JP3977890B2 - Gasification power generation system - Google Patents

Gasification power generation system Download PDF

Info

Publication number
JP3977890B2
JP3977890B2 JP5677897A JP5677897A JP3977890B2 JP 3977890 B2 JP3977890 B2 JP 3977890B2 JP 5677897 A JP5677897 A JP 5677897A JP 5677897 A JP5677897 A JP 5677897A JP 3977890 B2 JP3977890 B2 JP 3977890B2
Authority
JP
Japan
Prior art keywords
air
nitrogen
line
gas
gasification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5677897A
Other languages
Japanese (ja)
Other versions
JPH10251669A (en
Inventor
一広 太田
孝明 古屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP5677897A priority Critical patent/JP3977890B2/en
Publication of JPH10251669A publication Critical patent/JPH10251669A/en
Application granted granted Critical
Publication of JP3977890B2 publication Critical patent/JP3977890B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a compound gasification/generation system which is highly safe and has good tolerance of operation. SOLUTION: A composite coal gasification/generation system B is provided with a gasifier 1, a formed gas condenser 2, a deduster 5 composed of a cyclone 3 and a porous filter 4, a desulfurizer 6 and a gas turbine 7 which are arranged in the given order from the upstream side. The turbine 7 is provided with an air extraction system 111 through which the waste gas produced from the turbine 7 is fed into the gasifier 1. The system B is provided with also an air separator 13 to which an air compressor is connected. The nitrogen separated with the separator 13 is fed into the gasifier 1 and the inside of the system, while the oxygen is mixed with the air in the extraction system 111.

Description

【0001】
【発明の属する技術分野】
本発明は、化石燃料から生成されたガス化ガスによりガスタービンを作動させるガス化発電システムに関する。
【0002】
【従来の技術】
石炭等の化石燃料をガス化して可燃性ガスを発生させ、この可燃性ガスをガスタービンで燃焼して発電させるとともに、さらに、この発電システムの熱交換器、排熱回収ボイラーで発生した蒸気を蒸気タービンに導いて発電に使用するガス化複合発電システムが知られている。
図8は、従来の空気吹き石炭ガス化複合発電システムの一例を示す。この石炭ガス化複合システムAの主要部の構成は、上流側から順にアニュラス部1aに配設されるガス化炉1、生成ガス冷却器2、サイクロン3とポーラスフィルター4からなる脱塵装置5、脱硫装置6及びガスタービン7の順に配設されている。
【0003】
ガス化炉1には、原料炭が微粉炭供給ライン101から微粉炭供給装置8に導入され、微粉炭搬送ライン102をとおりガス化炉1に供給される。ガス化炉1は、微粉炭供給装置8で微粉砕した原料炭を、その内部で酸素等のガス化剤9と接触させる。そして、原料炭を1500〜2000℃の高温で燃焼及びガス化し、可燃性ガスを発生させ、それを生成ガス冷却器2に排出する。この際、ガス化炉1内で生じたスラグは、ガス化炉1の下部からスラグ排出ライン116から排出される。
