JPH0321592B2 - - Google Patents

Info

Publication number
JPH0321592B2
JPH0321592B2 JP56090871A JP9087181A JPH0321592B2 JP H0321592 B2 JPH0321592 B2 JP H0321592B2 JP 56090871 A JP56090871 A JP 56090871A JP 9087181 A JP9087181 A JP 9087181A JP H0321592 B2 JPH0321592 B2 JP H0321592B2
Authority
JP
Japan
Prior art keywords
oxygen
coal
amount
air
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56090871A
Other languages
Japanese (ja)
Other versions
JPS57207690A (en
Inventor
Jinichi Tomuro
Tomohiko Myamoto
Susumu Yoshioka
Hiroshi Myadera
Shuntaro Koyama
Sadao Takahashi
Shinji Tanaka
Takao Hishinuma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK, Hitachi Ltd filed Critical Babcock Hitachi KK
Priority to JP9087181A priority Critical patent/JPS57207690A/en
Publication of JPS57207690A publication Critical patent/JPS57207690A/en
Publication of JPH0321592B2 publication Critical patent/JPH0321592B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は噴流層ガス化炉を用いて石炭を部分酸
化させ可燃性ガスを製造する方法に係り、特に、
発電用などを製造する可燃性ガスの量を短時間に
変化させる必要がある場合の製造ガスの発熱量を
ほぼ一定に制御するための石炭ガス化方法に関す
る。 噴流層による石炭のガス化は、(1)石炭を微粉砕
してガス化するための比表面積が大きく短時間で
ガス化できる、(2)石炭中の灰分の融点以上でガス
化することにより微細な灰分粒子(フライアツシ
ユ)の生成を低減できる、(3)ガス化炉内の粒子ホ
ールドアツプが少なく負荷変動に有利である、な
どの利点を有する。 しかし、この方法は灰分の溶融に必要な温度を
維持する必要があるが、石炭を部分酸化するため
の酸素源によつてそれぞれ個有の問題がある。 すなわち石炭を部分酸化するための酸素源とし
ては空気を用いる方法と、酸素製造設備により空
気を窒素と酸素とに分離し実質的に酸素のみ(通
常、酸素濃は90%以上)を用いる方法とがある。
前者の方法は加圧されたガス化炉に空気を供給す
るために空気を圧縮するのみでよいため、製造コ
ストが安く、短時間での流量変化も容易である。
反面、石炭をガス化して得られた可燃性ガスが空
気中の窒素、アルゴン等の不活性ガスによつて希
釈され発熱量が1000kcal/Nm3前後と低く、ま
た、不活性ガスをも加熱される結果、石炭中の灰
分が溶融するのに必要な温度が得にくいという欠
点がある。特に製造したガスをガスタービンの燃
料に使用する場合、上記発熱量はその下限に近い
ため、負荷低下時にも発熱量を低下させないよう
制御することが困難である。一方酸素を用いる後
者の方法は生成ガス発熱量が2000〜2700kcal/N
m3となりガスタービン燃料としても適当な発熱量
であり、ガス化部分の温度も容易に石炭灰分の融
点以上にできる反面、酸素製造設備の所要動力が
大きく製造コストが高くなる。また、大規模な酸
素製造設備として最も酸素製造コストが低廉な低
加圧下での液化空気の蒸留分離による酸素製造方
法では、定格流量に対する運転可能な最低流量が
(設備により異なるが通常70%までの低減が限界
である。)小さすぎるため、急激な流量変化に対
応することが困難である。 したがつて空気又は酸素製造設備で得られる酸
素を、石炭を部分酸化するための酸素源として用
いる方法ではいずれも石炭のガス化によつて製造
される可燃性ガスの発熱量を発電用に対応させる
ことが困難であつた。 本発明の目的は、負荷変動に対して短時間で追
従可能で、しかも負荷変動時の発熱量変化を防止
できる石炭ガス化方法を提供するにある。 本発明は、空気を用いた噴流層ガス化方式を基
本とし、これに酸素製造設備を組み合わせること
に着目し、噴流層ガス化炉中に微粉砕した石炭を
供給し、この石炭を酸素及び空気のガス化剤によ
り部分酸化して可燃性ガスを製造する石炭ガス化
方法において、可燃性ガスの製造量に対して一方
の酸素供給量を製造量の変動と無関係にほぼ一定
に保持するとともに、他方の空気供給量を製造量
の変動に応じて調整し、製造量の低負荷時に高負
荷時より可燃性ガス中の酸素濃度を高くして可燃
性ガスの発熱量をそれぞれの負荷でほぼ一定に制
御することにより、ガス化炉内を灰分融点以上の
温度に維持しつつ生成ガス発熱量の変動を防止す
るとともに酸素製造設備で製造される酸素流量の
変化幅を負荷変化幅に比べ小さく押えることによ
り負荷追従性を向上させると同時により低い負荷
での運転を可能としたものである。すなわち、低
負荷時(製造量の少ない時)には、酸素製造設備
からの酸素供給量をほぼ一定にしておき、空気供
給量を主体に減少させてガス化炉へ供給する全ガ
ス化剤中の酸素濃度を高める。換言すれば全ガス
化剤中の窒素濃度を低くすることにより、ガス化
炉で発生する生成ガス中の窒素濃度を低減し、生
成ガスの発熱量を一定に保持する。つまり生成ガ
スの発熱量を供給ガス化剤の酸素濃度で制御する
ものである。 第1図は本発明の石炭ガス化方法を適用するの
に好適な石炭ガス化発電システムの系統図であつ
て、第1図において、1は酸素製造装置、2は圧
縮機、3はガスタービン、4は燃焼器、5はガス
化炉、6はガス精製装置、7は発電機を示してい
る。 ガス化炉5へは微粉砕した石炭22、空気1
8、酸素15が供給され、部分酸化反応により可
燃性ガスを含む生成ガス23が製造される。ガス
化炉5には必要に応じて少量の水蒸気20を供給
