JPH03218432A - Method and device for measuring refraction factor distribution - Google Patents

Method and device for measuring refraction factor distribution

Info

Publication number
JPH03218432A
JPH03218432A JP2274780A JP27478090A JPH03218432A JP H03218432 A JPH03218432 A JP H03218432A JP 2274780 A JP2274780 A JP 2274780A JP 27478090 A JP27478090 A JP 27478090A JP H03218432 A JPH03218432 A JP H03218432A
Authority
JP
Japan
Prior art keywords
sample
refractive index
matching liquid
temperature
index distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2274780A
Other languages
Japanese (ja)
Inventor
Masahiro Ono
大野 政博
Yukio Hagiwara
萩原 由起夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pentax Corp
Original Assignee
Asahi Kogaku Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kogaku Kogyo Co Ltd filed Critical Asahi Kogaku Kogyo Co Ltd
Publication of JPH03218432A publication Critical patent/JPH03218432A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N21/45Refractivity; Phase-affecting properties, e.g. optical path length using interferometric methods; using Schlieren methods

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To easily enable measurement by the naked eyes and to enable the fine control of matching liquid refraction factor difference by providing an interference gauge to observe reference light flux and sample transmitted measuring light flux, liquid immensing means to hold the sample by matching liquid, and temperature control means. CONSTITUTION:The emitted beam of a coherent light source 1 is splitted to a measuring beam and a reflected beam by a half mirror 4 and the former beam is reflected on a movable mirror 5 and transmitted through a transparent container 6 where matching liquid 8 is put in. In the container 6, a lens 10 to be detected and a glass sample 9, which refraction factor and shape are already known, are arranged. The latter beam is passed through a mirror 11 and a half mirror 12 and an interference stripe is generated while superimposing the latter beam with the former beam. By operating the temperature of a normal temperature tank 51 and the tilt of the mirror 5, the maximum refraction factor distribution of the lens 10 to be detected is measured from the change state of the interference stripe.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分!’F] この発明は、試料とマッチング液との屈折率をマッチングさせて試料の屈折亭分布を測定する屈折率分布測定方法に関する。 【従来の技術】[Industrial use! 'F] The present invention relates to a refractive index distribution measuring method for measuring the refractive index distribution of a sample by matching the refractive indices of the sample and a matching liquid. [Conventional technology]

レンズやプリズム等の光学素子の精度を高く保つために
は、素子内の屈折率分布が均一である必要がある.屈折
率分布の不均一性は補正できないため、例えば撮像系に
用いられるレンズの屈折亭分布の差が大きいと、像質の
低下に直接的に影響する. 特に近年多用されているプラスチックレンズは、ガラス
レンズに比べて屈折率の分布が不均一になリ易く、一枚
のレンズ内部での屈折率変化が大きいため、成形後に屈
折率分布を一個一個測定する必要がある. 光学素子(試料)の屈折率分布の測定は、従来次のよう
な方法によって行われていた。 測定に用いられる装置は、マッハ・ツェンダー聾の干渉
計の測定光路に、試料を試料と僅かに異なる屈折率を持
つマッチング液に浸した液浸装置を配置して構成される
。試料をマッチング液に浸して測定するのは、試料と周
囲との屈折率差による観察時のべツケ線の発生を抑える
ためであレハまた、試料としてレンズを測定する場合に
は、レンズのパワーを消失させるためである.マッチン
グ液は、屈折率の異なる複数種の液体を混合して作られ
る. 測定は、一の測定ポイントと他の測定ポイントとの間に
現れる干渉縞の本数と、各ポイントでの試料の厚さの差
とを測定する操作を一単位とし、この操作を多数の箇所
で繰り返し行うことによって行われる.干渉縞は、試料
の屈折率と厚さとによって決まる光路長の変化によって
現れるため、干渉縞の本数と厚さの差とを求めることに
より、両測定ポイントを含む領域の屈折率を測定するこ
とができる。
In order to maintain high precision of optical elements such as lenses and prisms, the refractive index distribution within the element must be uniform. Since non-uniformity in the refractive index distribution cannot be corrected, for example, if there is a large difference in the refractive index distribution of lenses used in an imaging system, this will directly affect the deterioration of image quality. In particular, plastic lenses, which have been widely used in recent years, tend to have uneven refractive index distribution compared to glass lenses, and the refractive index changes greatly within a single lens, so the refractive index distribution is measured one by one after molding. There is a need to. The refractive index distribution of an optical element (sample) has conventionally been measured by the following method. The apparatus used for the measurement is constructed by placing an immersion device in which the sample is immersed in a matching liquid having a slightly different refractive index from that of the sample, in the measurement optical path of a Mach-Zehnder deaf interferometer. The reason why the sample is immersed in the matching solution is to suppress the occurrence of crosshairs during observation due to the difference in refractive index between the sample and the surroundings.Also, when measuring a lens as a sample, the power of the lens is This is to make it disappear. Matching liquid is made by mixing multiple types of liquids with different refractive indexes. In measurement, one unit is the operation of measuring the number of interference fringes that appear between one measurement point and another measurement point and the difference in sample thickness at each point, and this operation is performed at many locations. This is done by doing it repeatedly. Interference fringes appear due to changes in the optical path length determined by the refractive index and thickness of the sample, so by determining the number of interference fringes and the difference in thickness, it is possible to measure the refractive index of the area that includes both measurement points. can.

【発明が解決しようとする課題】[Problem to be solved by the invention]

しかし、上述の従来の試料の屈折率分布測定方法は、測
定精度を高めようとするほど多くの測定ポイントを必要
とするため、屈折率分布を簡単に測定することは困難で
あった。 また、比重が異なる液体を混合してマッチング液を作る
ため、攪拌の際に混入する気泡が消失してマッチング液
が安定するまでに時間がかかる上、試料とマッチング液
との屈折率差を微調整することが難しいという問題があ
った.
However, the conventional method for measuring refractive index distribution of a sample described above requires a larger number of measurement points in order to increase the measurement accuracy, so it has been difficult to easily measure the refractive index distribution. In addition, since the matching liquid is made by mixing liquids with different specific gravities, it takes time for the air bubbles that enter during stirring to disappear and the matching liquid becomes stable, and the refractive index difference between the sample and the matching liquid is small. The problem was that it was difficult to make adjustments.

