JPH03218910A - Method and device for recovering argon - Google Patents
Method and device for recovering argonInfo
- Publication number
- JPH03218910A JPH03218910A JP1219990A JP1219990A JPH03218910A JP H03218910 A JPH03218910 A JP H03218910A JP 1219990 A JP1219990 A JP 1219990A JP 1219990 A JP1219990 A JP 1219990A JP H03218910 A JPH03218910 A JP H03218910A
- Authority
- JP
- Japan
- Prior art keywords
- argon
- hydrogen
- carbon monoxide
- exhaust gas
- oxygen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 title claims description 83
- 229910052786 argon Inorganic materials 0.000 title claims description 42
- 238000000034 method Methods 0.000 title claims description 28
- 239000007789 gas Substances 0.000 claims abstract description 78
- 238000011084 recovery Methods 0.000 claims abstract description 28
- 238000007670 refining Methods 0.000 claims abstract description 11
- 238000001179 sorption measurement Methods 0.000 claims abstract description 10
- 238000002156 mixing Methods 0.000 claims abstract description 7
- 239000001257 hydrogen Substances 0.000 claims description 45
- 229910052739 hydrogen Inorganic materials 0.000 claims description 45
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 44
- 239000001301 oxygen Substances 0.000 claims description 44
- 229910052760 oxygen Inorganic materials 0.000 claims description 44
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 41
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 40
- 229910002091 carbon monoxide Inorganic materials 0.000 claims description 39
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 19
- 238000006555 catalytic reaction Methods 0.000 claims description 11
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 9
- 239000001569 carbon dioxide Substances 0.000 claims description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 8
- 238000000746 purification Methods 0.000 claims description 7
- 238000000926 separation method Methods 0.000 claims description 5
- 239000000203 mixture Substances 0.000 abstract description 6
- 239000003054 catalyst Substances 0.000 abstract description 2
- 238000006243 chemical reaction Methods 0.000 abstract description 2
- 229910052763 palladium Inorganic materials 0.000 abstract description 2
- 229910052697 platinum Inorganic materials 0.000 abstract description 2
- 239000002912 waste gas Substances 0.000 abstract 7
- 230000007812 deficiency Effects 0.000 abstract 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 238000011282 treatment Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 150000002431 hydrogen Chemical class 0.000 description 3
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000009849 vacuum degassing Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 241001610351 Ipsa Species 0.000 description 1
- 238000003723 Smelting Methods 0.000 description 1
- VVTSZOCINPYFDP-UHFFFAOYSA-N [O].[Ar] Chemical compound [O].[Ar] VVTSZOCINPYFDP-UHFFFAOYSA-N 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910002090 carbon oxide Inorganic materials 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- -1 that is Chemical compound 0.000 description 1
Landscapes
- Separation Of Gases By Adsorption (AREA)
- Separation By Low-Temperature Treatments (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、アルゴンの回収方法及びその装置に関し、特
に製鉄所等の各種精錬工程から排出される様々な組成の
アルゴン含有排ガスからアルゴンを回収する方法及び装
置に関する。[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method and apparatus for recovering argon, and in particular to recovering argon from argon-containing exhaust gases of various compositions discharged from various refining processes such as steel plants. The present invention relates to a method and apparatus for doing so.
従来から、製鉄所の精錬工程において、連続鋳造炉,真
空脱ガス炉,転炉におけるボトムバブリンク,アルゴン
ー酸素吹錬炉等に多量のアルゴンが使用されているが、
排出される排ガス中のアルゴンを回収する方法としても
、例えば、特開昭59−152210号公報,同60−
204608号公報,同60−239309号公報,同
63189774号公報等に示されるように幾っがの提
案が成されている。Traditionally, large amounts of argon have been used in the refining process of steel plants, such as in continuous casting furnaces, vacuum degassing furnaces, bottom bubble links in converters, and argon-oxygen blowing furnaces.