してもよい。石炭22は通常気流輸送されガス化
炉5に供給されるが、このためのガスとしては空
気15、水蒸気20の全部または一部を使用して
もよく、また、酸素製造装置1の副生物である窒
素14の一部を使用してもよい。生成ガス23は
ガス精製装置6により微少のチヤー、ダストが除
去され、更にH2S等の硫黄化合物が除去された精
製ガス21となる。精製ガス21は燃焼器4に導
入され、空気19により完全燃焼され、高温の燃
焼ガス17となつてガスタービン3に供給され
る。ガスタービン3は発電機7を駆動し電力を発
生させると同時に、圧縮機2をも駆動して常圧の
空気12を圧縮し加圧空気16を得る。加圧され
た空気16は一部が抽気されガス化炉5へ供給さ
れる空気18となり、残りは燃焼器4に燃焼用空
気19として供給される。酸素製造装置1では空
気11から酸素15を分離し、窒素14を副生す
る。酸素15はガス化炉5に供給される。 酸素15および空気18は図示していない加圧
装置によつて加圧された後、ガス化炉5に供給さ
れるようになつている。またガスタービン3の排
ガス13は、図示していない公知の排熱回収ボイ
ラに導かれ水蒸気を発生し、この蒸気で蒸気ター
ビンを駆動して電力を発生させるようになつてい
る。 本発明に係る石炭ガス化方法は、噴流ガス化炉
(ガス化炉)5中に多段でかつ複数本の流体供給
ノズルから石炭22及び酸素15と空気18又は
酸素富化空気よりなるガス化剤を供給し、石炭2
2を部分酸化して可燃ガスを製造する石炭ガス化
方法において、可燃ガスの製造量に対し、酸素1
5のガス炉5への供給量(酸素供給量)は石炭2
2のガス化炉への供給量(石炭供給量)と無関係
にほぼ一定に保持させ、空気18のガス化炉5へ
の供給量(空気供給量)は可燃ガスの製造量の低
負荷時(少ない時)に製造量の高負荷時(多い
時)より減少させ、ガス化剤の酸素濃度を高くし
て可燃性ガスの発熱量をそれぞれの負荷でほぼ一
定に所定時間内(短時間内)に制御するように構
成されている。具体的には、石炭22の供給量の
変動に対して酸素15の供給量はほぼ一定とさ
れ、空気18の供給量は石炭22の供給量に対応
して変動する。この結果、低負荷時に高い酸素濃
度の混合ガス(空気と酸素との混合ガス)がガス
化炉5に供給され、高負荷時には低い酸素濃度の
混合ガスがガス化炉5に供給される。したがつ
て、低負荷時にもガス化炉5内は灰分の溶融に必
要な温度に維持され、また生成ガスの発熱量もほ
ぼ一定に制御されるとともに酸素製造装置1から
ガス化炉5へ供給される酸素15の流量変動が最
小限に抑えられる。 次にガス化炉5として、内径0.9m、長さ約20
m、内壁を水冷壁構造とし、下部から石炭灰分を
溶融させながら抜き出す構造の噴流層ガス化炉を
用い、第1表に示した性状を有する石炭をその供
給量を変化させてガス化したところ、第2表第3
表の結果が得られた。表中、窒素供給量とは石炭
供給のために利用した窒素の流量で、空気供給
量、酸素供給量は各々の石炭供給量で生成ガスの
発熱量がほぼ一定で安定した運転が行われた時の
平均流量である。第2表は生成ガスの高位発熱量
を1000kcal/Nm3を目標とし、第3表は生成ガス
の高位発熱量を900kcal/Nm3を目標としてそれ
ぞれガス化炉5に対する空気供給量、酸素供給量
を制御したときの測定結果である。ガス化条件は
第2表および第3表のいずれの場合も、ガス化圧
力が11atm、ガス化温度は物質収支からの推定で
1680〜1740℃の間であつた。
The present invention relates to a method for producing combustible gas by partially oxidizing coal using a spouted bed gasifier, and in particular,
The present invention relates to a coal gasification method for controlling the calorific value of produced gas to be approximately constant when the amount of combustible gas produced for power generation etc. needs to be changed in a short time. Coal gasification using a spouted bed is achieved by (1) having a large specific surface area for finely pulverizing the coal and gasifying it in a short time, and (2) gasifying the coal at temperatures above the melting point of the ash in the coal. It has the following advantages: (3) the generation of fine ash particles (fly ash) can be reduced; and (3) particle hold-up within the gasifier is small, which is advantageous for load fluctuations. However, this method requires maintaining the temperature necessary to melt the ash, and each has its own problems depending on the oxygen source for partially oxidizing the coal. In other words, there are two methods: one uses air as the oxygen source for partially oxidizing coal, and the other uses oxygen production equipment to separate air into nitrogen and oxygen and use essentially only oxygen (usually oxygen concentration is 90% or more). There is.