【目的】【the purpose】

この発明は、上記の課題に鑑みてなされたものであり、
試料の屈折亭を簡単に測定することができ、しかも、試
料とマッチング液との屈折率差を微調整することができ
る測定装置、および方法を提供することを目的とする。
This invention was made in view of the above problems,
It is an object of the present invention to provide a measuring device and method that can easily measure the refractive index of a sample and finely adjust the refractive index difference between the sample and a matching liquid.

【課題を解決するための手段】[Means to solve the problem]

上記の目的を達成するため、この発明の試料の屈折率分
布測定装置は、試料を透過した測定光束と試料を透過し
ない参照光束とを干渉させて観察する干渉計と、干渉計
の測定光路に設けられ、試料をマッチング液に浸した状
態で保持する液浸手段と、マッチング液の温度を調整す
る温度調整手段とを備えることを特徴とする。 また、この発明の試料の屈折率分布測定方法は、平行に
離間して対向する透明基板の間に試料を配置すると共に
、透明基板と試料との間の空間をマッチング液で満たし
、試料とマッチング液との温度を変化させることによっ
て両者の屈折率を等しくし、試料とマッチング液とを透
過した測定光束とこれらを透過しない参照光束とを干渉
させて観察することを特徴とする。
In order to achieve the above object, the sample refractive index distribution measuring device of the present invention includes an interferometer that performs observation by interfering a measurement light beam that has passed through the sample with a reference light beam that does not pass through the sample, and a measurement optical path of the interferometer. A liquid immersion means for holding the sample immersed in the matching liquid, and a temperature adjustment means for adjusting the temperature of the matching liquid. In addition, the method for measuring refractive index distribution of a sample according to the present invention involves placing the sample between transparent substrates facing each other and spaced apart in parallel, filling the space between the transparent substrate and the sample with a matching liquid, and matching the sample with the sample. It is characterized in that by changing the temperature of the liquid, the refractive index of both is equalized, and the measurement light beam that has passed through the sample and the matching liquid is made to interfere with the reference light beam that does not pass through them for observation.

【実施例} まず、この発明の測定方法の原理について説明する. 第7図および第8図に示されるように、屈折率が被検レ
ンズ(試料)の屈折率nlとほぼ等しい屈折率n.のマ
ッチング液に浸した被検レンズに、波長λの平面波を透
過させた時、その透過波と参照波とによって得られる干
渉縞WII(x. y)を考える。 光軸方向にZ軸、これと垂直な平面内にx−Y座標をと
ると、被検レンズの第1面工、第2面Hの形状は、 工面: Z+ =S+(x,y) ■面: Z2 =32(x,y) で表される.レンズの中心厚をdとすると、両面のSa
g量の合計Sag(x.y)は、 Sag(x,y) =S+(x.y)+ 32(x,y
)  ={1)となる.一方、被検レンズの屈折率nt
(x. y)を、平均屈折亭ntsとレンズ上の各位置
における屈折率のバラツキ(平均屈折率との差:屈折率
分布)Δ旧(x,y)とに分離すると、 Ws(x,y)  = Sag(x.yl[ntll−
nJ+  [d  −  Sag(x.y)コΔnt 
(x,y)  − (2)が成り立つ. (2)式よりマッチング液の屈折率n.を定数とすれば
、干渉縞WII(x, y)は平均屈折率ntaおよび
屈折率分布Δnt(x.y)のみの関数になる。 次に、平均屈折率n+lIと屈折率分布Δnt (x,
 y)との二つのパラメータを分離して求める手段を考
える。上記の(2)式を、液面収差の展開式では一般的
なツェルニケの多項式を用いて展開すると、Ws(x.
y) =Sag(x.yl[nts−n++]+ [a
 − Sag(x.y)]Δnt (x, y):C+
+C2pcosψ十C3psinψ+Ca(2ρ2−1
) + C6ρ”cos2ψ+ ・・となる.ここで、 C2ρcosψ, Csρsinψは参照光と測定光と
の波面の傾きを示すチルト項、 C4(2ρ2−1)は干渉縞を観察する観察面上での焦
点ズレを示す焦点ズレ項(W2) C5ρ2cos2ψ+・・・は被検レンズの光学的な不
均一性(屈折率分布等)によって生じる収差を示す収差
項(讐)である。 そして、被検レンズとマッチング液との屈折率がほぼ等
しい場合([ntiI− n−]#O)に、Sag(x
,y) ・[ntiI− na]は2次関数で近似でき
、焦点ズレ項とほぼ等しくなる.この場合には、読み取
った縞WO(x,y)の焦点ズレ項から[ntO − 
nm]が求められ、収差項Wから△nt (x, y)
が求められ、下式に示したように二つのパラメータの分
離が可能となる。 焦点ズレ項を0にすれば、観測される縞成分は収差項、
すなわち屈折亭分布だけを示していることになる.焦点
ズレ項が0となるのは、 ntll− nn・0、すなわち被検レンズの平均屈折
率ntsとマッチング液の屈折率n1とが等しいときで
ある。 そこで、実施例では、被検レンズとマッチング液の同度
を変化させることによって、ntl−ns=0の状態を
作り出し、被検レンズの平均屈折率ntllとマッチン
グ液の屈折率n.どの差により生ずる縞成分を消去して
、その時の干渉縞の状態から、被検レンズの屈折率分布
を測定する。 第9図は、一方の面が球面(曲率半径r)、他方の面が
平面(曲率半径co)、直径がDであって屈折率分布の
ないレンズを用い、3本(w@−3λ〕あるいは1本(
Ha・λ)の縞を観察する場合の、収差項(ΔW)とR
ナンバー(R:r/D)との関係を示している.縞読取
の再現性をRmsでλ/25とすれば、縞本数3本の場
合でもR>0.7となるため、ほとんどのRナンバーの
レンズが縞読取再現性以下となり、観測された干渉縞の
成分は焦点ズレ項のみを現す. 【第1実施例】 次に、第1図〜第6図に基づいてこの発明の第1実施例
を説明する。 第1図は、第1実施例に用いられる測定装置を示してい
る。この装置は、基本的にはマッハ・ツエンダー型の干
渉計である。1は、コヒーレント光(波長λ)を出射す
るコヒーレント光源であり、例えば、He−Neレーザ
光源が用いられる.コヒーレント光源1かも出射された
光線は、レンズ2.3によって構成されるビームエキス
パンダによって拡径され、第1のハーフミラー4で測定
光と参照光とに分けられる.第1のハーフミラー4で反
射された測定光は、可動ミラー5でさらに反射され、透
明容器6を透過する.可動ミラー5は、その角度を任意
に微動(チルト)させることができる. 透明容器6は、歪みのないガラスで形成されている.7
は、開閉自在な蓋である.透明容器6内には、マッチン
グ液8が入っている。 透明容器6内には、第2図に示されるように、被検レン
ズlOと、屈折率ngおよび形状(θ,L)の既知のガ
ラス試料9とがそれぞれ独立して測定光が透過する位置
に配置されている.被検レンズlOは、般には例えばポ
リメチルメタクリレート(アクリル)勢のプラスチック
製のレンズであるが、ガラスレンズを対象にしてもよい
。ガラス試料9は、屈折率分布の測定には不要であるが
、後述の屈折率測定のために配置されている。 第1のハーフミラー4を透過した参照先は、第1の固定
ミラー11で反射され、さらに第2のハーフミラ一12
を介して、被検レンズ10を通ってきた光波と重ね合わ
せられる。そして,2つの光波の重なりによって干渉縞
が発生する. 20は、透明容器6内の状態を観察するための観察装置
であり、第2のハーフミラーl2に対向して設けられた
第2の固定ミラー21と、第1の結像レンズ22と、そ
の結像位置に設けられた撮像装置23と、撮像された干
渉縞を観察できるよう表示するテレビモニタ24とによ
り構成されている。 51は恒温槽であり、透明容器6を囲んで配置され、測
定光の光路にあたる部分には透明窓52がはめ込まれて
いる.また恒温檀51内には、恒温檀51内を加熱する
ためのヒーター53、恒温槽51内の温度を検出するた
めの温度センサ54および恒温槽51内の空気を撹拌す
るためのファン55が配置されている。 また、S6はヒータ53を加熱するための電源、57は
電源電圧を制御するための制御部であり、温度センサ5
4からの検出信号を制御部57に入力してヒータ53の
発熱状態を制関し、恒温槽5l内の温度を任意の一定温
度に保つ。 二の発明の測定方法によってレンズの屈折率分布を測定
するには、恒温槽5l内の温度を制御して、被検レンズ
10とマッチング液8の温度を変化させる.すると、モ
ニタテレビ24で観測される干渉縞の数が変化する.被
検レンズ10の屈折率とマッチング液8の屈折率とが等
しくなると、干渉縞が消え、部分的な明るさの濃淡だけ
が残る。 そこで可動ミラー5にチルトをかけると(また、かけて
おくと)、第3図に示されるように、縞の中央部分に曲
った縞が観測される。この状態は、被検レンズ10の平
均屈折率nt@とマッチング液8の屈折率n@との差に
より生ずる縞成分が消えたものであり、nt@ ” n
sの状態であることを示している。 つまり、干渉縞から焦点ズレ項が消え、収差項である屈
折率分布成分だけが観測されていることになる.波面に
チルトをかけるためには、可動ミラー5の代わりに固定
ミラー11を回動できるようにしでもよい。 この状態で観測される例えば第3図の縞の、周辺部のず
れの大きさSから、被検レンズ10の屈折率の最大値と
最小値との差(最大屈折率分布)を測定することができ
る. 第10図および第11図は、被検レンズlOとしてポリ
メチルメタグリレート(アクリル)製のプラスチックレ
ンズ、マッチング液8としてジメチルシリコンオイルと
フェニルメチルシリコンオイルとを混合した液を用い、
恒温檀51の温度を19〜25℃の間で変化させて測定
を行ったときの結果を示している, 第10図は、被検レンズ10の最大屈折率分布を示して
いるが、この値は温度変化により殆ど影響を受けないこ
とがわかった. 一方、第11図は、被検レンズ10の平均屈折率とマッ
チング液の屈折率との温度依存性の関係を示している.
被検レンズ10よりもマッチング液8の方が温度変化に
よる屈折率変化の割合が大きいことが理解できる。した
がって、恒温檀51の温度を全体的に変化させて屈折率
直線の交点を探すことにより、被検レンズ10の平均屈
折率とマッチング液8の屈折率とを一致させることがで
きる.次に、温度変化と観察される干渉縞との関係を説
明する。 恒温槽51の温度を変化させると、温度T1ではw1(
λ)の干渉縞が観測され、温度T2ではH2(λ)の干
渉縞が観測され、温度で,およびT2における被検レン
ズの屈折率とマッチング液の屈折率を各々nx,nt2
およびnml+ ns2とすると、W+−(nt+ −
 nm+)・Sag/λW2;(nt2− nm2)・
Sag/λW2 −  Wi  : Sag((nt2
 −  nt+)(n*2 −  11mI冫)/λそ
して、被検レンズおよびマッチング液の屈折亭は、第1
1図に示されるように、温度変化に対して直線的に変化
するので、 Nt=Δnt/ΔT :(nt2−nt+)/(T2−
 T+)Nm =Δas/ΔT :Cn*2−na+)
/(T2− T+)とすると、 ΔW =’ph − W+ :Sag(Nt − Nm
lΔT/λとなる.したがって、例えば、 Nt  −  Nm  =  (−1.1  +  4
.31)XIO−4[1/’CコSag =1mm λ = 0.8328μ■ とすると、 ΔT = 1’Cあたりの干渉縞の変化ΔW!よ、ΔW
#0.5λどなる. 次に、マッチング液と被検レンズとの屈折率の測定方法
を説明する。 この実施例の測定装置には、第1図に示されるように、
第2の結像レンズl3と撮像素子14とが、ガラス試料
9に対向して配置されている.二の撮像素子14は、例
えばsox so個の独立した光電素子により形成され
ている.そして、その出力端に、AD変峡器15、デジ
タル用演算回路l6および表示装置17が順次接続され
ている.また、演算回路16には、演算に必要なデータ
を記憶するメモリ18と、既知のデータを入力する入力
回路19とが順次接続されている. 第4図に示されるように、ガラス試料9を透過した光波
と参照光波との重なりによって発生する干渉縞30が、
撮像素子14に結像する.そして、そのときの撮像素子
14からの出力によって、その縞の空間周波数Fを演算
回路16において演算する.これは公知のディスクリー
ト・フーリエ・トランスフォーム(DFT)により行う
ことができるが、さらに高速なフーリエ・トランスフォ
ーム(FFT)によるのがよい. 第5図に示されるように、撮像素子14上の干渉縞30
に直交する線分3l上の出力から、第6図に示されるよ
うな略サインカーブ状の明るさの強度分布を演算する.
そして、その強度分布から、FFTによって干渉縞の空
間肩波数Fを演算し、その値からマッチング液8の屈折
亭amを求めることができる.すなわち、 F=k/L (na − no)L−tanθ=kλであるから、 n. = flo+λ・F/tanθ により求められる。 一方、恒温槽51内の温度、すならち被検レンズ10と
マッチング液8の温度とを知ることができるので、その
温度とマッチング液8の屈折率n1とから、被検レンズ
10の屈折率を求めることができる。 (第2実施例】 次に、この発明の第2実施例を第12図〜第17図に基
づいて説明する。 第2実施例は、第1実施例よりも小さい試料の測定を目
的とし、例えば顕微鏡のブレバラート上での測定に適用
される. 第12図において、lot,102は透明基板であり、
試料103を挟持するのに用いられる.基板101, 
102にはその内部に脈理、泡のないもの、ゴミの付着
していないものを用いる。 試料103は、この例では基板101, 102に接す
る側の端面104, 105(第14図参照)が互いに
平行な平行平面板であり、側面106は両端面104,
 105と垂直に研磨されるが、端面104, 105
と側面106とのエッジ近傍にはビ1バ 欠け107が
生じている可能性が高い.この実施例では、基板101
に温度調節部材としての透明薄膜109が形成されてい
る.この透明薄膜109は例えば液晶表示素子に使われ
るITOやN ESA等の導電性を有する膜であり、試
料103に接する側の面101′に設けられている。透
明薄膜109には一対の線条電極110, 111が設
けられている.  110’ ,111’はその線条電
極110, 111に接続されたリード線である。 基板lot, 102により試料103を挟持し、試料
103をマッチング液108に液浸させて試料挟持体1
12(第15図参照)を構成する.そして、交流、直流
いずれかの電圧を線条電極110. 111間に印加す
ると、透明薄膜109の発熱によりマッチング液108
、試料103の温度が上昇する. 試料103がBK7、F2等の光学ガラス、ソーダ石灰
ガラス、ホウ珪酸ガラス等の電子素材ガラスの場合、屈
折率温度係数は−3〜8X 10−’/deg程度であ
る.一方、マッチング液108としてはセダー油、ちょ
うじ油等の鉱物研究用浸液、Si(シリコン)オイル等
が用いられるが、その屈折率温度係数は、シリコンオイ
ルの場合、−5X 10−’/dog前後(水の場合、
−8x 10−’/deg)であり、試料の約102倍
である.従って、試料の屈折率をほとんど変化させずに
(第10図参照)、マッチング液の屈折率を変化させる
ことができ、数deg〜1oaeg程度のごくわずかな
温度調節範囲で両者の屈折率を一致させることができる
。 なお、温度調節部材が発熱体であるならば次の点に留意
することが必要である.温度を上昇させると、水、シリ
コンオイル等のマッチング液10gの屈折率は低下する
ので、混合によりマッチング液108を製作する場合、
試料103の屈折率よりも若干高めに製作しておくこと
が望ましい. 試料挟持体112は、第16図に示す測定光学系113
の光路中に設けられる。この測定光学系113としては
、たとえばライツの干渉顕微鏡(一種のマツハツエンダ
ー干渉計)が用いられるが、これは試料の屈折率分布を
干渉縞の曲がりとして測定する測定光学系である。 第1613!ff ニおイテ、114 ハ光源、115
ハA − 7 ミ5116, 117は全反射ミラー 
119, 120は顕微鏡対物レンズ、121はハーフ
ミラー 122は顕微鏡接眼レンズである。 第17図は、試料挟持体112を加熱して干渉縞を観測
した実例を示すものであり、屈折率分布のある試料と屈
折亭分布のない試料とを観測したものである。なお、屈
折率分布は試料103内部の厚さ方向に生じているもの
とする。 ここで、いずれの試料の場合も境界部分123を挟んで
図中左側が試料を通った光による干渉縞124、右側が
マッチング液を通った光による干渉縞125である。試
料とマッチング液との屈折率が所定の精度内で一致して
いると、屈折亭分布のないものは、一様な直線状の干渉
縞として観測され、屈折率分布のあるものは干渉縞12
4が試料の屈折率分布に応じた曲がりを示すと同時に、
干渉縞124と干渉縞125が境界部分123でなめら
かにつながる様子が観測される。 これに対して、屈折率が一致していない場合には、屈折
亭分布の有無にかかわらず、境界部分123で干渉縞1
24と干渉縞125が不自然に折れ曲がるような異常が
生じる。したがって、この境界部分123のところに生
じる異常を観測しながら温度調節することにより屈折亭
を微調整することができる.なお、第17図中、八Tは
各状態での試料103とマッチング液108との温度差
を示しており、屈折率が一致している時の温度で0とな
るよう設定している。 上記の方法によれば、試料の屈折率と10−2〜10−
3のオーダーで合致する屈折率を有するマッチング液を
準備し、試料をそのマッチング液に液浸させて挟み、温
度調節部材に基づく温度調節によりそのマッチング液の
温度を変化させる。これによって、マッチング液の屈折
率が変化し、試料の屈折率とマッチング液の屈折率とを
10−3〜10−5のオーダーで一致させることができ
る。 また、試料とマッチング液との屈折率を一致させること
により、試料のエッジ部分に生じたビ
[Example] First, the principle of the measurement method of this invention will be explained. As shown in FIGS. 7 and 8, the refractive index n.sub.l is approximately equal to the refractive index nl of the test lens (sample). Let us consider the interference pattern WII (x, y) obtained by the transmitted wave and the reference wave when a plane wave of wavelength λ is transmitted through the test lens immersed in the matching liquid. Taking the Z-axis in the optical axis direction and the x-Y coordinates in a plane perpendicular to this, the shapes of the first and second surfaces H of the tested lens are as follows: Z+ = S+ (x, y) ■ Surface: Represented by Z2 = 32 (x, y). If the center thickness of the lens is d, then Sa on both sides
The total amount of g Sag(x.y) is Sag(x,y) =S+(x.y)+32(x,y
) = {1). On the other hand, the refractive index nt of the test lens
(x, y) is separated into the average refractive index nts and the variation in refractive index at each position on the lens (difference from the average refractive index: refractive index distribution) Δold (x, y), Ws (x, y) = Sag(x.yl[ntll-
nJ+ [d − Sag(x.y)koΔnt
(x, y) − (2) holds true. From equation (2), the refractive index n of the matching liquid. If is a constant, the interference pattern WII(x, y) becomes a function only of the average refractive index nta and the refractive index distribution Δnt(x, y). Next, the average refractive index n+lI and the refractive index distribution Δnt (x,
Let us consider a method for separately determining the two parameters y) and y). When the above equation (2) is expanded using Zernike's polynomial, which is common in the expansion equation of liquid level aberration, Ws(x.
y) = Sag(x.yl[nts-n++]+[a
- Sag (x. y)] Δnt (x, y): C+
+C2pcosψ0C3psinψ+Ca(2ρ2-1
) + C6ρ”cos2ψ+ .Here, C2ρcosψ, Csρsinψ are tilt terms indicating the inclination of the wavefronts of the reference light and measurement light, and C4(2ρ2-1) is the focal point on the observation surface where interference fringes are observed. The focal shift term (W2) that indicates the shift C5ρ2cos2ψ+... is an aberration term (enemy) that indicates the aberration caused by optical non-uniformity (refractive index distribution, etc.) of the test lens.Then, it is matched with the test lens. Sag(x
, y) ・[ntiI- na] can be approximated by a quadratic function and is almost equal to the defocus term. In this case, [ntO −
nm] is obtained, and from the aberration term W, △nt (x, y)
is obtained, and it becomes possible to separate the two parameters as shown in the formula below. If the defocus term is set to 0, the observed fringe component is the aberration term,
In other words, only the refractory distribution is shown. The defocus term becomes 0 when ntll-nn·0, that is, when the average refractive index nts of the test lens and the refractive index n1 of the matching liquid are equal. Therefore, in the embodiment, by changing the degree of similarity between the test lens and the matching liquid, a state where ntl-ns=0 is created, and the average refractive index of the test lens, ntll, and the refractive index of the matching liquid, n. The fringe components caused by any difference are eliminated, and the refractive index distribution of the lens to be tested is measured from the state of the interference fringes at that time. In Figure 9, one surface is spherical (radius of curvature r), the other surface is flat (radius of curvature co), the diameter is D and there is no refractive index distribution, and three lenses (w@-3λ) are used. Or one (
When observing the fringe of Ha・λ), the aberration term (ΔW) and R
It shows the relationship with the number (R:r/D). If the reproducibility of fringe reading is λ/25 in Rms, R > 0.7 even in the case of 3 fringes, so most R-number lenses are below the reproducibility of fringe reading, and the observed interference fringes are The component represents only the defocus term. [First Embodiment] Next, a first embodiment of the present invention will be described based on FIGS. 1 to 6. FIG. 1 shows a measuring device used in the first embodiment. This device is basically a Mach-Zehnder type interferometer. 1 is a coherent light source that emits coherent light (wavelength λ), and for example, a He-Ne laser light source is used. The beam emitted by the coherent light source 1 is expanded in diameter by a beam expander constituted by a lens 2.3, and divided into a measurement beam and a reference beam by a first half mirror 4. The measurement light reflected by the first half mirror 4 is further reflected by the movable mirror 5 and transmitted through the transparent container 6. The angle of the movable mirror 5 can be moved (tilted) as desired. The transparent container 6 is made of undistorted glass. 7
is a lid that can be opened and closed. A matching liquid 8 is contained in the transparent container 6. In the transparent container 6, as shown in FIG. 2, a test lens lO and a glass sample 9 with a known refractive index ng and shape (θ, L) are placed at positions through which the measurement light passes independently. It is located in The lens 10 to be tested is generally a plastic lens such as polymethyl methacrylate (acrylic), but it may also be a glass lens. Although the glass sample 9 is not necessary for measuring the refractive index distribution, it is arranged for the refractive index measurement described later. The reference target transmitted through the first half mirror 4 is reflected by the first fixed mirror 11, and then reflected by the second half mirror 12.
The light waves are superimposed on the light waves that have passed through the lens 10 to be tested. Interference fringes are then generated by the overlap of the two light waves. Reference numeral 20 denotes an observation device for observing the state inside the transparent container 6, which includes a second fixed mirror 21 provided opposite to the second half mirror l2, a first imaging lens 22, and the like. It is composed of an imaging device 23 provided at an imaging position and a television monitor 24 that displays the imaged interference fringes so that they can be observed. Reference numeral 51 denotes a constant temperature bath, which is placed around the transparent container 6, and has a transparent window 52 fitted in the portion that corresponds to the optical path of the measurement light. Furthermore, a heater 53 for heating the inside of the constant temperature chamber 51, a temperature sensor 54 for detecting the temperature inside the constant temperature chamber 51, and a fan 55 for stirring the air in the constant temperature chamber 51 are arranged inside the constant temperature chamber 51. has been done. Further, S6 is a power supply for heating the heater 53, 57 is a control unit for controlling the power supply voltage, and the temperature sensor 5
The detection signal from 4 is input to the control unit 57 to control the heat generation state of the heater 53 and maintain the temperature in the thermostatic chamber 5l at an arbitrary constant temperature. In order to measure the refractive index distribution of a lens by the measuring method of the second invention, the temperature in the constant temperature bath 5l is controlled to change the temperature of the lens to be tested 10 and the matching liquid 8. Then, the number of interference fringes observed on the monitor television 24 changes. When the refractive index of the test lens 10 and the refractive index of the matching liquid 8 become equal, the interference fringes disappear and only partial brightness shading remains. Therefore, when the movable mirror 5 is tilted (or tilted), curved stripes are observed at the center of the stripes, as shown in FIG. In this state, the fringe component caused by the difference between the average refractive index nt@ of the test lens 10 and the refractive index n@ of the matching liquid 8 has disappeared, and nt@ ” n
This indicates that the state is s. In other words, the defocus term disappears from the interference fringes, and only the refractive index distribution component, which is the aberration term, is observed. In order to tilt the wavefront, the fixed mirror 11 may be made rotatable instead of the movable mirror 5. Measure the difference between the maximum and minimum refractive index values (maximum refractive index distribution) of the test lens 10 from the size S of the peripheral shift of the fringes in FIG. 3 observed in this state, for example. Can be done. In FIGS. 10 and 11, a plastic lens made of polymethyl methacrylate (acrylic) is used as the test lens lO, and a liquid mixture of dimethyl silicone oil and phenylmethyl silicone oil is used as the matching liquid 8.
Figure 10, which shows the results of measurements made while changing the temperature of the thermostatic chamber 51 between 19 and 25°C, shows the maximum refractive index distribution of the test lens 10; was found to be almost unaffected by temperature changes. On the other hand, FIG. 11 shows the temperature dependence relationship between the average refractive index of the test lens 10 and the refractive index of the matching liquid.
It can be seen that the rate of refractive index change due to temperature change is greater in the matching liquid 8 than in the test lens 10. Therefore, the average refractive index of the test lens 10 and the refractive index of the matching liquid 8 can be made to match by changing the temperature of the constant temperature board 51 as a whole and searching for the intersection of the straight lines of refraction. Next, the relationship between temperature changes and observed interference fringes will be explained. When the temperature of the constant temperature bath 51 is changed, w1(
λ) interference fringes are observed, and at temperature T2, H2(λ) interference fringes are observed, and the refractive index of the test lens and the matching liquid at temperature and T2 are expressed as nx and nt2, respectively
and nml+ ns2, W+-(nt+ -