As a method for recovering argon in exhaust gas, for example, Japanese Patent Laid-Open Nos. 59-152210 and 60-
A number of proposals have been made, as shown in 204608, 60-239309, and 63189774.
第2図は、従来のアルゴン回収方法の一例を示す系統図
である。FIG. 2 is a system diagram showing an example of a conventional argon recovery method.
まず各種炉1から排出された排ガスは、ガスホルダー2
に貯留された後に圧縮機3により第1圧力変動吸着分離
装置(以下第IPSAという)4に送られ、該排ガス中
の窒素,一酸化炭素,二酸化炭素が除去される。第IP
SA4を出た排ガスは、該第IPSA4で除去されずに
排ガス中に残留している酸素又は水素の量が連続分析計
(図示せず)により定量され、該分析値に応じて水素又
は酸素が添加された後に、酸素と水素とを燃焼反応させ
て水に変換する触媒反応設#i5に送られる。First, the exhaust gas discharged from various furnaces 1 is transferred to the gas holder 2.
After being stored in the exhaust gas, it is sent to a first pressure fluctuation adsorption separation device (hereinafter referred to as IPSA) 4 by a compressor 3, where nitrogen, carbon monoxide, and carbon dioxide in the exhaust gas are removed. No. IP
In the exhaust gas leaving SA4, the amount of oxygen or hydrogen remaining in the exhaust gas without being removed by IPSA4 is quantified by a continuous analyzer (not shown), and the amount of hydrogen or oxygen is determined according to the analysis value. After being added, it is sent to catalytic reaction facility #i5 where oxygen and hydrogen undergo a combustion reaction and are converted into water.
酸素及び水素を水に変換した排ガスは、第2圧力変動吸
着分離装置(以下、精製設備と称する)6に送られて水
分を除去され、アルゴンが回収される。The exhaust gas in which oxygen and hydrogen have been converted to water is sent to a second pressure fluctuation adsorption separation device (hereinafter referred to as purification equipment) 6 to remove moisture and recover argon.
尚、図中7,7は、アルゴン以外の成分を排出するため
の真空ポンプである。In addition, 7 and 7 in the figure are vacuum pumps for discharging components other than argon.
しかしながら、前述の各種炉から排出される排ガス中に
は、溶鉱中から発生する一酸化炭素,二酸化炭素.水素
,窒素及びガス冷却時に混入する空気成分(窒素,酸素
)が多量に含まれるために、これらのアルゴン以外のガ
ス成分を除去するための処理が複雑となり、回収設備費
が高く、実用化が遅れていた。However, the exhaust gases emitted from the various furnaces mentioned above contain carbon monoxide and carbon dioxide generated from smelting. Because large amounts of hydrogen, nitrogen, and air components (nitrogen, oxygen) are mixed in during gas cooling, the process to remove these gas components other than argon is complicated, and the cost of recovery equipment is high, making it difficult to put into practical use. I was late.
また、試みに実用化された方法においても、排ガス中の
水素又は酸素を除去するために、化学量論以上の酸素又
は水素を添加しなければならなかった。特に、吸着法で
アルゴンと分離させることの困難な酸素をl)plオー
ダーまで除去するためには、高価な水素を過剰に添加す
る必要があった。Furthermore, even in the methods that have been tried and put into practical use, it was necessary to add more than the stoichiometric amount of oxygen or hydrogen in order to remove hydrogen or oxygen from the exhaust gas. In particular, in order to remove oxygen, which is difficult to separate from argon by adsorption, to the order of 1) pl, it is necessary to add an excessive amount of expensive hydrogen.
そこで、本発明は、高価な水素を用いずに低コストでア
ルゴンを回収することのできるアルゴンの回収方法を提
供することを目的としている。Therefore, an object of the present invention is to provide an argon recovery method that can recover argon at low cost without using expensive hydrogen.