The former method requires only compressing air in order to supply it to a pressurized gasifier, so manufacturing costs are low and the flow rate can be easily changed in a short period of time.
On the other hand, the combustible gas obtained by gasifying coal is diluted with inert gases such as nitrogen and argon in the air, resulting in a low calorific value of around 1000kcal/ Nm3 , and the inert gas is also heated. As a result, it is difficult to obtain the temperature necessary to melt the ash in the coal. In particular, when the produced gas is used as fuel for a gas turbine, the calorific value is close to its lower limit, so it is difficult to control the calorific value so that it does not decrease even when the load is reduced. On the other hand, in the latter method using oxygen, the generated gas calorific value is 2000 to 2700 kcal/N.
m3 , which is an appropriate calorific value as a gas turbine fuel, and the temperature of the gasification part can easily be raised above the melting point of coal ash, but the power required for the oxygen production equipment is large and the production cost is high. In addition, in the oxygen production method using distillation separation of liquefied air under low pressure, which has the lowest oxygen production cost among large-scale oxygen production facilities, the minimum operable flow rate of the rated flow rate (varies depending on the equipment, but usually up to 70%) ) is too small, making it difficult to respond to sudden changes in flow rate. Therefore, in any method that uses air or oxygen obtained from an oxygen production facility as an oxygen source for partial oxidation of coal, the calorific value of the combustible gas produced by coal gasification cannot be used for power generation. It was difficult to do so. An object of the present invention is to provide a coal gasification method that can follow load fluctuations in a short time and can prevent changes in calorific value during load fluctuations. The present invention is based on a spouted bed gasification method using air, and focuses on combining this with oxygen production equipment. Finely pulverized coal is supplied into a spouted bed gasification furnace, and this coal is mixed with oxygen and air. In a coal gasification method in which combustible gas is produced by partial oxidation using a gasifying agent, the amount of oxygen supplied to one side is kept almost constant with respect to the amount of combustible gas produced, regardless of fluctuations in the amount of production, and The amount of air supplied on the other side is adjusted according to fluctuations in production volume, and the oxygen concentration in the flammable gas is made higher at low production loads than at high loads, so that the calorific value of the combustible gas remains almost constant at each load. By controlling to This improves load followability and at the same time