第2図(B),(C)は第1図の実施例の間隔設定フロ
ーチャート、 第3図は第1図の実施例のFZP光軸関係図、 第4図(A)は第1図の実施例のスポツトと受光手段の
関係図、 第4図(B)は本発明の第2実施例のスポツトと受光手
段の関係図、 第5図は第1図の実施例のFZPのパターン例、 第6図は本発明の第3実施例のFZP光軸関係図、 第7図は本発明の第4実施例の光路図、 第8図は本発明の第5実施例の光路図、 第9図は本発明の第6実施例の装置構成図、 第10図は第9図の実施例のFZPの光軸関係図、 第11図は第9図の実施例の光路図、 第12図は本発明の第7実施例の装置構成図、 第13図は第12図の実施例のFZPの光軸関係図、 第14図は本発明の第8実施例の装置構成図、 第15図は本発明の第9実施例の装置構成図、 第16図は本発明の第10実施例の装置構成図、 第17図は従来例の図、 である。 図中、 1a……光源、8,9,8′,9′……FZP 4……受光手段、10……CPU である。
1 is an optical path diagram of the first embodiment of the present invention, FIG. 2 (A) is a device configuration diagram of the embodiment of FIG. 1, and FIGS. 2 (B) and 2 (C) are the embodiments of FIG. FIG. 3 is an FZP optical axis relational diagram of the embodiment of FIG. 1, FIG. 4A is a relational diagram of the spot and the light receiving means of the embodiment of FIG. 1, and FIG. 4B. Is a relationship diagram of the spot and the light receiving means of the second embodiment of the present invention, FIG. 5 is an example of FZP pattern of the embodiment of FIG. 1, and FIG. 6 is an FZP optical axis relationship diagram of the third embodiment of the present invention. FIG. 7 is an optical path diagram of a fourth embodiment of the present invention, FIG. 8 is an optical path diagram of a fifth embodiment of the present invention, FIG. 9 is a device configuration diagram of a sixth embodiment of the present invention, and FIG. Is an optical axis relation diagram of the FZP of the embodiment of FIG. 9, FIG. 11 is an optical path diagram of the embodiment of FIG. 9, FIG. 12 is a device configuration diagram of the seventh embodiment of the present invention, and FIG. 12 is an optical axis relation diagram of the FZP of the embodiment of FIG. 8 is an apparatus configuration diagram of the embodiment, FIG. 15 is an apparatus configuration diagram of the ninth embodiment of the present invention, FIG. 16 is an apparatus configuration diagram of the tenth embodiment of the present invention, and FIG. 17 is a diagram of a conventional example. is there. In the figure, 1a ... light source, 8, 9, 8 ', 9' ... FZP 4 ... light receiving means, 10 ... CPU.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】位置検出をすべき対向した第一物体および
第二物体の方向に少なくとも第一の光束と第二の光束を
出射する光源手段と、 第一物体および第二物体によって所定の方向に偏向され
かつ第一物体と第二物体との対向方向及び対向方向に直
交する方向に沿つた相対位置変化に応じて第一の受光面
への入射位置が変化する第一光束の前記入射位置を検出
する第一光検出手段と、 第一物体および第二物体によって所定の方向に偏向され
かつ第一物体と第二物体との対向方向に沿った相対位置
変化に応じて第二の受光面への入射位置が前記第一の光
束と異なる移動をし、また対向方向に直交する方向に沿
った相対位置変化に応じて第二の受光面への入射位置が
前記第一の光束と等しい移動をする第二光束の前記入射
位置を検出する第二光検出手段と、 前記第一および第二光検出手段の検出結果にづいて第一
物体と第二物体との対向方向相対位置変化を検出する手
段と、 を有することを特徴とする間隔測定装置。
1. Light source means for emitting at least a first light flux and a second light flux in the direction of a first object and a second object facing each other for position detection, and a predetermined direction by the first object and the second object. The incident position of the first light flux whose incident position on the first light-receiving surface changes in accordance with the relative position of the first object and the second object facing each other and along the direction orthogonal to the facing direction. A first light detecting means for detecting the second light receiving surface, which is deflected in a predetermined direction by the first object and the second object and changes in relative position along the facing direction of the first object and the second object. The incident position on the second light receiving surface is different from that of the first light beam, and the incident position on the second light receiving surface is the same as that of the first light beam according to the relative position change along the direction orthogonal to the facing direction. Second optical detector for detecting the incident position of the second light flux Means a detection result to the first object Zui and means for detecting the facing direction relative change in position of the second object, a distance measuring apparatus characterized by having a said first and second light detecting means.
JP63226004A 1988-02-16 1988-09-09 Interval measuring device Expired - Fee Related JP2556559B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP63226004A JP2556559B2 (en) 1988-09-09 1988-09-09 Interval measuring device
EP19890301477 EP0336537B1 (en) 1988-02-16 1989-02-16 Device for detecting positional relationship between two objects
DE1989625142 DE68925142T2 (en) 1988-02-16 1989-02-16 Device for proving the local relationship between two objects
US07/919,380 US5327221A (en) 1988-02-16 1992-07-29 Device for detecting positional relationship between two objects

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63226004A JP2556559B2 (en) 1988-09-09 1988-09-09 Interval measuring device

Publications (2)

Publication Number Publication Date
JPH0274815A JPH0274815A (en) 1990-03-14
JP2556559B2 true JP2556559B2 (en) 1996-11-20

Family

ID=16838279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63226004A Expired - Fee Related JP2556559B2 (en) 1988-02-16 1988-09-09 Interval measuring device

Country Status (1)

Country Link
JP (1) JP2556559B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5183608A (en) * 1992-01-03 1993-02-02 Corning Incorporated Method of making diesel particulate filters
JP6389134B2 (en) 2015-03-20 2018-09-12 日本碍子株式会社 Method for manufacturing plugged honeycomb structure, and plugged honeycomb structure

Also Published As

Publication number Publication date
JPH0274815A (en) 1990-03-14

Similar Documents

Publication Publication Date Title
EP0409573B1 (en) Method of detecting positional deviation
JP2704001B2 (en) Position detection device
US5396335A (en) Position detecting method
JP2756331B2 (en) Interval measuring device
KR20140061499A (en) High contrast encoder head
JP2676933B2 (en) Position detection device
JP2556559B2 (en) Interval measuring device
JP2513300B2 (en) Position detection device
JP2698446B2 (en) Interval measuring device
JP2556126B2 (en) Interval measuring device and interval measuring method
JP2827250B2 (en) Position detection device
JP2581227B2 (en) Position detection device
JP2827251B2 (en) Position detection device
JP2698388B2 (en) Position detection device
JP2546317B2 (en) Alignment device
JP2778231B2 (en) Position detection device
JP2623757B2 (en) Positioning device
JP2513281B2 (en) Alignment device
JP2513301B2 (en) Position detection device
EP0332300B1 (en) Method and apparatus for measuring an interval between two objects
JP2698389B2 (en) Position detection device
EP0474487A2 (en) Method and device for optically detecting position of an article
JP2513282B2 (en) Alignment device
JP2765003B2 (en) Interval measuring device
JPH0367103A (en) Device and method for detecting position

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees