JPH03219644A - Manufacture of thin-film transistor - Google Patents

Manufacture of thin-film transistor

Info

Publication number
JPH03219644A
JPH03219644A JP1536690A JP1536690A JPH03219644A JP H03219644 A JPH03219644 A JP H03219644A JP 1536690 A JP1536690 A JP 1536690A JP 1536690 A JP1536690 A JP 1536690A JP H03219644 A JPH03219644 A JP H03219644A
Authority
JP
Japan
Prior art keywords
polycrystalline
thin film
film
gate insulating
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1536690A
Other languages
Japanese (ja)
Other versions
JP3032542B2 (en
Inventor
Masahiro Fujiwara
正弘 藤原
Masataka Ito
政隆 伊藤
Tatsuo Morita
達夫 森田
Shuhei Tsuchimoto
修平 土本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2015366A priority Critical patent/JP3032542B2/en
Publication of JPH03219644A publication Critical patent/JPH03219644A/en
Application granted granted Critical
Publication of JP3032542B2 publication Critical patent/JP3032542B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To reduce the interface-level density between a polycrystalline Si layer and a gate insulating layer, the interface fixed charge density and the like and to enhance the characteristics of a thin-film transistor comprising a polycrystalline Si thin film by a method wherein a gate insulating film is formed on the polycrystalline Si thin film without exposing the formed polycrystalline Si thin film to the air. CONSTITUTION:A polycrystalline Si layer 21, a gate insulating layer 22 and a gate electrode 23 are formed on a Pyrex glass substrate 110 by a patterning operation. In addition, phosphorus is implanted into the polycrystalline Si layer 21 by making use of the gate electrode 23 as a mask; a heat treatment is executed to activate its implanted region; after that, an interlayer insulating film 24 composed of SiO2 is formed by a CVD method. Contact holes 26 are made in the interlayer insulating layer 24 and the gate insulating layer 22; Al interconnections 25 are connected to the implanted region; a source electrode and a drain electrode are formed; the contact holes 26 are made in the interlayer insulating layer 24; an Al interconnection 25 is connected to the gate electrode 23.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、液晶デイスプレィ、イメージセンサ等に用い
られる薄膜トランジスタに関し、低温プロセスを用いる
薄膜トランジスタの製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to thin film transistors used in liquid crystal displays, image sensors, etc., and relates to a method for manufacturing thin film transistors using a low temperature process.

〈従来の技術〉 液晶デイスプレィ、イメージセンサ等を駆動させる薄膜
トランジスタの製造には、従来ICプロセスと同様のプ
ロセスが用いられてきた。この方法では、結晶化、絶縁
膜の形成、不純物の活性化を1000℃近い高温で行う
ため、基板材料が例えば石英基板等に限定され大面積に
形成することが困難であった。近年、プロセスの低温化
の方法が提案され、アモルファス膜、多結晶膜を形成し
、これを出発材料として低温固相成長、レーザーアニー
ル等で結晶化させる方法等が検討されている。
<Prior Art> A process similar to a conventional IC process has been used to manufacture thin film transistors that drive liquid crystal displays, image sensors, and the like. In this method, crystallization, formation of an insulating film, and activation of impurities are performed at a high temperature of nearly 1000° C., so the substrate material is limited to, for example, a quartz substrate, making it difficult to form a large area. In recent years, methods for lowering the process temperature have been proposed, and methods of forming an amorphous film or a polycrystalline film and using this as a starting material for crystallization by low-temperature solid phase growth, laser annealing, etc. are being considered.

ところで、薄膜トランジスタは一般に電界効果型トラン
ジスタであるために、その特性はゲート絶縁層と半導体
層の界面状態に非常に大きく影響される。このため、従
来の高温プロセスでは熱酸化により、ゲート絶縁層と半
導体層の界面を半導体層内部に作り込み界面状態を良好
に保っている。
By the way, since thin film transistors are generally field effect transistors, their characteristics are greatly influenced by the state of the interface between the gate insulating layer and the semiconductor layer. For this reason, in conventional high-temperature processes, the interface between the gate insulating layer and the semiconductor layer is created inside the semiconductor layer by thermal oxidation to maintain a good interface state.