enables operation at lower loads. In other words, during low loads (when production volume is small), the amount of oxygen supplied from the oxygen production equipment is kept almost constant, and the amount of air supplied is mainly reduced to reduce the amount of gasifying agent supplied to the gasifier. Increase oxygen concentration. In other words, by lowering the nitrogen concentration in the total gasification agent, the nitrogen concentration in the product gas generated in the gasifier is reduced, and the calorific value of the product gas is kept constant. In other words, the calorific value of the generated gas is controlled by the oxygen concentration of the supplied gasifying agent. FIG. 1 is a system diagram of a coal gasification power generation system suitable for applying the coal gasification method of the present invention. In FIG. 1, 1 is an oxygen production device, 2 is a compressor, and 3 is a gas turbine. , 4 is a combustor, 5 is a gasifier, 6 is a gas purification device, and 7 is a generator. Finely pulverized coal 22 and air 1 are sent to the gasifier 5.
8. Oxygen 15 is supplied, and a product gas 23 containing combustible gas is produced by a partial oxidation reaction. A small amount of steam 20 may be supplied to the gasifier 5 as needed. The coal 22 is normally transported by pneumatic current and supplied to the gasifier 5, but all or part of the air 15 and steam 20 may be used as the gas for this purpose. A portion of the nitrogen 14 may be used. The generated gas 23 becomes a purified gas 21 from which fine chires and dust are removed by the gas purification device 6, and sulfur compounds such as H 2 S are further removed. The purified gas 21 is introduced into the combustor 4, completely combusted by the air 19, and is supplied to the gas turbine 3 as a high-temperature combustion gas 17. The gas turbine 3 drives the generator 7 to generate electric power, and at the same time drives the compressor 2 to compress normal pressure air 12 and obtain pressurized air 16. A portion of the pressurized air 16 is extracted and becomes air 18 supplied to the gasifier 5, and the rest is supplied to the combustor 4 as combustion air 19. In the oxygen production apparatus 1, oxygen 15 is separated from air 11, and nitrogen 14 is produced as a by-product. Oxygen 15 is supplied to gasifier 5. Oxygen 15 and air 18 are supplied to gasifier 5 after being pressurized by a pressurizing device (not shown). Further, the exhaust gas 13 of the gas turbine 3 is guided to a known waste heat recovery boiler (not shown) to generate steam, and this steam drives a steam turbine to generate electric power. In the coal gasification method according to the present invention, a gasification agent consisting of coal 22 and oxygen 15 and air 18 or oxygen-enriched air is supplied from a plurality of fluid supply nozzles in multiple stages in a jet gasification furnace (gasification furnace) 5. Coal 2