生成ガス冷却器2では、導入した一酸化炭素、水素ガス、メタンガスなどを含む可燃性ガスを冷却して熱を回収し、それを下流側の脱塵装置5に排出する。脱塵装置5では、可燃性ガスに含まれる固体成分の未反応チャーの粗粒子をサイクロン3で脱塵し、さらにサイクロン3で脱塵できなかった微粒子を、ポーラスフィルタ4で脱塵する。ここで可燃性ガスから分離されたチャーは、チャー供給ライン103を経て、ガス化炉1に回収して再利用され、他方脱塵装置5により脱塵された可燃性ガスは、脱硫装置6に排出される。
【0004】
脱硫装置6では、可燃性ガスのガス中に含まれる硫黄を分離し、可燃性ガス供給ライン104及び燃焼部7bを経て、可燃性ガスをガスタービン7に排出する。ガスタービン7は、可燃性ガスを燃料としてタービンを回転させて発電する。ガスタービン7の下流側に配設されている排熱回収ボイラー11は、ガスタービン7で燃焼した可燃性ガスの排出ガスを導入し、その熱で蒸気を発生させて蒸気をライン124に排出する。そして、上記した生成ガス冷却器2で発生した蒸気とともに蒸気タービン12に排出し、これを稼働させて発電に利用する。なお、蒸気は冷却器12bで冷却され、復水ポンプ12cにより、生成ガス冷却器2に送られる。
また、ガスタービン空気圧縮機7aで発生した圧縮空気は抽気空気系111にも一部導入され、上流側の再生熱交換器9をとおって抽気空気圧縮機21で圧縮された後、下流側の再生熱交換器10をとおり、ガス化ガス供給ライン114を経て、ガス化炉1に導入される。
【0005】
【発明が解決しようとする課題】
上記の抽気空気系を備えたガス化複合システムは、抽気空気昇圧機を備えることで、酸素製造装置による所内動力の増加がなく送電端効率が良いということで用いられているが、微粉炭及び未反応チャーを加圧ガス化炉に供給する場合に、この抽気空気を使用するため、酸化昇温の危険性があり、安全性が欠ける欠点があった。
また一方、ガス化剤を空気としているために、灰を溶融しスラグとして安定に排出するために炉内を高温に保つことと、ガスタービンの安定燃焼に必要な可燃性ガスの発熱量を一定水準以上に確保することを同時に満たすためには、化石燃料量とガス化剤(この場合空気)量の比を前者の条件を満たす下限値と、後者の条件を満たす上限値からその範囲内に運転する必要があり、運転裕度が少ない欠点があった。特に部分負荷では、相対的に炉のヒートロスが定格負荷よりも増大するため、運転裕度はさらに少なくなる傾向があった。
【0006】
さらに、従来は、システム内の機器のパージやシールのために、または石炭もしくは未反応チャーの搬送のために、可燃性ガスの一部を、ガスタービンに入る前に分岐して昇圧して使っていた。この可燃性ガスを使うためには、昇圧圧縮機はもとより、昇圧前に所内動力の低減等のために、冷却器を設置する必要があり、設備が複雑になるという欠点があった。さらに、可燃性ガスは、一般に石炭などの化石燃料中に含まれる硫黄に由来する硫化水素(H2S)及び水分等を含んでおり、腐食が発生しやすく、運転温度等の管理を厳しく要求されるという欠点があった。
また、ガス化複合システムには、安全性の向上のために使用される不活性ガスとして窒素を供給でき、また、運転裕度(特に部分負荷、なお、部分負荷とは発電機の定格発電量(100%)に対して、要求発電量が小さい(例えば、20〜30%)のことをいう)の向上のために、ガス化剤の酸素濃度を向上(すなわち、酸素濃度を向上させることにより炉内のガス温度を高めるとともに可燃性ガスの発熱量を高める)させることができる、酸素の同時供給が可能な空気分離装置(ASU)を備えたシステムがある。
【0007】
しかし、一般的にガス化発電システムで使用される大容量の空気分離装置は、深冷分離法が採用されており、酸素及び窒素の沸点の極低温まで冷却するため、負荷変化がしにくく、かつ起動に時間がかかるという欠点があった。
本発明は上記課題に鑑みてなされたもので、発電システムにおける抽気空気系の特性を維持しつつ、安全性の確保と運転裕度の向上の利点をもつ空気分離装置を有し、かつ、該空気分離装置に伴う欠点が解消されたガス化発電システムを提供することを目的とする。
【0008】
【課題を解決するための手段】
上記目的を達成するために、本発明にかかるガス化発電システムは、化石燃料とガス化剤を接触させ、燃焼及びガス化によって可燃性ガスを生成するガス化炉と、可燃性ガスの燃焼によりタービンを回転させて発電するガスタービンと、ガスタービン空気圧縮機から一部抽気された空気を、上記ガス化炉にガス化剤として供給する抽気空気系ラインとを備えたガス化発電システムであって、大気を導入する原料用空気圧縮機と接続した空気分離装置を設け、該空気分離装置で分離された窒素の一部を上記ガス化炉に導入し、残りの窒素を上記ガス化炉と上記ガスタービンの間のシステム系内へ導入する窒素供給ラインと、分離された酸素を上記抽気空気系ラインに混合する酸素富化空気供給ラインを有している。
【0009】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照しながら説明する。なお、従来例と同じ構成には、図面に同一の符号を付し、その詳細な説明は省略する。
図1は、本発明に係るガス化複合発電システムBを示す。これは、図8の従来例で説明した空気吹き石炭ガス化複合システムAに対して、空気分離装置13と制御装置19及びそれらに付帯する設備を設けたことが異なる。以下、これらの装置について説明する。
【0010】
図1に示す空気分離装置13は、空気に含まれている窒素と酸素を分離する装置で、空気を吸入するため発電システム系外の大気から空気を吸入する原料用空気圧縮機22を設けている。空気分離装置13により分離された空気のうち、窒素ガスは窒素供給ライン113に排出され、酸素は酸素富化空気供給ライン112に排出される。
