JPH03217083A - Magnetic shield material and manufacture thereof - Google Patents

Magnetic shield material and manufacture thereof

Info

Publication number
JPH03217083A
JPH03217083A JP1184890A JP1184890A JPH03217083A JP H03217083 A JPH03217083 A JP H03217083A JP 1184890 A JP1184890 A JP 1184890A JP 1184890 A JP1184890 A JP 1184890A JP H03217083 A JPH03217083 A JP H03217083A
Authority
JP
Japan
Prior art keywords
pipe
magnetic shield
silver
pipes
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1184890A
Other languages
Japanese (ja)
Inventor
Yutaka Yamada
豊 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP1184890A priority Critical patent/JPH03217083A/en
Publication of JPH03217083A publication Critical patent/JPH03217083A/en
Pending legal-status Critical Current

Links

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

PURPOSE:To enable an oxide superconductive shield material which is superb in magnetic shielding characteristic, has a large area, and does not have any seam to be produced by allowing a pipe made of silver, copper, or their alloys to be in a multiple-pipe structure, filling a superconducting power into the gap of each pipe, and then expanding the pipe and sintering it. CONSTITUTION:Pipes 1 and 3 are made of silver, copper, or their alloys and the pipes 1 and 3 are placed concentrically. Then, an oxide superconductor 2 is filled into a gap between the pipe 1 with a larger outer diameter and the pipe 3 with a smaller outer diameter. After that, the pipe where the oxide superconductor is filled is uniformly expanded by such means as extrusion, pulling, rolling, and forging for forming a cylindrical body with specified diameter and length. Then, it is sintered to obtain a magnetic shield material.

Description

【発明の詳細な説明】 [発明の目的コ (産業上の利用分野) 本発明は酸化物超電導体を用いた磁気シールド体および
その製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention (Field of Industrial Application) The present invention relates to a magnetic shield using an oxide superconductor and a method for manufacturing the same.

(従来の技術) 従来、酸化物超電導体を用いて磁気シールド体を製造す
る方法としては、薄膜法、厚膜法およびバルク法などが
知られている。
(Prior Art) Conventionally, known methods for manufacturing magnetic shield bodies using oxide superconductors include thin film methods, thick film methods, and bulk methods.

薄膜法としては、薄膜の形成方法で分けると、スパッタ
リング法、CvD法、MOCvD法などがあり、厚膜法
にはドクターブレード法、溶射法、スクリーン印刷法な
どがある。また、バルク法としては、粉末焼結法が代表
的な方法である。
Thin film methods include sputtering, CVD, MOCvD, and the like, while thick film methods include doctor blade methods, thermal spraying, screen printing, and the like. Further, as a bulk method, a powder sintering method is a typical method.

(発明が解決しようとする問題点) 上記の従来の磁気シールド体の製造方法については種々
の問題点がある。スパッタリング法、CVD法、MOC
vD法などの薄膜法は、いずれも薄膜形成面積が小さい
。また、単結晶を基板とすることが多いことから、加工
性およびコストの点で問題がある。一方、ドクターブレ
ード法、溶射法、スクリーン印刷法などの厚膜法は、今
のところ臨界電流密度が低く、また、大面積化時の均一
性に問題がある。粉末焼結法が代表的な方法であるバル
ク法は、上記の厚膜法の場合と同様に、今のところ臨界
電流密度が低く、また比較的薄肉で大型のシールド体を
製造することは困難であるなどの問題点がある。
(Problems to be Solved by the Invention) There are various problems with the above-described conventional method of manufacturing a magnetic shield body. Sputtering method, CVD method, MOC
In all thin film methods such as the vD method, the thin film formation area is small. In addition, since a single crystal is often used as a substrate, there are problems in terms of processability and cost. On the other hand, thick film methods such as the doctor blade method, thermal spraying method, and screen printing method currently have a low critical current density and have problems with uniformity when increasing a large area. The bulk method, of which the powder sintering method is a typical method, currently has a low critical current density and is difficult to manufacture relatively thin and large shield bodies, as in the case of the thick film method mentioned above. There are problems such as.

本発明は磁気シールド特性に優れ、大面積、大型化が可
能で、かつ継目のない酸化物超電導体からなる磁気シー
ルド体を製造することを目的とする。
An object of the present invention is to manufacture a magnetic shield body made of an oxide superconductor that has excellent magnetic shielding properties, can be made large in area and large in size, and is seamless.