nm+)・Sag/λW2; (nt2- nm2)・
Sag/λW2 − Wi : Sag((nt2
- nt+) (n*2 - 11mI冫)/λ And the refractor of the test lens and matching liquid is the first
As shown in Figure 1, it changes linearly with temperature change, so Nt=Δnt/ΔT: (nt2-nt+)/(T2-
T+)Nm =Δas/ΔT:Cn*2-na+)
/(T2-T+), then ΔW ='ph - W+ :Sag(Nt - Nm
It becomes lΔT/λ. So, for example, Nt − Nm = (−1.1 + 4
.. 31) When XIO-4 [1/'C Sag = 1 mm λ = 0.8328μ■, the change in interference fringe ΔW per ΔT = 1'C! Yo, ΔW
#0.5λ howls. Next, a method for measuring the refractive index of the matching liquid and the lens to be tested will be explained. As shown in FIG. 1, the measuring device of this embodiment includes:
A second imaging lens l3 and an image sensor 14 are arranged facing the glass sample 9. The second image sensor 14 is formed by, for example, sox so independent photoelectric elements. Further, an AD converter 15, a digital arithmetic circuit 16, and a display device 17 are sequentially connected to the output terminal thereof. Furthermore, a memory 18 for storing data necessary for calculation and an input circuit 19 for inputting known data are sequentially connected to the calculation circuit 16. As shown in FIG. 4, interference fringes 30 are generated due to the overlap between the light wave transmitted through the glass sample 9 and the reference light wave.
The image is formed on the image sensor 14. Then, based on the output from the image sensor 14 at that time, the spatial frequency F of that fringe is calculated in the calculation circuit 16. This can be done by a well-known discrete Fourier transform (DFT), but it is better to use a faster Fourier transform (FFT). As shown in FIG. 5, interference fringes 30 on the image sensor 14
From the output on the line segment 3l perpendicular to , a brightness intensity distribution having a substantially sine curve shape as shown in FIG. 6 is calculated.
Then, from the intensity distribution, the spatial shoulder wave number F of the interference fringes is calculated by FFT, and the refraction angle am of the matching liquid 8 can be determined from that value. That is, since F=k/L (na - no)L-tanθ=kλ, n. It is determined by = flo+λ・F/tanθ. On the other hand, since the temperature inside the thermostatic chamber 51, that is, the temperature of the test lens 10 and the matching liquid 8, can be known, the refractive index of the test lens 10 can be determined from the temperature and the refractive index n1 of the matching liquid 8. can be found. (Second Embodiment) Next, a second embodiment of the present invention will be described based on FIGS. 12 to 17. The second embodiment is aimed at measuring a sample smaller than the first embodiment. For example, it is applied to measurements on a Brevarato microscope. In Fig. 12, lot, 102 is a transparent substrate,
It is used to hold the sample 103. substrate 101,
For 102, a material with no striae, bubbles, or dust attached inside is used. In this example, the sample 103 is a parallel plane plate whose end surfaces 104 and 105 (see FIG. 14) that contact the substrates 101 and 102 are parallel to each other, and whose side surface 106 is parallel to both end surfaces 104 and 105 (see FIG. 14).
105, but the end faces 104, 105
There is a high possibility that a crack 107 has occurred near the edge between the side surface 106 and the side surface 106. In this embodiment, the substrate 101
A transparent thin film 109 is formed as a temperature regulating member. This transparent thin film 109 is a conductive film such as ITO or NESA used in liquid crystal display elements, and is provided on the surface 101' in contact with the sample 103. A pair of linear electrodes 110 and 111 are provided on the transparent thin film 109. 110' and 111' are lead wires connected to the linear electrodes 110 and 111. The sample 103 is sandwiched between the substrates 102, and the sample 103 is immersed in the matching liquid 108, and the sample holder 1
12 (see Figure 15). Then, either AC or DC voltage is applied to the linear electrode 110. When applied between 111 and 111, the matching liquid 108 is heated by the transparent thin film 109.
, the temperature of sample 103 increases. When the sample 103 is an optical glass such as BK7 or F2, or an electronic material glass such as soda lime glass or borosilicate glass, the temperature coefficient of refraction is approximately -3 to 8X 10-'/deg. On the other hand, as the matching liquid 108, immersion liquid for mineral research such as cedar oil and clove oil, Si (silicon) oil, etc. are used, but in the case of silicone oil, the refractive index temperature coefficient is -5X 10-'/ Before and after dog (in the case of water,
-8x 10-'/deg), which is about 102 times that of the sample. Therefore, the refractive index of the matching liquid can be changed without almost changing the refractive index of the sample (see Figure 10), and the refractive index of both can be matched within a very small temperature adjustment range of several degrees to 1 oaeg. can be done. Furthermore, if the temperature control member is a heating element, it is necessary to pay attention to the following points. As the temperature increases, the refractive index of 10 g of matching liquid such as water or silicone oil decreases, so when producing the matching liquid 108 by mixing,
It is desirable to manufacture the sample with a refractive index slightly higher than that of sample 103. The sample holder 112 has a measurement optical system 113 shown in FIG.
installed in the optical path of the As the measurement optical system 113, for example, a Leitz interference microscope (a type of Matsuhatsu-Ender interferometer) is used, and this is a measurement optical system that measures the refractive index distribution of the sample as the curvature of interference fringes. 1613th! ff Nioiite, 114 Ha light source, 115
HaA-7 Mi5116 and 117 are total reflection mirrors
119 and 120 are microscope objective lenses, 121 is a half mirror, and 122 is a microscope eyepiece. FIG. 17 shows an example in which interference fringes were observed by heating the sample holder 112, in which a sample with a refractive index distribution and a sample without a refractive index distribution were observed. It is assumed that the refractive index distribution occurs in the thickness direction inside the sample 103. Here, in the case of any sample, the left side of the drawing with the boundary portion 123 in between is an interference fringe 124 due to light passing through the sample, and the right side is an interference fringe 125 due to light passing through the matching liquid. If the refractive indices of the sample and matching liquid match within a predetermined accuracy, those without a refractive index distribution will be observed as uniform linear interference fringes, and those with a refractive index distribution will be observed as interference fringes 12.
4 shows a bend according to the refractive index distribution of the sample, and at the same time,
It is observed that the interference fringes 124 and the interference fringes 125 are smoothly connected at the boundary portion 123. On the other hand, when the refractive indices do not match, the interference fringe 1 appears at the boundary portion 123 regardless of the presence or absence of the refractive index distribution.
An abnormality occurs in which the interference fringes 125 and 24 are unnaturally bent. Therefore, by adjusting the temperature while observing the abnormality that occurs at this boundary portion 123, the refractor can be finely adjusted. In FIG. 17, 8T indicates the temperature difference between the sample 103 and the matching liquid 108 in each state, and is set to be 0 at the temperature when the refractive indexes match. According to the above method, the refractive index of the sample and 10-2 to 10-
A matching liquid having a refractive index matching on the order of 3 is prepared, a sample is immersed in the matching liquid and sandwiched therebetween, and the temperature of the matching liquid is changed by temperature control based on a temperature control member. As a result, the refractive index of the matching liquid changes, and the refractive index of the sample and the refractive index of the matching liquid can be made to match on the order of 10-3 to 10-5. In addition, by matching the refractive index of the sample and the matching liquid, it is possible to prevent vibrations occurring at the edge of the sample.