上記した目的を達成するために、本発明のアルゴンの回
収方法は、製鉄所の精錬工程等から排出されるアルゴン
を含む排ガス中のアルゴンを回収するにあたり、含有す
る酸素量に比べて水素及び/又は一酸化炭素の合計含有
量が少ない排ガスと、含有する酸素量に比べて水素及び
/又は一酸化炭素の合計含有量が多い排ガスとを混合し
、両排ガス中の酸素を水素及び/又は一酸化炭素と反応
させて水及び/又は二酸化炭素に変換した後、吸着精製
を行うことを特徴とするもので、さらに前記含有する酸
素量に比べて水素及び/又は一酸化炭素の合計含有量が
多い排ガスは、水素及び/又は一酸化炭素濃度の高い精
錬工程時に捕集し、貯留したものであること、及び前記
両排ガスの混合量は、両排ガスを混合した後の水素及び
/又は一酸化炭素の合計含有量が、両排ガス中の酸素を
除去する化学量論以上の水素及び/又は一酸化炭素を含
有するように制御されることを特徴としている。In order to achieve the above object, the argon recovery method of the present invention recovers argon from the argon-containing exhaust gas discharged from the refining process of a steelworks, etc., when the amount of hydrogen and/or Or, by mixing exhaust gas with a low total carbon monoxide content and exhaust gas with a high total hydrogen and/or carbon monoxide content compared to the oxygen content, the oxygen in both exhaust gases is replaced with hydrogen and/or carbon monoxide. It is characterized by performing adsorption purification after reacting with carbon oxide to convert it into water and/or carbon dioxide, and furthermore, the total content of hydrogen and/or carbon monoxide is smaller than the amount of oxygen contained. The large amount of exhaust gas must be collected and stored during the refining process, which has a high concentration of hydrogen and/or carbon monoxide, and the amount of mixture of both exhaust gases is equal to the amount of hydrogen and/or monoxide after mixing both exhaust gases. It is characterized in that the total carbon content is controlled so as to contain more than the stoichiometric amount of hydrogen and/or carbon monoxide that removes oxygen from both exhaust gases.
また、本発明のアルゴンの回収装置は、精錬工程等から
排出されるアルゴンを含有する排ガス中のアルゴンを触
媒反応設備及び圧力変動吸着分離装置を用いて回収する
アルゴンの回収装置において、主回収系統の他に、切替
弁にて分岐する添加系統を設け、主回収系統に酸素分析
計,一酸化炭素分析計,流量計をそれぞれ設けるととも
に、前記添加系統に、ホルダー及び前記両分析計からの
信号により作動する流量調節装置を設け、上記両系統の
排ガスを上記触媒反応設備に導入する経路を設けたこと
を特徴としている。Further, the argon recovery device of the present invention is a main recovery system in an argon recovery device that recovers argon in exhaust gas containing argon discharged from a refining process etc. using a catalytic reaction equipment and a pressure fluctuation adsorption separation device. In addition, an addition system is provided that branches off with a switching valve, and the main recovery system is provided with an oxygen analyzer, a carbon monoxide analyzer, and a flow meter, and the addition system is provided with signals from the holder and both analyzers. The present invention is characterized in that a flow rate adjustment device operated by the above is provided, and a path is provided for introducing the exhaust gases of both systems into the catalytic reaction equipment.
従って、排ガス中に含まれる酸素のほとんどを水素及び
/又は一酸化炭素と反応させて、吸着除去の容易な水及
び/又は二酸化炭素に変換することができ、高価な水素
の添加を不要とすることができる。Therefore, most of the oxygen contained in the exhaust gas can be reacted with hydrogen and/or carbon monoxide and converted into water and/or carbon dioxide, which can be easily adsorbed and removed, making it unnecessary to add expensive hydrogen. be able to.
以下、本発明を第1図に示す一実施例に基づいて、さら
に詳細に説明する。尚、以下の説明において前記第2図
に示した従来例と同一要素のものには同一符号を付して
詳細な説明を省略する。Hereinafter, the present invention will be explained in more detail based on an embodiment shown in FIG. In the following description, the same elements as those in the conventional example shown in FIG.
第1図は、本発明を適用したアルゴン回収装置を示す系
統図であって、炉1から排出される排ガスを触媒反応設
備5,精製設!6に導入する系統は、従来と同様にガス
ホルダー2,圧縮機3を備えた主回収系統10と、第1
ホルダー21,圧縮機22.第2ホルダー23,流量調
節装置24を介して前記主回収系統10に接続する一酸
化炭素の添加系統20とにより構成されている。FIG. 1 is a system diagram showing an argon recovery apparatus to which the present invention is applied, in which exhaust gas discharged from a furnace 1 is passed through a catalytic reaction equipment 5, a purification equipment! The systems to be introduced into 6 are a main recovery system 10 equipped with a gas holder 2 and a compressor 3 as in the past, and a first recovery system 10.
Holder 21, compressor 22. It is composed of a second holder 23 and a carbon monoxide addition system 20 connected to the main recovery system 10 via a flow rate adjustment device 24.
即ち、炉1から排出されるアルゴン含有ガスを回収する
管路に切替弁30を設けて、含有する酸素量に比べて水
素及び/又は一酸化炭素の合計含有量が少ない排ガス(
水素と一酸化炭素の合計量が排ガス中の酸素を除去する
化学量論に満たない排ガス)と、含有する酸素量に比べ
て水素及び/又は一酸化炭素の合計含有量が多い排ガス
とを分離できるように形成するとともに、両排ガスを所
定の割合で混合できるように形成している。That is, a switching valve 30 is provided in the pipe line for recovering the argon-containing gas discharged from the furnace 1, so that the exhaust gas (with a total content of hydrogen and/or carbon monoxide smaller than the amount of oxygen contained) is installed.
Separates exhaust gas whose total amount of hydrogen and carbon monoxide is less than the stoichiometric amount for removing oxygen from exhaust gas) and exhaust gas whose total amount of hydrogen and/or carbon monoxide is higher than the amount of oxygen it contains. It is formed so that both exhaust gases can be mixed at a predetermined ratio.
ここで、真空脱ガス炉の各処理により発生する排ガス組
成[体積%]の一例を第1表に示す。Here, an example of the exhaust gas composition [volume %] generated by each process in the vacuum degassing furnace is shown in Table 1.
第1表から明らかなように、処理B及び処理Dにより排
出される排ガス中には、酸素を水又は二酸化炭素に変換
するのに十分な量、即ち酸素1モルに対して水素及び一
酸化炭素の合計量が2モルの割合以上の水素及び一酸化
炭素が含まれている。As is clear from Table 1, the exhaust gases emitted by treatments B and D contain sufficient amounts of hydrogen and carbon monoxide to convert oxygen into water or carbon dioxide, that is, hydrogen and carbon monoxide per 1 mole of oxygen. The total amount of hydrogen and carbon monoxide is 2 moles or more.
従って、処理B及び処理Dにより発生する排ガスは、主
回収系統10を経て、即ち切替弁30からガスホルダー
2に回収され、圧縮機3で所定の圧力、例えば0.2〜
8.0kg/cシGに圧縮されてそのままの組成で触媒
反応設備5に導入される。Therefore, the exhaust gas generated by processing B and processing D passes through the main recovery system 10, that is, from the switching valve 30 and is recovered into the gas holder 2, and is then controlled by the compressor 3 to a predetermined pressure, e.g.
It is compressed to 8.0 kg/c/g and introduced into the catalytic reaction equipment 5 with the same composition.
一方、処理Cにおける排ガス中の水素及び一酸化炭素は
、該排ガス中の酸素全てを変換する量を満たしておらず
、処理Aにより排出される排ガス中には、該ガス中に含
まれる酸素に比べて多量の一酸化炭素が含まれている。On the other hand, the amount of hydrogen and carbon monoxide in the exhaust gas in treatment C is not sufficient to convert all of the oxygen in the exhaust gas, and the amount of hydrogen and carbon monoxide in the exhaust gas in treatment C is not sufficient to convert all of the oxygen in the exhaust gas. Contains a relatively large amount of carbon monoxide.
このことから、上記処理Aにより発生する排ガスは、前
記切替弁30を介して第1ホルダー21に捕集し、さら
に圧縮機22で前記主回収系統10よりも若干高い圧力
、例えば3.0〜8.0kg/ cJ Gに昇圧して第
2ホルダー23に貯留する。Therefore, the exhaust gas generated by the process A is collected in the first holder 21 via the switching valve 30, and is further processed by the compressor 22 at a pressure slightly higher than that of the main recovery system 10, e.g. The pressure is increased to 8.0 kg/cJ G and stored in the second holder 23.
そして、処理Cにより酸素過剰の排ガスが発生した場合
には、該排ガスを切替弁30からガスホルダー2に回収
し、圧縮機3を介して主回収系統10により触媒反応設
備5に導入するとともに、該主回収系統10に設けた流
量計(Fl)11と酸素分析計(AO2 )1 2,一
酸化炭素分析計(ACO)13とにより、該排ガス中の
酸素及び一酸化炭素の量を連続的に計測して一酸化炭素
の不足量を算出し、前記添加系統20の第2ホルダ23
に貯留されている処理Aの排ガスを流量支持調節器(F
I C)及び流量調節弁(FCV−1)からなる流量
調節装置24を介して所定量導入する。尚、この導入量
は、酸素を十分に変換させるため、酸素に対する水素及
び一酸化炭素の合計量が化学量論以上になるよう調節す
べきである。If excess oxygen is generated in the process C, the exhaust gas is recovered from the switching valve 30 into the gas holder 2, and introduced into the catalytic reaction equipment 5 via the main recovery system 10 via the compressor 3. A flow meter (Fl) 11, an oxygen analyzer (AO2) 12, and a carbon monoxide analyzer (ACO) 13 provided in the main recovery system 10 continuously measure the amount of oxygen and carbon monoxide in the exhaust gas. The amount of carbon monoxide lacking is calculated by measuring the amount of carbon monoxide, and the second holder 23 of the addition system 20
The exhaust gas of process A stored in the flow rate support regulator (F
A predetermined amount is introduced via a flow rate control device 24 consisting of a flow rate control valve (FCV-1) and a flow rate control valve (FCV-1). The amount introduced should be adjusted so that the total amount of hydrogen and carbon monoxide relative to oxygen is more than stoichiometric in order to convert oxygen sufficiently.
このように、含有する酸素量に比べて水素及び/又は一
酸化炭素の合計含有量が少ない排ガスと、含有する酸素
量に比べて水素及び/又は一酸化炭素の合計含有量が多
い排ガスとを所定の割合で混合させることにより、両排
ガス中に含まれる酸素を完全に、次工程の触媒反応設備
5で吸着除去の容易な水や二酸化炭素に変換できる水素
及び一酸化炭素量とすることができる。In this way, exhaust gas has a lower total content of hydrogen and/or carbon monoxide than the amount of oxygen it contains, and exhaust gas has a higher total content of hydrogen and/or carbon monoxide than the amount of oxygen it contains. By mixing at a predetermined ratio, the amount of hydrogen and carbon monoxide can be reduced so that the oxygen contained in both exhaust gases can be completely converted into water and carbon dioxide that can be easily adsorbed and removed in the next step, catalytic reaction equipment 5. can.
触媒反応設#I5は、白金系又はパラジウム系の触媒に
より、前記排ガス中の酸素と水素又は一酸化炭素とを燃
焼反応(触媒脱酸反応)させ、水又は二酸化炭素に変換
する。このようにして脱酸素された排ガスは、精製設備
6に送られ、該ガス中の水分,窒素.一酸化炭素,二酸
化炭素及び微量の水素が吸着除去され精製される。この
精製設備6は、従来から用いられている圧力変動吸着分
離装置を用いることができ、回収するアルゴンの純度に
応じて2塔式,3塔式等の適宜な型式のものを用い、従
来と略同様の操作でアルゴンを分離回収することができ
る。Catalytic reaction facility #I5 causes a combustion reaction (catalytic deoxidation reaction) between oxygen and hydrogen or carbon monoxide in the exhaust gas using a platinum-based or palladium-based catalyst, and converts them into water or carbon dioxide. The exhaust gas deoxidized in this way is sent to the purification equipment 6, where moisture, nitrogen and other substances are removed from the gas. Carbon monoxide, carbon dioxide, and trace amounts of hydrogen are adsorbed and removed for purification. This purification equipment 6 can use a conventionally used pressure fluctuation adsorption separation device, and can be of an appropriate type such as a two-column type or a three-column type depending on the purity of the argon to be recovered. Argon can be separated and recovered by substantially the same operation.
従って、高価な水素を用いることなく簡単な設備の追加
だけで排ガス中の酸素を除去することが可能となり、ラ
ンニングコストを大幅に低減することができる。Therefore, oxygen in the exhaust gas can be removed by simply adding equipment without using expensive hydrogen, and running costs can be significantly reduced.
また、処理Aにより排出される排ガスのように、アルゴ
ン含有量が他の処理の排ガスに比べて極端に少ない場合
、従来は、適宜な除害処理を施して排出していたが、本
発明によれば、このような低アルゴン排ガス中のアルゴ
ンも回収することができ、アルゴン収率を高めることが
できる。Furthermore, when the argon content is extremely low compared to the exhaust gas from other treatments, such as the exhaust gas emitted by treatment A, conventionally the exhaust gas was subjected to appropriate abatement treatment before being discharged. According to the method, argon in such a low-argon exhaust gas can also be recovered, and the argon yield can be increased.
尚、本発明方法は、上記実施例に示す構成に限らず適宜
な構成の回収装置で実施することが可能であり、例えば
、添加系統20の第1ホルダー21を省略して切替弁3
0に直接圧縮機22を接続して排ガスを昇圧してもよく
、排ガス中の酸素濃度が略一定の場合には酸素濃度の測
定を省略することができる。また、同一の炉から排出さ
れる排ガスに限らず、他の各種の炉から排出される、例
えば水素含有量の多い排ガスを混合してもよい。The method of the present invention is not limited to the configuration shown in the above-mentioned embodiments, and can be implemented with a recovery device having an appropriate configuration. For example, the first holder 21 of the addition system 20 may be omitted and the switching valve 3
The exhaust gas may be pressurized by directly connecting the compressor 22 to the exhaust gas, and when the oxygen concentration in the exhaust gas is approximately constant, the measurement of the oxygen concentration can be omitted. Furthermore, the exhaust gas is not limited to exhaust gas discharged from the same furnace, and exhaust gas discharged from various other furnaces, for example, exhaust gas with a high hydrogen content, may be mixed.
このような場合は、前記両分析計の他に、さらに主回収
系統に水素分析計を設け、添加系統の流量調節装置と接
続して、水素含有量も加えて制御し得るようにしてもよ
い。In such a case, in addition to the above-mentioned two analyzers, a hydrogen analyzer may be provided in the main recovery system and connected to the flow rate regulator of the addition system so that the hydrogen content can also be controlled. .
以上説明したように、本発明のアルゴンの回収方法は、
含有する酸素量に比べて水素及び/又は一酸化炭素の合
計含有量が少ない排ガスと、含有する酸素量に比べて水
素及び/又は一酸化炭素の合計含有量が多い排ガスとを
混合して酸素を除去するようにしたから、高価な水素を
用意することなく酸素を除去することができ、アルゴン
回収のランニングコストを低減することができる。As explained above, the argon recovery method of the present invention
Oxygen is produced by mixing exhaust gas with a lower total hydrogen and/or carbon monoxide content than the oxygen content and exhaust gas with a higher total hydrogen and/or carbon monoxide content than the oxygen content. Since this method removes oxygen, oxygen can be removed without preparing expensive hydrogen, and the running cost of argon recovery can be reduced.
第1図は本発明のアルゴン回収装置の一実施例を示す系
統図、第2図は従来のアルゴン回収装置の系統図である
。
1・・・炉 2・・・ガスホルダー 3・・・圧縮
機5・・・触媒反応設備 6・・・精製設備 10
・・・主回収系統 20・・・添加系統 24・・
・流量調節装置30・・・切替弁
弟2圓FIG. 1 is a system diagram showing one embodiment of the argon recovery device of the present invention, and FIG. 2 is a system diagram of a conventional argon recovery device. 1...Furnace 2...Gas holder 3...Compressor 5...Catalytic reaction equipment 6...Refining equipment 10
...Main recovery system 20...Addition system 24...
・Flow rate adjustment device 30...Switching valve younger 2 circles
Claims (1)
排ガス中のアルゴンを回収するにあたり、含有する酸素
量に比べて水素及び/又は一酸化炭素の合計含有量が少
ない排ガスと、含有する酸素量に比べて水素及び/又は
一酸化炭素の合計含有量が多い排ガスとを混合し、両排
ガス中の酸素を水素及び/又は一酸化炭素と反応させて
水及び/又は二酸化炭素に変換した後、吸着精製を行う
ことを特徴とするアルゴンの回収方法。 2、前記含有する酸素量に比べて水素及び/又は一酸化
炭素の合計含有量が多い排ガスは、水素及び/又は一酸
化炭素濃度の高い精錬工程時に捕集し、貯留したもので
あることを特徴とする請求項1記載のアルゴンの回収方
法。 3、前記両排ガスの混合量は、両排ガスを混合した後の
水素及び/又は一酸化炭素の合計含有量が、両排ガス中
の酸素を除去する化学量論以上の水素及び/又は一酸化
炭素を含有するように制御されることを特徴とする請求
項1又は2記載のアルゴンの回収方法。 4、精錬工程等から排出されるアルゴンを含有する排ガ
ス中のアルゴンを触媒反応設備及び圧力変動吸着分離装
置を用いて回収するアルゴンの回収装置において、主回
収系統の他に、切替弁にて分岐する添加系統を設け、主
回収系統に酸素分析計、一酸化炭素分析計、流量計をそ
れぞれ設けるとともに、前記添加系統に、ホルダー及び
前記両分析計からの信号により作動する流量調節装置を
設け、上記両系統の排ガスを上記触媒反応設備に導入す
る経路を設けたことを特徴とするアルゴンの回収装置。[Claims] 1. When recovering argon from exhaust gas containing argon discharged from the refining process of a steelworks, the total content of hydrogen and/or carbon monoxide is smaller than the amount of oxygen contained. Exhaust gas is mixed with exhaust gas that has a higher total content of hydrogen and/or carbon monoxide than the amount of oxygen it contains, and the oxygen in both exhaust gases is reacted with hydrogen and/or carbon monoxide to form water and/or A method for recovering argon, which comprises converting it into carbon dioxide and then performing adsorption purification. 2. It is confirmed that the exhaust gas with a total content of hydrogen and/or carbon monoxide that is higher than the amount of oxygen contained is collected and stored during the refining process where the concentration of hydrogen and/or carbon monoxide is high. The method for recovering argon according to claim 1. 3. The mixing amount of both exhaust gases is such that the total content of hydrogen and/or carbon monoxide after mixing both exhaust gases is equal to or higher than the stoichiometric amount to remove oxygen from both exhaust gases. The method for recovering argon according to claim 1 or 2, wherein the argon is controlled to contain. 