窒素供給ライン113では、窒素圧縮機23により窒素ガスは圧縮されて後流側に排出された後、2方向に分岐する。すなわち、一部の窒素ガスは、窒素制御弁31または32を介在して、微粉炭供給装置8及びチャーをガス化炉に供給する際の加圧媒体または搬送媒体等として使用し、残りの窒素ガスは、窒素制御弁35を介在して、系内の生成ガス冷却器2の後流側に送られ、ガス化炉への投入酸素濃度が最適となるような量の窒素を系内に流す。
酸素富化空気供給ライン112では、酸素圧縮機24により酸素ガスは圧縮されて、後流側に排出された後、酸素制御弁38を介在させて、抽気空気系ライン111のガスと混合する。この場合、混合は抽気空気系ライン111の途中でもよいし、ガス化炉1のバーナ先端でもよい。
【0011】
図2に示す制御装置19は抽気空気系ライン111、窒素供給ライン113及び酸素富化空気供給ライン112の各ガスの流量を制御するためのもので、上述及び後述する制御弁31〜40及び抽気空気系ライン111に設けた抽気空気制御弁27の各ガスの流量を制御する。これらの制御弁が配設されている各ラインの管路には、管路を流れる各ガスの流量を検知する流量計41〜50が設けられている。また、制御装置19は、発電機7c,12a、微粉炭供給装置8、各圧縮機21〜26、これを制御する制御盤21a,26aに接続されている。なお、チャー供給ライン103にも、チャーの流量を検知する流量計51と制御弁30が配設され、制御装置19に接続され、チャーの流量を制御している。
【0012】
このような構成により、ガス化複合発電システムBは、ガスタービン7から排気した空気を再生熱交換器9で冷却させて抽気空気圧縮機21で圧縮した後、再度再生熱交換器10を経て、ガス化炉1側に排出する。この際、空気分離装置13で分離された酸素が酸素富化空気供給ライン112を経て、抽気空気系ライン111の空気と混合する。このとき、酸素富化空気供給ライン112に配設した流量計48は、酸素ガスの流量を、抽気空気系ライン111に配設した流量計49は、抽気空気ガス流量を検知する。そして、制御装置19は制御弁38,39の絞り量を調整し、ガス化剤9として好ましい混合比で、酸素と窒素を含んだガスを、ガス化炉1内に導入する。これによって、効率良く可燃性ガスが生成する。
他方、窒素供給ライン113では、同じく制御装置19が、流量計41,42,45により窒素ガスの流量を検知し、制御弁31,32,35の絞り量を調整し、制御弁31,32については、微粉炭及びチャーの加圧ライン115または搬送用ライン117に対して、適した絞り量に調整し、また制御弁35についてはこれらの全ての窒素と酸素の混合比が好適となるように絞り量を調整し、ライン121に戻す。
【0013】
本実施の形態では、空気吹きガス化複合発電システムを採用しているので、酸素の供給に要する動力が少なく、効率的である。同様に、抽気空気系を備えた本発明の発電システムは、安全性の確保のために使用される不活性ガスを供給し、かつ運転裕度を良くするためにガス化剤の酸度濃度を向上させる空気分離装置を備えている。したがって、本発明の発電システムは、抽気空気系を備えた発電システムと空気分離装置を備えた発電システムの両者の長所を有する。
【0014】
また、抽気空気系には、効率が良く、かつ負荷変化率が優る抽気空気圧縮機を設け、負荷変化率の劣る空気分離装置には、別に原料用空気圧縮機を使用している。そのため、部分負荷時には、空気分離装置を一定負荷または緩やかな負荷変化で運転することによって、酸素濃度を定格負荷時よりも増加させ、炉内の温度を上げまたは保持することによって灰の安定した流下を可能とすることができる。また、残りの窒素を系内に戻すことによって、ガスタービン入口の可燃性ガスの発熱量をほぼ一定としつつ、負荷変化率の向上を図ることができる。図3のA及びBに概念図を示す。
【0015】
さらに、起動時間が長い空気分離装置に別置の原料用空気圧縮機及び窒素または酸素のブリードまたは循環ラインを設置することによって、空気分離装置のみを独自のスケジュールで起動させることによって、これ以外の系の起動時間を最短とし、電力等の起動用ユーティリティを最小に抑えることが可能となる。すなわち、空気分離装置の長い起動時間に合わせて、ガスタービン及びガス化炉を起動させる必要がない。
【0016】
【実施例1】
図4は、本発明を適用した実施例の一つである。図1に示した複合発電システムBでは、窒素ライン113に、微粉炭供給装置8用及びチャーの加圧搬送用の管路に遮断弁31,32と流量計41,42を設置している。本実施例では、これ以外に、チャー回収用フィルター4の逆洗用の管路に遮断弁36と流量計46を設置し、ガス化炉1のアニュラスライン119に遮断弁34と流量計44を設置し、及びガスタービン入口への戻しライン用の管路123に遮断弁37と流量計47を設置している。
これによって、微粉炭及びチャーの安全な加圧搬送に加えて、フィルターの安全な逆洗運転が可能となり、かつガス化炉1のアニュラス部を窒素でシールすることにより、生成ガスの侵入を防止しつつチャーの堆積を防止することで、アニュラス内の構造物の腐食を防止することが可能となり、かつ点検環境を改善することができる。なお、図中、アニュラス部1aからガス化炉1の後流側管路に連絡する管路は、均圧ライン120である。
【0017】
【実施例2】
図5は、本発明を適用した実施例の一つである。本実施例では、窒素ライン113に、微粉炭及びチャーの加圧搬送用遮断弁31,32以外に、ガス化炉1の生成ガス中の溶融灰粒子のクエンチ用ライン118に遮断弁33と流量計43を設置している。