In a coal gasification method in which combustible gas is produced by partially oxidizing oxygen 2, oxygen 1
The supply amount (oxygen supply amount) to the gas furnace 5 of 5 is coal 2
The amount of air 18 supplied to the gasifier 5 (air supply amount) is kept almost constant regardless of the amount of air 18 supplied to the gasifier 5 (coal supply amount) when the amount of combustible gas produced is low ( When the production volume is low (when the load is low), the production volume is reduced from when the load is high (when the load is high), and the oxygen concentration of the gasifying agent is increased to keep the calorific value of the combustible gas almost constant at each load within a specified time (within a short time). is configured to control the Specifically, the supply amount of oxygen 15 is kept almost constant with respect to fluctuations in the supply amount of coal 22, and the supply amount of air 18 varies in accordance with the supply amount of coal 22. As a result, a mixed gas with a high oxygen concentration (mixed gas of air and oxygen) is supplied to the gasifier 5 during low loads, and a mixed gas with a low oxygen concentration is supplied to the gasifier 5 during high loads. Therefore, even when the load is low, the inside of the gasifier 5 is maintained at the temperature necessary for melting the ash, and the calorific value of the generated gas is controlled to be almost constant, and the gas is supplied from the oxygen production device 1 to the gasifier 5. Fluctuations in the flow rate of oxygen 15 are minimized. Next, as the gasifier 5, the inner diameter is 0.9 m and the length is approximately 20 m.
Coal having the properties shown in Table 1 was gasified by varying the feed rate using a spouted bed gasifier with a water-cooled inner wall structure and a structure in which coal ash was extracted from the bottom while being melted. , Table 2, No. 3
The results in the table were obtained. In the table, the nitrogen supply amount is the flow rate of nitrogen used for coal supply, and the air supply amount and oxygen supply amount indicate that the calorific value of the generated gas was almost constant at each coal supply amount, and stable operation was performed. This is the average flow rate at that time. Table 2 shows the higher calorific value of the produced gas as a target of 1000kcal/ Nm3 , and Table 3 shows the higher calorific value of the produced gas with a target of 900kcal/ Nm3 , and the amount of air and oxygen supplied to the gasifier 5, respectively. These are the measurement results when controlling For both the gasification conditions in Tables 2 and 3, the gasification pressure is 11 atm, and the gasification temperature is estimated from the mass balance.
The temperature was between 1680 and 1740℃.