4. In an argon recovery system that recovers argon in the exhaust gas containing argon discharged from the refining process, etc. using catalytic reaction equipment and pressure fluctuation adsorption separation equipment, in addition to the main recovery system, there is a branch with a switching valve. a main recovery system is provided with an oxygen analyzer, a carbon monoxide analyzer, and a flow meter, and the addition system is provided with a flow rate adjustment device that is operated by signals from the holder and both analyzers, An argon recovery device characterized in that a path is provided for introducing the exhaust gases from both of the systems to the catalytic reaction equipment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1219990A JPH03218910A (en) | 1990-01-22 | 1990-01-22 | Method and device for recovering argon |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1219990A JPH03218910A (en) | 1990-01-22 | 1990-01-22 | Method and device for recovering argon |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03218910A true JPH03218910A (en) | 1991-09-26 |
Family
ID=11798738
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1219990A Pending JPH03218910A (en) | 1990-01-22 | 1990-01-22 | Method and device for recovering argon |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03218910A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013031817A1 (en) * | 2011-08-31 | 2013-03-07 | 大陽日酸株式会社 | Inert gas purification method |
-
1990
- 1990-01-22 JP JP1219990A patent/JPH03218910A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013031817A1 (en) * | 2011-08-31 | 2013-03-07 | 大陽日酸株式会社 | Inert gas purification method |
TWI474969B (en) * | 2011-08-31 | 2015-03-01 | Taiyo Nippon Sanso Corp | Inert gas purification method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0241910B1 (en) | Process for separating carbon monoxide having substantially constant purity | |
KR101256686B1 (en) | Method for producing hydrogen and power from a synthesis gas | |
US8808427B2 (en) | Process and apparatus for the treatment of a carbon dioxide-containing gas stream form a large-scale combustion plant | |
JPH0248406A (en) | Inert-gas purifying method to large quantity of nitrogen using no hydrogen or other reducing gases | |
US4591365A (en) | Semipermeable membrane gas separation system | |
EP0643013A1 (en) | Production of hydrogen and carbon monoxide for oxyfuel furnace off-gas | |
CA2186679A1 (en) | The use of nitrogen from an air separation plant in carbon dioxide removal from a feed gas to a further process | |
CN106467292B (en) | A kind of sulfur recovery method | |
JP3080736B2 (en) | Processing method of raw material gas in high purity carbon dioxide gas purification plant | |
US6086840A (en) | Process for making ammonia from heterogeneous feedstock | |
JP2782356B2 (en) | Argon recovery method | |
JPH03218910A (en) | Method and device for recovering argon | |
JP2761918B2 (en) | Recovery method of argon by pressure swing method | |
SU856974A1 (en) | Method of producing elemental sulphur | |
JPH10130010A (en) | Purifying method of gaseous carbon dioxide and device therefor | |
JPH0733253B2 (en) | Ammonia and methanol co-production method | |
JP3424100B2 (en) | Method for purifying krypton and xenon | |
JP2789113B2 (en) | Argon recovery method | |
JP2645137B2 (en) | Equipment for purifying raw material air for nitrogen production equipment | |
JPS63305915A (en) | Separation of carbon dioxide contained in exhaust gas and recovering method thereof | |
EP1298090A2 (en) | Oxygen enrichment of a sulfuric acid plant furnace | |
EP4400488A1 (en) | Gas separation method | |
JPS60155521A (en) | Process for purifying carbon monoxide from mixed gas containing carbon monoxide using adsorption process | |
JP3191113B2 (en) | Argon recovery method | |
EP3484813B1 (en) | Selective oxidation of hydrogen sulfide |