これによって、ガス化炉1の出口温度(例えば灰の溶融点)が高く、後流の生成ガス冷却器2のバンク上にチャーが付着し、焼結固化する場合に、クエンチ(急冷)ガスとして窒素をガス化炉1内に投入混合させ、効率的にガス化炉1出口のガス温度とともに、ガス中の灰の溶融粒子を下げることが可能となる。
【0018】
【実施例3】
図6は、本発明を適用した実施例の一つである。本実施例では、窒素供給ライン113に、窒素のブリードライン用の管路125を設け、ここに遮断弁40と流量計50を設置している。このラインから窒素の一部をブリードすることによって、酸素富化効果を向上させることが可能となる。
例えば、ブリードする前と炉内の運転状態が同一である場合、窒素をバランス量だけガスタービン入口(遮断弁37を設置した管路)へ戻すときに、ブリードラインを使用して窒素量を減ずることによって、ガスタービン入口の生成ガスの発熱量を増加させることができる。すなわち、灰の溶融点が著しく高い炭種を使用したときに、通常のバランスした運転状態では、炉内の温度を高く保持するために、生成ガスの発熱量がガスタービンの安定燃焼に必要な制限値よりも低くなってしまう(投入酸素量と投入石炭量が高い)。このような場合に、ブリードラインを使用することによって安定した運転が可能となる。
なお、図7は、上記した実施例1〜実施例3の全てを取り入れたガス化複合発電システムを示す。
【0019】
【発明の効果】
以上、述べたように本発明によれば、発電システムにおける抽気空気系の特性を維持しつつ、安全性確保や運転裕度を向上させる空気分離装置の利点を有し、かつ、該空気分離装置の欠点を解消したガス化発電システムを得ることができる。具体的には、部分負荷時に、空気分離装置を一定負荷または緩やかな負荷変化で運転することによって、酸素濃度を定格負荷時よりも増加させ、炉内の温度を上げまたは保持することによって、灰の安定した流下を可能とし、かつ、残りの窒素を系内に戻すことによって、ガスタービン入口の可燃性ガスの発熱量をほぼ一定としつつ、負荷変化率の向上を図ることができる。
【図面の簡単な説明】
【図1】本発明の実施の形態によるガス化複合発電システムの概略図である。
【図2】ガス化複合発電システムの制御装置の概略図である。
【図3】Aは、本発明の実施の形態によるガス化複合発電システムの抽気空気と酸素の流量と負荷の関係を示す線図であり、Bは同ガス化複合発電システムのガス化剤中の酸素濃度と負荷等の関係を示す線図である。
【図4】本発明の実施例1によるガス化複合発電システムの概略図である。
【図5】本発明の実施例2によるガス化複合発電システムの概略図である。
【図6】本発明の実施例3によるガス化複合発電システムの概略図である。
【図7】実施例1〜3の全てを取り入れたガス化複合発電システムの概略図である。
【図8】従来のガス化複合発電システムの概略図である。
【符号の説明】
1 ガス化炉
2 生成ガス冷却器
3 サイクロン
4 ポーラスフィルター
5 脱塵装置
6 脱硫装置
7 ガスタービン
8 原料炭
8a 微粉炭供給装置
9,10 再生熱交換器
11 排熱回収ボイラー
12 蒸気タービン
13 空気分離装置
19 制御装置
21 抽気空気圧縮機
22 原料用空気圧縮機
23 窒素圧縮機
24 酸素圧縮機
31〜40 制御弁
41〜50 流量計
111 抽気空気系
113 窒素供給ライン
B ガス化複合発電システム
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a gasification power generation system that operates a gas turbine with gasification gas generated from fossil fuel.
[0002]
[Prior art]
Gasification of fossil fuels such as coal to generate flammable gas, and this flammable gas is burned by a gas turbine to generate electricity, and steam generated by the heat exchanger and exhaust heat recovery boiler of this power generation system is also generated. A gasification combined power generation system that is led to a steam turbine and used for power generation is known.
FIG. 8 shows an example of a conventional air-blown coal gasification combined power generation system. The configuration of the main part of the coal gasification combined system A is composed of a gasification furnace 1, a generated gas cooler 2, a cyclone 3 and a porous filter 4 disposed in the annulus portion 1 a in order from the upstream side, The desulfurization device 6 and the gas turbine 7 are arranged in this order.
[0003]
In the gasifier 1, raw coal is introduced from the pulverized coal supply line 101 to the pulverized coal supply device 8, and is supplied to the gasifier 1 through the pulverized coal conveyance line 102. The gasifier 1 brings the raw coal finely pulverized by the pulverized coal supply device 8 into contact with a gasifying agent 9 such as oxygen. Then, the raw coal is combusted and gasified at a high temperature of 1500 to 2000 ° C. to generate a combustible gas, which is discharged to the product gas cooler 2. At this time, the slag generated in the gasification furnace 1 is discharged from the slag discharge line 116 from the lower part of the gasification furnace 1.
In the produced gas cooler 2, the introduced combustible gas including carbon monoxide, hydrogen gas, methane gas and the like is cooled to recover heat, and is discharged to the dust removing device 5 on the downstream side. In the dedusting device 5, coarse particles of solid unreacted char contained in the combustible gas are dedusted by the cyclone 3, and fine particles that could not be dedusted by the cyclone 3 are dedusted by the porous filter 4. Here, the char separated from the combustible gas is collected in the gasification furnace 1 through the char supply line 103 and reused, and the combustible gas dedusted by the dedusting device 5 is sent to the desulfurization device 6. Discharged.
[0004]
In the desulfurization device 6, sulfur contained in the combustible gas is separated, and the combustible gas is discharged to the gas turbine 7 through the combustible gas supply line 104 and the combustion unit 7 b. The gas turbine 7 generates electricity by rotating the turbine using combustible gas as fuel. The exhaust heat recovery boiler 11 disposed on the downstream side of the gas turbine 7 introduces a combustible gas exhaust gas combusted in the gas turbine 7, generates steam with the heat, and discharges the steam to the line 124. . And it discharges | emits to the steam turbine 12 with the vapor | steam which generate | occur | produced in the above-mentioned generated gas cooler 2, makes this operate, and uses it for electric power generation. The steam is cooled by the cooler 12b and is sent to the product gas cooler 2 by the condensate pump 12c.