これに対し、低温プロセスでは、ゲート絶縁層も低温で
形成する必要があるため上記の熱酸化法は使えない。そ
こで、半導体膜を所定の形状に加工した後、弗酸等を用
いて表面処理を行い、この後スパッタ、CVD法等を用
いて半導体膜上にゲート絶縁膜を形成する方法が用いら
れている。
On the other hand, in a low-temperature process, the gate insulating layer must also be formed at a low temperature, so the above thermal oxidation method cannot be used. Therefore, a method is used in which after processing a semiconductor film into a predetermined shape, surface treatment is performed using hydrofluoric acid, etc., and then a gate insulating film is formed on the semiconductor film using sputtering, CVD, etc. .

〈発明が解決しようとする課題〉 上記低温プロセスで作製される薄膜トランジスタの特性
向丘を図るためには、半導体膜表面を清浄に保ち、この
上に絶縁膜を形成することが必要である。しかしながら
、従来の弗酸等で表面処理を行う方法では、この際に用
いる弗酸、水等に細心の注意を払ってもNar K )
 A を等のイオンの混入を避けることは困難であった
。特に、基板にガラスを用いる場合にはガラス中の上記
イオンが水中に溶は出すことがあった。このような事か
ら、従来の方法では界面準位密度、界面固定電荷密度等
が十分に低減されるに至っていなかった。
<Problems to be Solved by the Invention> In order to improve the characteristics of the thin film transistor manufactured by the above-mentioned low-temperature process, it is necessary to keep the surface of the semiconductor film clean and form an insulating film thereon. However, in the conventional method of surface treatment using hydrofluoric acid, etc., even if careful attention is paid to the hydrofluoric acid, water, etc.
It was difficult to avoid the contamination of ions such as A. In particular, when glass is used as the substrate, the ions in the glass may be dissolved into water. For these reasons, conventional methods have not been able to sufficiently reduce the interface state density, interface fixed charge density, etc.

以上に鑑み、本発明は半導体層とゲート絶縁層との界面
状態の良好な薄膜トランジスタの製造方法を提供するこ
とを目的とする。
In view of the above, an object of the present invention is to provide a method for manufacturing a thin film transistor with a good interface state between a semiconductor layer and a gate insulating layer.

く課題を解決するための手段〉 上記目的を達成するために、本発明は、基板上に多結晶
Si薄膜を形成し、該多結晶Si薄膜を大気に晒さずに
該多結晶Si薄膜上にゲート絶縁膜を形成し、さらに該
ゲート絶縁膜上にゲート電極を形成し、この後、上記多
結晶Si薄膜とゲート絶縁膜を所定形状にパターニング
することを特徴とする薄膜トランジスタの製造方法を提
供する。
Means for Solving the Problems> In order to achieve the above object, the present invention forms a polycrystalline Si thin film on a substrate, and forms a polycrystalline Si thin film on the polycrystalline Si thin film without exposing the polycrystalline Si thin film to the atmosphere. Provided is a method for manufacturing a thin film transistor, comprising forming a gate insulating film, further forming a gate electrode on the gate insulating film, and then patterning the polycrystalline Si thin film and the gate insulating film into a predetermined shape. .

〈作 用〉 形成した多結晶Si薄膜を大気に晒すことなく該多結晶
Si薄膜上にゲート絶縁膜を形成すると、形成直後の清
浄な状態を保った多結晶Si薄膜表面にゲート絶縁膜を
形成することができる。したがって、本発明において大
気に晒すことなくとは、不活性ガス雰囲気中、真空中等
の多結晶Si薄膜の形成直後の表面の清浄度を保つこと
のできる制御された雰囲気を破ることなくという意味で
ある。
<Function> When a gate insulating film is formed on the polycrystalline Si thin film without exposing the formed polycrystalline Si thin film to the atmosphere, the gate insulating film is formed on the surface of the polycrystalline Si thin film that remains in a clean state immediately after formation. can do. Therefore, in the present invention, "without exposure to the atmosphere" means without breaking the controlled atmosphere that can maintain the cleanliness of the surface of the polycrystalline Si thin film immediately after formation, such as in an inert gas atmosphere or vacuum. be.

また、ゲート絶縁膜を形成した段階で多結晶Si薄膜と
ゲート絶縁膜を所定の形状にパターニングし、この後、
ゲート電極を形成するためにゲート電極を成膜すると、
第5図に示すように多結晶Si層2Iのエツジ部でゲー
ト電極23と多結晶Si層21が短絡する可能性がある
が、本発明のように、ゲート電極を形成した後多結晶S
i薄膜とゲート絶縁膜のパターニングを行うために上記
のような短絡を生じない。
Furthermore, at the stage of forming the gate insulating film, the polycrystalline Si thin film and the gate insulating film are patterned into a predetermined shape, and then,
When forming a gate electrode to form a gate electrode,
As shown in FIG. 5, there is a possibility that the gate electrode 23 and the polycrystalline Si layer 21 are short-circuited at the edge part of the polycrystalline Si layer 2I, but as in the present invention, after forming the gate electrode,
Since the i-thin film and the gate insulating film are patterned, the above-mentioned short circuit does not occur.

さらに、多結晶Si薄膜、ゲート絶縁膜のパターニング
にマスクを用い、このマスクの位置が若干ずれたとして
も、先に形成したゲート電極がセルフアライメントのよ
うになって、ゲート電極は必ずゲート絶縁膜上に位置し
、作製工程が容易となる。
Furthermore, a mask is used to pattern the polycrystalline Si thin film and gate insulating film, and even if the position of this mask is slightly shifted, the previously formed gate electrode becomes self-aligned, and the gate electrode is always formed on the gate insulating film. It is located at the top, making the manufacturing process easier.

尚、上記絶縁層の形成直前に紫外光のような短波長の光
を照射すると、上記半導体膜表面に吸着されている微量
の不純物等を除去することができ、より清浄な半導体膜
表面に絶縁膜を形成することができる。
Furthermore, if short wavelength light such as ultraviolet light is irradiated immediately before the formation of the insulating layer, trace amounts of impurities adsorbed on the surface of the semiconductor film can be removed, resulting in a cleaner semiconductor film surface. A film can be formed.

〈実施例〉 第1図から第4図を用いて本発明の実施例について詳細
に説明する。
<Example> An example of the present invention will be described in detail using FIGS. 1 to 4.

第1図は本実施例に用いた製造装置である。本装置は基
板入り口側のロードロック室101゜PECVD室璽0
2、アニール室!03、スノ<ツタ室104、基板出口
側ロードロック室105からなり、各室間にはゲートパ
ルプ109が、PECVD室102室上02ター106
とRF電源107とPECVD電極+08が、アニール
室103にはヒーター+06が、スパッタ室+04には
ヒーター+06とRF電源107とスパソタターゲッ)
Illと低圧水銀ランプ+12が設けられており、基板
+10が各室を移動するようになっている。尚、各チャ
ンバーは石英管で構成されている。
FIG. 1 shows the manufacturing apparatus used in this example. This device is located in the load lock chamber 101° on the board entrance side.
2. Annealing room! 03. It consists of a snow < ivy chamber 104 and a load lock chamber 105 on the substrate outlet side, and a gate pulp 109 is placed between each chamber, and a PECVD chamber 102 and an upper chamber 106
and RF power supply 107 and PECVD electrode +08, annealing chamber 103 has heater +06, sputtering chamber +04 has heater +06, RF power supply 107 and spa sota target)
A low-pressure mercury lamp +12 is provided, and a substrate +10 is moved through each chamber. Incidentally, each chamber is composed of a quartz tube.

まず、ロードロック室101よりパイレックスガラス基
板+10を搬入し、さらにPECVD室+02に移動す
る。そして、下の第1表に示す条件でP E CV D
 (plasma enhanced CVD )法に
よりa−5i膜を成膜する。
First, a Pyrex glass substrate +10 is carried in from the load lock chamber 101, and then moved to a PECVD chamber +02. Then, P E CV D under the conditions shown in Table 1 below.
An a-5i film is formed by a (plasma enhanced CVD) method.

続いて基板+10をアニール室101に移動し、下の第
2表に示す条件で、a−5i膜をアニールし結晶の同相
成長をさせて多結晶膜とする。
Subsequently, the substrate +10 is moved to the annealing chamber 101, and the a-5i film is annealed under the conditions shown in Table 2 below to cause in-phase crystal growth and form a polycrystalline film.

さらに続いて、基板110をスパッタ室に移動1−5下
の第3表に示す条件で、ゲート絶縁膜となる5i02膜
を成膜する。
Subsequently, the substrate 110 is moved to a sputtering chamber 1-5, and a 5i02 film to be a gate insulating film is formed under the conditions shown in Table 3 below.

以上のように本実施例では半導体膜の成膜、結晶化、ゲ
ート絶縁膜の成膜までを不活性ガス雰囲気中で又は真空
を破ることなく行った。
As described above, in this example, the semiconductor film formation, crystallization, and gate insulating film formation were performed in an inert gas atmosphere or without breaking the vacuum.

次に、5i02膜上にスパッタ蒸着によりAt膜を形成
し、これをフォトリングラフィによりパターニングして
所定の形状にゲート電極を形成する。
Next, an At film is formed on the 5i02 film by sputter deposition, and this is patterned by photolithography to form a gate electrode in a predetermined shape.

この後、5i02膜、多結晶Si膜を上記と同様てフォ
トリングラフィを用いて所定の形状にパターニングする
。この際、マスクの位置がずれたとしても、ゲート電極
の下部ではゲート電極自身がマスクの役割を果すために
、ゲート電極は常に5i02膜上にあり、ゲート電極と
8102膜との相対的位置がずれてゲート電極と多結晶
Si膜とが接触するということがなく、ゲート電極、5
i02膜、多結晶Si膜をパターニングする際の各位置
の整合をとるのが容易である。
Thereafter, the 5i02 film and the polycrystalline Si film are patterned into a predetermined shape using photolithography in the same manner as described above. At this time, even if the position of the mask shifts, the gate electrode itself plays the role of a mask below the gate electrode, so the gate electrode is always on the 5i02 film and the relative position between the gate electrode and the 8102 film is There is no possibility that the gate electrode and the polycrystalline Si film come into contact with each other due to misalignment.
It is easy to match each position when patterning the i02 film and the polycrystalline Si film.

第2図に本実施例の薄膜トランジスタの構造を示す。第
2図(a)は平面図、同図(b)は断面図である。
FIG. 2 shows the structure of the thin film transistor of this example. FIG. 2(a) is a plan view, and FIG. 2(b) is a sectional view.

上記パターニングにより、パイレックスガラスの基板+
10上に、多結晶Si層2+、ゲート絶縁層22、ゲー
ト電極23が形成されている。
By the above patterning, Pyrex glass substrate +
A polycrystalline Si layer 2+, a gate insulating layer 22, and a gate electrode 23 are formed on the layer 10.

さらに、ゲート電極23をマスクとして多結晶Si層2
1中にリンを注入し、注入領域の活性化熱処理を行った
後、CVD法により5i02から成る層間絶縁膜24を
形成する。この眉間絶縁層24とゲート絶縁層22にコ
ンタクトホール26を形成し、上記注入領域VCA4配
線25を接続してソース及びドレイン電極を形成し、眉
間絶縁層24にコンタクトホール26を形成しゲート’
H極23VCAt配線25を接続する。尚、チャネル部
は申請20μm、長さ10μmとした。
Furthermore, using the gate electrode 23 as a mask, the polycrystalline Si layer 2
After injecting phosphorus into 1 and performing activation heat treatment on the implanted region, an interlayer insulating film 24 made of 5i02 is formed by CVD. A contact hole 26 is formed in the glabella insulating layer 24 and the gate insulating layer 22, and the implanted region VCA4 wiring 25 is connected to form source and drain electrodes.A contact hole 26 is formed in the glabella insulating layer 24 and the gate'
The H-pole 23VCAt wiring 25 is connected. Note that the channel portion was 20 μm in length and 10 μm in length.

以上に示した5i02/多結晶5iljlJにAtWl
極を付けた時のC−V特性を第3図に示す。実線は本実
施例のサンプル、破線は従来のプロセスに基づき、結晶
化した後−度空気中に出し、その後弗酸で処理したサン
プルのグラフである。従来のプロセスでは、本発明のプ
ロセスに比較して、フラットバンド電圧VFBがマイナ
ス側にシフトしていることが判った。これは、半導体膜
と絶縁膜の界面に正の固定電荷が存在していることを示
しており、本実施例のサンプルではほとんど固定電荷が
存在しないことが判る。
AtWl to 5i02/polycrystalline 5iljlJ shown above
Figure 3 shows the CV characteristics when the poles are attached. The solid line is a graph of the sample of this example, and the broken line is a graph of a sample that was crystallized, exposed to air, and then treated with hydrofluoric acid based on a conventional process. It was found that in the conventional process, the flat band voltage VFB shifted to the negative side compared to the process of the present invention. This indicates that positive fixed charges exist at the interface between the semiconductor film and the insulating film, and it can be seen that almost no fixed charges exist in the sample of this example.

第4図に本実施例の薄膜トランジスタのドレイン電流I
D5−ゲート電圧VQ特性(実線)を示す。
Figure 4 shows the drain current I of the thin film transistor of this example.
D5-gate voltage VQ characteristic (solid line) is shown.

破線は第3図と同様の従来のプロセスによる薄膜トラン
ジスタの特性を示す。これらの特性の比較から、本発明
のプロセスで作製した薄膜トランジスタの方がION電
流が高く、VT)lも低く良好な特性を有することが判
った。
The broken line indicates the characteristics of a thin film transistor produced by a conventional process similar to that shown in FIG. From a comparison of these characteristics, it was found that the thin film transistor manufactured by the process of the present invention has higher ION current and lower VT)l, and has better characteristics.

尚、ゲート絶縁膜となる5i02膜を成膜する前に、ス
パッタ室に設けた低圧水銀ランプで多結晶S1膜を照射
するもとさらに薄膜トランジスタの特性が向上した。
Note that the characteristics of the thin film transistor were further improved by irradiating the polycrystalline S1 film with a low-pressure mercury lamp provided in the sputtering chamber before forming the 5i02 film serving as the gate insulating film.

〈発明の効果〉 本発明の製造方法によれば、多結晶St層とゲート絶縁
層間の界面準位密度、界面固定電荷密度等を低減でき、
また、ゲート電極と多結晶Si層との短絡を容易に防ぐ
ことができて、多結晶Si薄膜による薄膜トランジスタ
の特性を向上する。
<Effects of the Invention> According to the manufacturing method of the present invention, the interface state density, interface fixed charge density, etc. between the polycrystalline St layer and the gate insulating layer can be reduced,
Furthermore, short circuits between the gate electrode and the polycrystalline Si layer can be easily prevented, thereby improving the characteristics of the thin film transistor using the polycrystalline Si thin film.

さらに、これによって高性能の薄膜トランジスタを安価
に提供することができる。
Furthermore, this makes it possible to provide high performance thin film transistors at low cost.

4

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の製造装置図、第2図は本発
明の一実施例の薄膜トランジスタの構成図、 第3図は本発明の一実施例に示したC−V特性図、 第4図は第2図に示した薄膜トランジスタのID5−v
Q特性図、 第5図はゲート電極と多結晶Si層の短絡を説明する図
である。 21・・・多結晶S1層 22・・・ゲート絶縁層 23・・・ゲート電極
FIG. 1 is a diagram of a manufacturing apparatus according to an embodiment of the present invention, FIG. 2 is a configuration diagram of a thin film transistor according to an embodiment of the present invention, and FIG. 3 is a CV characteristic diagram shown in an embodiment of the present invention. Figure 4 shows ID5-v of the thin film transistor shown in Figure 2.
The Q characteristic diagram, FIG. 5, is a diagram illustrating a short circuit between the gate electrode and the polycrystalline Si layer. 21... Polycrystalline S1 layer 22... Gate insulating layer 23... Gate electrode

Claims (1)

【特許請求の範囲】[Claims] 1、基板上に多結晶Si薄膜を形成し、該多結晶Si薄
膜を大気に晒さずに該多結晶Si薄膜上にゲート絶縁膜
を形成し、さらに該ゲート絶縁膜上にゲート電極を形成
し、この後上記多結晶Si薄膜とゲート絶縁膜を所定形
状にパターニングすることを特徴とする薄膜トランジス
タの製造方法。
1. Forming a polycrystalline Si thin film on a substrate, forming a gate insulating film on the polycrystalline Si thin film without exposing the polycrystalline Si thin film to the atmosphere, and further forming a gate electrode on the gate insulating film. . A method for manufacturing a thin film transistor, comprising: thereafter patterning the polycrystalline Si thin film and the gate insulating film into a predetermined shape.
JP2015366A 1990-01-24 1990-01-24 Method for manufacturing thin film transistor Expired - Lifetime JP3032542B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015366A JP3032542B2 (en) 1990-01-24 1990-01-24 Method for manufacturing thin film transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015366A JP3032542B2 (en) 1990-01-24 1990-01-24 Method for manufacturing thin film transistor

Publications (2)

Publication Number Publication Date
JPH03219644A true JPH03219644A (en) 1991-09-27
JP3032542B2 JP3032542B2 (en) 2000-04-17

Family

ID=11886798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015366A Expired - Lifetime JP3032542B2 (en) 1990-01-24 1990-01-24 Method for manufacturing thin film transistor

Country Status (1)

Country Link
JP (1) JP3032542B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001177099A (en) * 1999-12-14 2001-06-29 Furontekku:Kk Manufacturing method of thin-film transistor, active matrix substrate, and thin-film deposition device
US6939749B2 (en) 1993-03-12 2005-09-06 Semiconductor Energy Laboratory Co., Ltd Method of manufacturing a semiconductor device that includes heating the gate insulating film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6939749B2 (en) 1993-03-12 2005-09-06 Semiconductor Energy Laboratory Co., Ltd Method of manufacturing a semiconductor device that includes heating the gate insulating film
JP2001177099A (en) * 1999-12-14 2001-06-29 Furontekku:Kk Manufacturing method of thin-film transistor, active matrix substrate, and thin-film deposition device

Also Published As

Publication number Publication date
JP3032542B2 (en) 2000-04-17

Similar Documents

Publication Publication Date Title
JP3713232B2 (en) Method of manufacturing thin film transistor including crystalline silicon active layer
JPH05109737A (en) Manufacture of thin film transistor
JPH0555570A (en) Thin film semiconductor device and manufacture thereof
JPH01187814A (en) Manufacture of thin film semiconductor device
JPS6110279A (en) Method of producing thin film field effect transistor and transistor obtained by same method
JP4243455B2 (en) Thin film transistor manufacturing method
JPS62205664A (en) Manufacture of thin film transistor
JPH098313A (en) Fabrication of semiconductor device and liquid crystal display
JPH03219644A (en) Manufacture of thin-film transistor
JP3486421B2 (en) Method for manufacturing thin film semiconductor device
JPS603158A (en) Method of forming field effect transistor
JP2005236186A (en) Semiconductor device, manufacturing method thereof, and electronic equipment
JP3510973B2 (en) Method for manufacturing thin film semiconductor device
JP3774278B2 (en) Method for manufacturing thin film transistor substrate for liquid crystal display device
JP3279280B2 (en) Method for manufacturing thin film semiconductor device
JP2006013438A (en) Thin film transistor and its manufacturing method
JPS5994829A (en) Manufacture of semiconductor device
JP3730185B2 (en) Thin film transistor manufacturing method
JPH10223911A (en) Thin film semiconductor device
JP2863851B2 (en) Method for manufacturing semiconductor device
JP2000031081A (en) Fabrication of semiconductor device
JP2005236187A (en) Method for manufacturing semiconductor device, and electronic equipment
JP2002324904A (en) Thin-film transistor and method of forming the same
JPH09232584A (en) Method of manufacturing semiconductor device
JP3038898B2 (en) Method for manufacturing thin film semiconductor device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 10

EXPY Cancellation because of completion of term