【バ欠け107に
基づく干渉縞の乱れを軽減することもできる. 具体的な測定は、前述の第1実施例と同様に行うことが
できる。 なお、第2実施例においては、透明薄膜109により温
度調節を行うことにしたが、ベルチェ効果型素子を用い
て温度調節を行うこともできる。 【発明の効果】 この発明の試料の屈折率分布測定装董、および測定方法
によれば、試料とマッチング液に温度変化を与えること
により、特別な光学系や演算等を必要とすることなく、
試料の屈折率分布を肉眼で容易に測定することができ、
特にプラスチックレンズ等の品質管理を簡易かつ高水準
に行うことができる, また、試料の屈折率とマッチング液の屈折率との差を容
易に微調整することができる.
[It is also possible to reduce the disturbance of interference fringes caused by the chipping 107. Specific measurements can be performed in the same manner as in the first embodiment described above. Note that in the second embodiment, temperature control is performed using the transparent thin film 109, but temperature control may also be performed using a Beltier effect type element. [Effects of the Invention] According to the sample refractive index distribution measuring device and measuring method of the present invention, by applying a temperature change to the sample and the matching liquid, the refractive index distribution measuring device and the measuring method of the present invention can be used without the need for a special optical system or calculation.
The refractive index distribution of a sample can be easily measured with the naked eye.
In particular, quality control of plastic lenses, etc. can be performed simply and at a high level, and the difference between the refractive index of the sample and the refractive index of the matching liquid can be easily fine-tuned.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第6図は、この発明の第1実施例を示した者で
あり、第1図は測定装置の全体を示す説明図、第2図は
第1図の一部拡大図、第3図は第1図の装置で観測され
る干渉縞を示す説明図、第4図〜第6図はマッチング液
の屈折率を求める手順を示す説明図である. 第7図〜第9図は発明の原理を説明するための図、第1
0図および第11図は、温度変化に対する屈折亭分布と
平均屈折率の変化を示すグラフである.第12図〜第1
7図は、この発明の第2実施例を示した者てあり、第1
2図は試料挟持体の斜視図、第13図は透明薄膜と線条
電擺とを備えた基板の斜視図、第14図は第12図に示
す試料の部分拡大図、第15図は第12図に示す試料挟
持体を矢印Q方向から目視した図、第16図は測定光学
系の説明図、第17図は第16図に示す測定光学系を用
いて干渉縞を観測した説明図である。 第2図 q 第3図 第7図 参照仮 第8図 第9図 第10図 第11図 手続補正書(自引
1 to 6 show a first embodiment of the present invention, FIG. 1 is an explanatory diagram showing the entire measuring device, FIG. 2 is a partially enlarged view of FIG. 1, and FIG. FIG. 3 is an explanatory diagram showing the interference fringes observed with the apparatus shown in FIG. 1, and FIGS. 4 to 6 are explanatory diagrams showing the procedure for determining the refractive index of the matching liquid. Figures 7 to 9 are diagrams for explaining the principle of the invention.
Figures 0 and 11 are graphs showing changes in refractive index distribution and average refractive index with respect to temperature changes. Figure 12 ~ 1st
FIG. 7 shows the second embodiment of the present invention, and the first embodiment shows the second embodiment of the present invention.
2 is a perspective view of a sample holder, FIG. 13 is a perspective view of a substrate equipped with a transparent thin film and a wire electric wire, FIG. 14 is a partially enlarged view of the sample shown in FIG. 12, and FIG. Figure 12 is a view of the sample holder as viewed from the direction of arrow Q, Figure 16 is an explanatory diagram of the measurement optical system, and Figure 17 is an illustration of interference fringes observed using the measurement optical system shown in Figure 16. be. Figure 2 q Figure 3 Refer to Figure 7 Temporary Figure 8 Figure 9 Figure 10 Figure 11 Procedural amendment form (self-drawn)