The compressed air generated by the gas turbine air compressor 7a is also partially introduced into the extraction air system 111, compressed by the extraction air compressor 21 through the regenerative heat exchanger 9 on the upstream side, and then downstream. It passes through the regenerative heat exchanger 10 and is introduced into the gasification furnace 1 through the gasification gas supply line 114.
[0005]
[Problems to be solved by the invention]
The gasification complex system provided with the above extraction air system is used because it has an extraction air booster, and there is no increase in in-house power by the oxygen production apparatus, and power transmission end efficiency is good. Since this extracted air is used when supplying unreacted char to the pressurized gasification furnace, there is a risk that the temperature of oxidation is increased, and there is a drawback that safety is lacking.
On the other hand, because the gasifying agent is air, the furnace is kept at a high temperature in order to melt ash and discharge it stably as slag, and the calorific value of the combustible gas necessary for stable combustion of the gas turbine is constant. In order to satisfy the requirement of ensuring the above level at the same time, the ratio of the amount of fossil fuel and the amount of gasifying agent (in this case, air) should be within the range from the lower limit satisfying the former and the upper limit satisfying the latter. There was a drawback that it was necessary to drive and the driving margin was small. In particular, in the partial load, since the heat loss of the furnace is relatively larger than the rated load, the operation margin tends to be further reduced.
[0006]
Further, conventionally, a part of the combustible gas is branched and pressurized before entering the gas turbine for purging or sealing the equipment in the system or for transporting coal or unreacted char. It was. In order to use this combustible gas, it is necessary to install a cooler in order to reduce in-house power before boosting, as well as a booster compressor, which has the disadvantage that the equipment becomes complicated. In addition, flammable gases generally contain hydrogen sulfide (H 2 S) derived from sulfur contained in fossil fuels such as coal, moisture, etc., are prone to corrosion, and require strict management of operating temperature, etc. There was a drawback of being.
In addition, the gasification complex system can be supplied with nitrogen as an inert gas used to improve safety, and the operating margin (particularly partial load, where partial load is the rated power output of the generator) By improving the oxygen concentration of the gasifying agent (that is, by increasing the oxygen concentration) in order to improve the required power generation amount (for example, 20-30%) relative to (100%) There is a system equipped with an air separation device (ASU) capable of simultaneously supplying oxygen, which can increase the gas temperature in the furnace and increase the calorific value of the combustible gas.
[0007]
However, a large-capacity air separation device generally used in a gasification power generation system adopts a cryogenic separation method, and cools to an extremely low temperature of the boiling points of oxygen and nitrogen, so that it is difficult to change the load, In addition, there is a drawback that it takes time to start.
The present invention has been made in view of the above problems, and has an air separation device having the advantages of ensuring safety and improving operating margin while maintaining the characteristics of the extraction air system in the power generation system, and An object of the present invention is to provide a gasification power generation system in which the drawbacks associated with an air separation device are eliminated.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, a gasification power generation system according to the present invention comprises a gasification furnace for bringing a fossil fuel and a gasifying agent into contact with each other and generating a combustible gas by combustion and gasification, and combustion of the combustible gas. A gasification power generation system comprising: a gas turbine that generates electricity by rotating a turbine; and an extraction air system line that supplies air partially extracted from the gas turbine air compressor as a gasifying agent to the gasification furnace. Provided with an air separation device connected to a raw material air compressor for introducing the atmosphere, a part of the nitrogen separated by the air separation device is introduced into the gasification furnace, and the remaining nitrogen is supplied to the gasification furnace. There is a nitrogen supply line that is introduced into the system between the gas turbines, and an oxygen-enriched air supply line that mixes the separated oxygen into the extraction air system line.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected to drawing to the same structure as a prior art example, and the detailed description is abbreviate | omitted.
FIG. 1 shows a gasification combined power generation system B according to the present invention. This differs from the air-blown coal gasification combined system A described in the conventional example of FIG. 8 in that an air separation device 13, a control device 19, and facilities attached thereto are provided. Hereinafter, these apparatuses will be described.
[0010]
An air separation device 13 shown in FIG. 1 is a device that separates nitrogen and oxygen contained in air, and is provided with a raw material air compressor 22 for sucking air from the atmosphere outside the power generation system to suck air. Yes. Of the air separated by the air separation device 13, nitrogen gas is discharged to the nitrogen supply line 113, and oxygen is discharged to the oxygen-enriched air supply line 112.