【表】【table】

【表】【table】

【表】 第2表では石炭供給量が約24%減少したときの
酸素の供給量は67%に減少したにとどまつてい
る。したがつて既存の酸素製造設備では対応し得
る酸素の流量変化の低減範囲(低減限界70%)内
におさまつていることを示している。この結果
100%から25%の負荷低減が約30分間で可能であ
つた。またこのような負荷変動に対して生成ガス
発熱量の変化は、1000kcal/Nm3用のガスタービ
ンに要求される発熱量の許容変化範囲である±
20kcal/Nm3(2%)以内であつた。 第3表では生成ガス発熱量は900kcal/Nm3
低くなるが、負荷変動に対する酸素供給量の変化
は第2表の場合よりも小さくなる。すなわち石炭
供給量が約17%低減したときの酸素供給量は83%
程度低減しているにすぎない。この結果100%か
ら20%の負荷低減に必要な時間は約20分であつ
た。またこのような負荷変動に対して、生成ガス
発熱量の変化は900kcal/Nm3用のガスタービン
に要求される発熱量の許容変化範囲である±
15kcal/Nm3内で極めて安定していた。 以上のように本発明によれば、可燃性ガスの製
造量の変動と無関係に酸素供給量をほぼ一定と
し、かつ製造量の変動に応じて空気供給量を調整
することにより、石炭の供給量の変化に対して安
定した発熱量を有する生成ガスを製造することが
できる。更に、従来の酸素のみを用いたガス化方
法に比べ、酸素製造設備が小型でよいためコスト
が低減できると同時に、酸素製造設備で製造する
酸素量の変化が小さくなるため、負荷追従性が向
上する。
[Table] Table 2 shows that when coal supply decreased by approximately 24%, oxygen supply decreased by only 67%. Therefore, it is shown that the change in oxygen flow rate is within the reduction range (reduction limit of 70%) that can be accommodated by existing oxygen production equipment. As a result
It was possible to reduce the load from 100% to 25% in about 30 minutes. In addition, the change in the generated gas calorific value due to such load fluctuations is within the allowable change range of the calorific value required for a 1000kcal/ Nm3 gas turbine.
It was within 20 kcal/Nm 3 (2%). In Table 3, the generated gas calorific value is as low as 900 kcal/Nm 3 , but the change in oxygen supply amount with respect to load fluctuations is smaller than in Table 2. In other words, when coal supply decreases by approximately 17%, oxygen supply decreases by 83%.
It is only reduced to a lesser extent. As a result, the time required to reduce the load from 100% to 20% was approximately 20 minutes. In addition, for such load fluctuations, the change in generated gas calorific value is within the allowable change range of calorific value required for a 900kcal/ Nm3 gas turbine.
It was extremely stable within 15kcal/ Nm3 . As described above, according to the present invention, by keeping the oxygen supply amount almost constant regardless of fluctuations in the production amount of combustible gas and adjusting the air supply amount according to fluctuations in the production amount, the coal supply amount can be reduced. It is possible to produce a generated gas that has a stable calorific value against changes in . Furthermore, compared to conventional gasification methods that use only oxygen, the oxygen production equipment needs to be smaller, reducing costs. At the same time, changes in the amount of oxygen produced by the oxygen production equipment are smaller, improving load followability. do.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す石炭ガス化発電
システムの系統図である。 1…酸素製造装置、2…圧縮機、3…ガスター
ビン、4…燃焼器、5…ガス化炉、6…ガス精製
装置、7…発電機、15…酸素、18…空気。
FIG. 1 is a system diagram of a coal gasification power generation system showing an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1...Oxygen production device, 2...Compressor, 3...Gas turbine, 4...Combustor, 5...Gasifier, 6...Gas purification device, 7...Generator, 15...Oxygen, 18...Air.

Claims (1)

【特許請求の範囲】[Claims] 1 噴流層ガス化炉中に多段でかつ複数本の流体
供給ノズルから石炭及び酸素と空気又は酸素富化
空気よりなるガス化剤を供給し、前記石炭を部分
酸化し可燃性ガスを製造する石炭ガス化方法にお
いて、前記可燃性ガスの製造量に対し、酸素供給
量は石炭供給量と無関係にほぼ一定に保持させ、
空気供給量は前記可燃ガスの製造量の低負荷時に
該製造量の高負荷時より減少させ、前記ガス化剤
の酸素濃度を高くして前記可燃性ガスの発熱量を
それぞれの負荷でほぼ一定に所定時間内に制御す
ることを特徴とする石炭ガス化方法。
1 Coal in which coal and a gasifying agent consisting of oxygen and air or oxygen-enriched air are supplied from multiple stages and multiple fluid supply nozzles into an spouted bed gasifier, and the coal is partially oxidized to produce combustible gas. In the gasification method, the amount of oxygen supplied is kept almost constant regardless of the amount of coal supplied with respect to the amount of combustible gas produced;
The air supply amount is decreased when the production amount of the combustible gas is at a low load compared to when the production amount is at a high load, and the oxygen concentration of the gasification agent is increased so that the calorific value of the combustible gas is approximately constant at each load. A coal gasification method characterized in that the coal gasification is controlled within a predetermined time.
JP9087181A 1981-06-15 1981-06-15 Gasification of coal Granted JPS57207690A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9087181A JPS57207690A (en) 1981-06-15 1981-06-15 Gasification of coal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9087181A JPS57207690A (en) 1981-06-15 1981-06-15 Gasification of coal