Claims (4)

【特許請求の範囲】[Claims] (1)試料を透過した測定光束と試料を透過しない参照
光束とを干渉させて観察する干渉計と、該干渉計の測定
光路に設けられ、試料をマッチング液に浸した状態で保
持する液浸手段と、前記マッチング液の温度を調整する
温度調整手段とを備えることを特徴とする試料の屈折率
分布測定装置。
(1) An interferometer that observes by interfering the measurement light beam that has passed through the sample with the reference light beam that does not pass through the sample, and an immersion liquid that is installed in the measurement optical path of the interferometer and holds the sample immersed in a matching liquid. 1. An apparatus for measuring refractive index distribution of a sample, comprising: a temperature adjusting means for adjusting the temperature of the matching liquid.
(2)前記温度調整手段は、試料を挟持する一対の基板
の少なくとも一方に設けられていることを特徴とする請
求項1に記載の試料の屈折率分布測定装置。
(2) The refractive index distribution measuring device for a sample according to claim 1, wherein the temperature adjustment means is provided on at least one of a pair of substrates that sandwich the sample.
(3)平行に離間して対向する透明基板の間に試料を配
置すると共に、該透明基板と試料との間の空間をマッチ
ング液で満たし、前記試料と前記マッチング液との温度
を変化させることによって両者の屈折率を等しくし、前
記試料と前記マッチング液とを透過した測定光束とこれ
らを透過しない参照光束とを干渉させて観察することを
特徴とする試料の屈折率分布測定方法。
(3) Placing a sample between transparent substrates facing each other in a spaced-apart manner, filling a space between the transparent substrate and the sample with a matching liquid, and changing the temperature of the sample and the matching liquid. A method for measuring refractive index distribution of a sample, characterized in that the refractive index of the sample and the matching liquid are made equal, and the measurement light beam that has passed through the sample and the matching liquid is caused to interfere with the reference light beam that does not pass through them for observation.
(4)前記参照光束と前記測定光束とは、同一光源から
発したコヒーレント光であることを特徴とする請求項3
に記載の試料の屈折率分布測定方法。
(4) Claim 3, wherein the reference light beam and the measurement light beam are coherent lights emitted from the same light source.
A method for measuring refractive index distribution of a sample described in .
JP2274780A 1989-10-12 1990-10-12 Method and device for measuring refraction factor distribution Pending JPH03218432A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP26721989 1989-10-12
JP1-267219 1989-10-12
JP1-306063 1989-11-24