In the nitrogen supply line 113, the nitrogen gas is compressed by the nitrogen compressor 23 and discharged to the downstream side, and then branches in two directions. That is, a part of the nitrogen gas is used as a pressurized medium or a conveying medium when supplying the pulverized coal supply device 8 and the char to the gasification furnace via the nitrogen control valve 31 or 32, and the remaining nitrogen gas The gas is sent to the downstream side of the product gas cooler 2 in the system via the nitrogen control valve 35, and an amount of nitrogen is flowed through the system so that the oxygen concentration to the gasification furnace is optimal. .
In the oxygen-enriched air supply line 112, the oxygen gas is compressed by the oxygen compressor 24 and discharged to the downstream side, and then mixed with the gas in the extraction air system line 111 through the oxygen control valve 38. In this case, mixing may be performed in the middle of the extraction air system line 111 or the burner tip of the gasification furnace 1.
[0011]
The control device 19 shown in FIG. 2 is for controlling the flow rate of each gas in the extraction air system line 111, the nitrogen supply line 113, and the oxygen-enriched air supply line 112. The flow rate of each gas of the extraction air control valve 27 provided in the air system line 111 is controlled. Flow lines 41 to 50 for detecting the flow rates of the respective gases flowing through the pipe lines are provided in the pipe lines of the respective lines where these control valves are disposed. The control device 19 is connected to the generators 7c and 12a, the pulverized coal supply device 8, the compressors 21 to 26, and the control panels 21a and 26a for controlling them. The char supply line 103 is also provided with a flow meter 51 and a control valve 30 for detecting the char flow rate, and is connected to the control device 19 to control the char flow rate.
[0012]
With such a configuration, the combined gasification power generation system B cools the air exhausted from the gas turbine 7 with the regenerative heat exchanger 9 and compresses it with the extraction air compressor 21, and then passes through the regenerative heat exchanger 10 again. Discharge to the gasifier 1 side. At this time, oxygen separated by the air separation device 13 is mixed with the air in the extraction air system line 111 through the oxygen-enriched air supply line 112. At this time, the flow meter 48 arranged in the oxygen-enriched air supply line 112 detects the flow rate of oxygen gas, and the flow meter 49 arranged in the extraction air system line 111 detects the extraction air gas flow rate. Then, the control device 19 adjusts the throttle amounts of the control valves 38 and 39 and introduces a gas containing oxygen and nitrogen into the gasification furnace 1 at a preferable mixing ratio as the gasifying agent 9. Thereby, combustible gas is efficiently generated.
On the other hand, in the nitrogen supply line 113, the control device 19 similarly detects the flow rate of nitrogen gas by the flow meters 41, 42, 45, adjusts the throttle amount of the control valves 31, 32, 35, and controls the control valves 31, 32. Is adjusted to an appropriate throttle amount for the pulverized coal and char pressurization line 115 or the conveying line 117, and the control valve 35 is adjusted so that all these nitrogen and oxygen mixing ratios are suitable. The aperture amount is adjusted and returned to the line 121.
[0013]
In this embodiment, since the air-blown gasification combined power generation system is employed, the power required for supplying oxygen is small and efficient. Similarly, the power generation system of the present invention equipped with an extraction air system supplies an inert gas used for ensuring safety and improves the acidity concentration of the gasifying agent in order to improve the operating margin. An air separation device is provided. Therefore, the power generation system of the present invention has the advantages of both a power generation system including a bleed air system and a power generation system including an air separation device.
[0014]
Further, the extraction air system is provided with an extraction air compressor that is efficient and has a high load change rate, and a separate air compressor is used for the air separation device that has a low load change rate. Therefore, during partial load, the air separator is operated at a constant load or a gradual load change, so that the oxygen concentration is increased from that at the rated load, and the temperature in the furnace is raised or maintained to stabilize the ash flow. Can be made possible. Further, by returning the remaining nitrogen to the system, it is possible to improve the load change rate while making the calorific value of the combustible gas at the gas turbine inlet almost constant. A conceptual diagram is shown in A and B of FIG.