[発明の構成] (問題点を解決するための手段) 上記問題点を解決するため、本発明は、銀、銅あるいは
それらの合金製のパイプを多重管構造とし、この多重管
構造の各パイプ相互の間隙に超電導体粉末を充填した後
、拡管し焼結することにより、大面積で継目のない磁気
シールド体を製造する。この場合、加工と焼結を必要回
数繰り返して、シールド性能を高めた磁気シールド体を
製造することも可能である。
[Structure of the Invention] (Means for Solving the Problems) In order to solve the above problems, the present invention provides a multi-tube structure for pipes made of silver, copper, or alloys thereof, and each pipe of the multi-tube structure. After filling the mutual gap with superconductor powder, the tube is expanded and sintered to produce a large-area, seamless magnetic shield. In this case, it is also possible to manufacture a magnetic shielding body with improved shielding performance by repeating processing and sintering a necessary number of times.

(作用) 以下、本発明の磁気シールド体の製造方法につ一 3 
一 いて図面に基づいて説明する。第1図は2重管構造のパ
イプ構造体を使用した場合の本発明の製造方法の説明図
である。パイプ1,3の材質は銀あるいは銅あるいはそ
れらの合金製のものを用いる。
(Function) Hereinafter, the method for manufacturing the magnetic shielding body of the present invention will be described.
First, explanation will be given based on the drawings. FIG. 1 is an explanatory diagram of the manufacturing method of the present invention when a pipe structure having a double pipe structure is used. The material of the pipes 1 and 3 is silver, copper, or an alloy thereof.

外径の太いパイプ1の内径は外径の細いパイプ3の外径
よりも大きい。パイプ1とパイプSを同心状に配置する
ことにより、外径の太いパイプ1と外径の細いパイブS
の間隙に空間ができる。この空間に酸化物超電導体2を
充填する。
The inner diameter of the pipe 1 with a larger outer diameter is larger than the outer diameter of the pipe 3 with a smaller outer diameter. By arranging pipe 1 and pipe S concentrically, pipe 1 with a large outer diameter and pipe S with a small outer diameter can be arranged.
A space is created between the gaps. This space is filled with oxide superconductor 2.

その後、押しだし、引き抜き●転造●鍛造などの手段に
より、酸化物超電導体を充填したパイプを均一に拡管し
て、所定の径および長さを持った筒状体とし、これを焼
結して磁気シールド体とする。このとき酸化物超電導体
部分の厚さとしてはO.OS〜11程度が適し、特に0
.05〜0.3mイと、比較的薄い方が加工の効果が大
きく、焼結後の臨界電流密度が高い、すなわちシールド
特性が良い磁気シールド体が得られることになる。
After that, the pipe filled with the oxide superconductor is uniformly expanded by extrusion, drawing, rolling, forging, etc. to form a cylindrical body with a predetermined diameter and length, which is then sintered. Use as a magnetic shield. At this time, the thickness of the oxide superconductor portion is O. OS ~ 11 is suitable, especially 0
.. The relatively thinner the material is, 0.05 to 0.3 m, the greater the processing effect, and a magnetic shielding body with a high critical current density after sintering, that is, with good shielding properties, can be obtained.

なお、一度焼結した後、さらに拡径加工および焼結を繰
り返すことにより超電導体の組織の緻密4 ー 化や配同性が高まるために、臨界電流密度が高く、シー
ルド特性が良い磁気シールド体を製造することができる
Furthermore, after sintering, repeating diameter expansion and sintering increases the densification and alignment of the superconductor's structure, making it possible to create a magnetic shielding body with high critical current density and good shielding properties. can be manufactured.

上記の製造方法の例では、超電導体が一層である磁気シ
ールド体が作られるが、第2図に示すように多重管を用
いて、第1図に示したものと同様な製造方法により、超
電導体層を多層とした磁気シールド体を作ることができ
る。こうすることにより、シールド効果をさらに高める
ことができる。
In the example of the above manufacturing method, a magnetic shielding body with a single layer of superconductor is manufactured, but as shown in Figure 2, a superconductor can be It is possible to create a magnetic shield body with multiple body layers. By doing so, the shielding effect can be further enhanced.

[発明の効果] 本発明の製造方法によれば、酸化物超電導体の組織の緻
密化、配同性の向上などの結果、臨界電流密度の高い超
電導体特性をもち、かつ継目無しの大面積の酸化物超電
導シールド体を得ることができるなどの効果がある。
[Effects of the Invention] According to the manufacturing method of the present invention, as a result of the densification of the structure of the oxide superconductor and the improvement of coordination properties, the oxide superconductor has superconducting characteristics with high critical current density, and can be made in a seamless manner over a large area. There are effects such as being able to obtain an oxide superconducting shield body.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は2重管構造のパイプを用いた本発明の磁気シー
ルド体の製造方法の実施例の説明図、第2図は4重管構
造のパイプを用いた本発明の磁気シールド体の製造方法
の実施例の説明図である。 ーらζ9− パイフ゜ 酸化物超電導体
FIG. 1 is an explanatory diagram of an embodiment of the method for manufacturing a magnetic shielding body of the present invention using a pipe with a double-pipe structure, and FIG. 2 is an explanatory diagram of an embodiment of the method for manufacturing a magnetic shielding body of the present invention using a pipe with a quadruple-pipe structure. FIG. 3 is an illustration of an embodiment of the method. -raζ9- Pipe oxide superconductor