Publications (1)

Publication Number Publication Date
JPH03218432A true JPH03218432A (en) 1991-09-26

Family

ID=17441792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2274780A Pending JPH03218432A (en) 1989-10-12 1990-10-12 Method and device for measuring refraction factor distribution

Country Status (1)

Country Link
JP (1) JPH03218432A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009506308A (en) * 2005-08-26 2009-02-12 ヘレーウス クヴァルツグラース ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト Method for interferometric measurement of the optical properties of a sample and apparatus suitable for carrying out this method
WO2014208570A1 (en) * 2013-06-28 2014-12-31 Canon Kabushiki Kaisha Method and apparatus for measuring refractive index and method for manufacturing optical element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009506308A (en) * 2005-08-26 2009-02-12 ヘレーウス クヴァルツグラース ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト Method for interferometric measurement of the optical properties of a sample and apparatus suitable for carrying out this method
WO2014208570A1 (en) * 2013-06-28 2014-12-31 Canon Kabushiki Kaisha Method and apparatus for measuring refractive index and method for manufacturing optical element
JP2015010922A (en) * 2013-06-28 2015-01-19 キヤノン株式会社 Refractive index measurement method, refractive index measurement apparatus, and optical element manufacturing method

Similar Documents

Publication Publication Date Title
US4340306A (en) Optical system for surface topography measurement
US6992779B2 (en) Interferometer apparatus for both low and high coherence measurement and method thereof
TW477897B (en) Liquid crystal display device, method and device to measure cell thickness of liquid crystal display device, and phase difference plate using the method thereof
KR101387994B1 (en) Lens testing apparatus, method for aligning detectors thereof, and lens testing method
JP2731590B2 (en) How to measure contact angle
US9383573B2 (en) Phase modulation device and laser microscope
EP1789753A1 (en) Method and apparatus for thin film metrology
US20070229847A1 (en) Interferometers for the Measurement of Large Diameter Thin Wafers
JP2678463B2 (en) Refractive index measurement method
JP2003050185A (en) Method for absolute calibration of interferometer
JPH028726A (en) Measurement of refractive index of lens
JPH03218432A (en) Method and device for measuring refraction factor distribution
CN110530821B (en) Measuring device and measuring method for refractive index of optical material
Müller et al. Multiple Aperture Shear-Interferometry (MArS): a solution to the aperture problem for the form measurement of aspheric surfaces
JP2016109670A (en) Refractive index distribution measurement method, refractive index distribution measurement device, and optical element manufacturing method
US3432239A (en) Optical instruments of the interference type
JP2678465B2 (en) Lens refractive index distribution measurement method
Scharf et al. Diffraction limited liquid crystal microlenses with planar alignment
CN216207442U (en) Device for measuring uniformity of cover plate glass of mobile phone based on interference principle
JP3599921B2 (en) Method and apparatus for measuring refractive index distribution
JP3948852B2 (en) Refractive index distribution measuring apparatus and refractive index distribution measuring method
Schwider et al. Production and control of refractive and diffractive microlenses
JP2698362B2 (en) Method for measuring shape of transmitted wavefront of device under test and apparatus used for the method
Eastman Effects and measurement of scattering and absorption of thin films
Vacher et al. Interferential spectrometry in brillouin scattering