Publications (2)

Publication Number Publication Date
JPS57207690A JPS57207690A (en) 1982-12-20
JPH0321592B2 true JPH0321592B2 (en) 1991-03-25

Family

ID=14010569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9087181A Granted JPS57207690A (en) 1981-06-15 1981-06-15 Gasification of coal

Country Status (1)

Country Link
JP (1) JPS57207690A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH047174Y2 (en) * 1985-08-09 1992-02-26
JP5642657B2 (en) * 2011-12-06 2014-12-17 三菱重工業株式会社 Fuel gasification system, control method and control program therefor, and fuel gasification combined power generation system including fuel gasification system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51151433A (en) * 1975-06-20 1976-12-25 Hitachi Ltd Control system of gas producing power plant
JPS5329305A (en) * 1976-08-31 1978-03-18 Davy Bamag Gmbh Process for producing gaseous products rich in carbon monoxide and hydrogen
JPS5340002A (en) * 1976-09-23 1978-04-12 Shell Int Research Method and reactor for partial combustion of finely divided coal
US4199327A (en) * 1978-10-30 1980-04-22 Kaiser Engineers, Inc. Process for gasification of coal to maximize coal utilization and minimize quantity and ecological impact of waste products

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51151433A (en) * 1975-06-20 1976-12-25 Hitachi Ltd Control system of gas producing power plant
JPS5329305A (en) * 1976-08-31 1978-03-18 Davy Bamag Gmbh Process for producing gaseous products rich in carbon monoxide and hydrogen
JPS5340002A (en) * 1976-09-23 1978-04-12 Shell Int Research Method and reactor for partial combustion of finely divided coal
US4199327A (en) * 1978-10-30 1980-04-22 Kaiser Engineers, Inc. Process for gasification of coal to maximize coal utilization and minimize quantity and ecological impact of waste products

Also Published As

Publication number Publication date
JPS57207690A (en) 1982-12-20

Similar Documents

Publication Publication Date Title
US4168956A (en) Method of operating a coal gasifier
JPH08500412A (en) Control system for integrated gasification combined cycle system
US4158552A (en) Entrained flow coal gasifier
KR101866929B1 (en) Process for regulating the joule value of offgases from plants for pig iron production or of synthesis gas
WO1997044412A1 (en) Coal gasification apparatus, coal gasification method and integrated coal gasification combined cycle power generating system
CN105143638B (en) The control method of the control device of gasification power generation plant, gasification power generation plant and gasification power generation plant
JP3578494B2 (en) Spouted bed coal gasifier and coal gasification method
TW304982B (en)
HUT58784A (en) Process for producing combustible gases in melting-gasifying apparatus
JPH0321592B2 (en)
JP3977890B2 (en) Gasification power generation system
KR101735989B1 (en) Gasification power plant control device, gasification power plant, and gasification power plant control method
CN203530252U (en) Coal gas production device using high-temperature rich oxygen and high-temperature steam as gasifying agents
JPS63254192A (en) Operation of coal gasifying furnace of jet flow layer
JP3354640B2 (en) Coal gasification method
JPS6324556B2 (en)
JPH0420591A (en) Entrained bed coal gasifying apparatus and starting thereof
US3042507A (en) Method for cracking and subsequent gasifying of hydrocarbons
JPS63264696A (en) Operation control method of coal gasifier oven
JP2759190B2 (en) Spouted bed type coal gasifier
JPH03137192A (en) Coal gasification device
JPS6032672B2 (en) Method for producing electrical energy and gas from pulverized caking coal
JPH02308894A (en) Partial oxidization of carbonaceous fuel
JP2005255919A (en) Gasification method using gasification furnace
JP3468947B2 (en) Spouted bed coal gasifier