Claims (2)

【特許請求の範囲】[Claims] (1)複数の、銀または銅、あるいは銀または銅の合金
製パイプを同心状に配置した多重管構造体において、前
記各パイプ相互の間隙に酸化物超電導体が充填されてい
ることを特徴とする磁気シールド体。
(1) A multi-tube structure in which a plurality of silver, copper, or silver or copper alloy pipes are arranged concentrically, characterized in that the gaps between each of the pipes are filled with an oxide superconductor. magnetic shield body.
(2)酸化物超電導体を用いた磁気シールド体の製造方
法において、複数の、銀または銅、あるいは銀または銅
の合金製パイプからなる多重管構造体の前記各パイプ相
互の間隙に酸化物超電導体を充填した後、拡管加工処理
および焼結処理を1回ないし複数回施すことを特徴とす
る磁気シールド体の製造方法。
(2) In a method for manufacturing a magnetic shield using an oxide superconductor, oxide superconductors are used in the gaps between the pipes of a multi-tube structure consisting of a plurality of pipes made of silver, copper, or silver or copper alloys. A method for manufacturing a magnetic shield body, which comprises performing tube expansion treatment and sintering treatment once or multiple times after filling the magnetic shield body.
JP1184890A 1990-01-23 1990-01-23 Magnetic shield material and manufacture thereof Pending JPH03217083A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1184890A JPH03217083A (en) 1990-01-23 1990-01-23 Magnetic shield material and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1184890A JPH03217083A (en) 1990-01-23 1990-01-23 Magnetic shield material and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH03217083A true JPH03217083A (en) 1991-09-24

Family

ID=11789142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1184890A Pending JPH03217083A (en) 1990-01-23 1990-01-23 Magnetic shield material and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH03217083A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05160596A (en) * 1991-12-04 1993-06-25 Nippon Steel Corp Oxide based superconducting magnetic shield body and manufacture thereof
JPWO2015133537A1 (en) * 2014-03-04 2017-04-06 新日鐵住金株式会社 Oxide superconducting bulk magnet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05160596A (en) * 1991-12-04 1993-06-25 Nippon Steel Corp Oxide based superconducting magnetic shield body and manufacture thereof
JPWO2015133537A1 (en) * 2014-03-04 2017-04-06 新日鐵住金株式会社 Oxide superconducting bulk magnet
EP3115998A4 (en) * 2014-03-04 2017-10-25 Nippon Steel & Sumitomo Metal Corporation Oxide superconductive bulk magnet

Similar Documents

Publication Publication Date Title
JP2636049B2 (en) Method for producing oxide superconductor and method for producing oxide superconducting wire
JPH03217083A (en) Magnetic shield material and manufacture thereof
JPH03217084A (en) Manufacture of magnetic shield material
US6700067B1 (en) High temperature superconducting ceramic oxide composite with reticulated metal foam
CA2024806C (en) Method of producing ceramics-type superconductor wire
JPH0855527A (en) Fabrication of nb3sn superconducting wire
JPH02273418A (en) Manufacture of oxide superconductive conductor
JPH01134822A (en) Manufacture of oxide superconductive wire
JPH05266726A (en) Oxide superconducting wire
JP3186092B2 (en) Oxide superconducting wire
JPH01220307A (en) High strength superconductive wire having high critical current density and its manufacture
JPH0353902A (en) Manufacture of oxide superconductive coil
JP4595813B2 (en) Oxide superconducting wire, manufacturing method thereof and superconducting equipment
JPH02207416A (en) Oxide superconducting wire material and its manufacture
JPH01220308A (en) Superconductive composite cable having high critical current density and high strength, and its manufacture
JP3011962B2 (en) Method for manufacturing multi-core or multilayer ceramic superconductor
JPH03241707A (en) Current lead and manufacture thereof
JPH06342089A (en) Producing magnetic shield body
JPH01321033A (en) Manufacture of nb3x series superconducting material
JPH05290655A (en) Manufacture of nb3sn superconductive wire
JPH09235120A (en) Production of bismuth-based oxide superconductor
JPH02199715A (en) Manufacture of oxide superconductive wire rod or tape
JPH11322341A (en) Production of oxide superconductor material and oxide superconductor material
JPH1059718A (en) Production of thallium-based superconductor
JPH04155715A (en) Manufacture of ceramic superconductor