[0015]
Furthermore, by installing a separate raw material air compressor and nitrogen or oxygen bleed or circulation line in an air separation device with a long start-up time, only the air separation device is started on its own schedule. It is possible to minimize the startup time of the system and minimize startup utilities such as power. That is, it is not necessary to start the gas turbine and the gasifier in accordance with the long start-up time of the air separation device.
[0016]
[Example 1]
FIG. 4 shows one embodiment to which the present invention is applied. In the combined power generation system B shown in FIG. 1, shut-off valves 31 and 32 and flow meters 41 and 42 are installed in the nitrogen line 113 in the pulverized coal supply device 8 and the conduit for the pressurized conveyance of the char. In the present embodiment, in addition to this, a shut-off valve 36 and a flow meter 46 are installed in the backwash line of the char collection filter 4, and the shut-off valve 34 and the flow meter 44 are installed in the annulus line 119 of the gasifier 1. The shut-off valve 37 and the flow meter 47 are installed in the pipe line 123 for the return line to the gas turbine inlet.
As a result, in addition to the safe pressurized conveyance of pulverized coal and char, the filter can be backwashed safely, and the annulus of the gasification furnace 1 is sealed with nitrogen to prevent intrusion of product gas. However, by preventing the accumulation of char, corrosion of the structure in the annulus can be prevented, and the inspection environment can be improved. In the figure, the line connecting the annulus portion 1 a to the downstream side line of the gasifier 1 is a pressure equalizing line 120.
[0017]
[Example 2]
FIG. 5 shows one embodiment to which the present invention is applied. In the present embodiment, the shutoff valve 33 and the flow rate in the quench line 118 for the molten ash particles in the product gas of the gasification furnace 1 are provided in the nitrogen line 113 in addition to the shutoff valves 31 and 32 for pressurized pulverized coal and char. A total of 43 are installed.
As a result, when the outlet temperature of the gasification furnace 1 (for example, the melting point of ash) is high and char adheres to the bank of the downstream product gas cooler 2 and sinter solidifies, it is used as a quench (quenching) gas. Nitrogen is introduced into and mixed in the gasification furnace 1, and it is possible to efficiently reduce the molten particles of ash in the gas together with the gas temperature at the outlet of the gasification furnace 1.
[0018]
[Example 3]
FIG. 6 shows one embodiment to which the present invention is applied. In this embodiment, the nitrogen supply line 113 is provided with a pipe line 125 for a nitrogen bleed line, and the shut-off valve 40 and the flow meter 50 are installed therein. By bleeding part of the nitrogen from this line, it is possible to improve the oxygen enrichment effect.
For example, when the operating state in the furnace is the same as before the bleed, the nitrogen amount is reduced using the bleed line when returning the nitrogen to the gas turbine inlet (pipe having the shut-off valve 37) by the balance amount. As a result, the calorific value of the product gas at the gas turbine inlet can be increased. That is, when using a coal type that has a remarkably high melting point of ash, the heat generated from the generated gas is necessary for stable combustion of the gas turbine in order to maintain a high temperature in the furnace under normal and balanced operating conditions. It becomes lower than the limit value (the amount of input oxygen and the amount of input coal are high). In such a case, stable operation is possible by using the bleed line.
FIG. 7 shows a combined gasification combined power generation system that incorporates all of the first to third embodiments described above.
[0019]
【The invention's effect】
As described above, according to the present invention, the air separation device has the advantages of maintaining safety and improving the operating margin while maintaining the characteristics of the extraction air system in the power generation system, and the air separation device. It is possible to obtain a gasification power generation system that eliminates the above drawbacks. Specifically, by operating the air separation device at a constant load or a gradual load change at the partial load, the oxygen concentration is increased from that at the rated load, and the temperature in the furnace is increased or maintained to maintain the ash The flow rate of the combustible gas at the inlet of the gas turbine can be made substantially constant and the load change rate can be improved by returning the remaining nitrogen into the system.
[Brief description of the drawings]
FIG. 1 is a schematic view of a combined gasification power generation system according to an embodiment of the present invention.
FIG. 2 is a schematic diagram of a control device of a combined gasification power generation system.
FIG. 3A is a diagram showing the relationship between the flow rate of bleed air and oxygen and the load of the combined gasification combined power generation system according to the embodiment of the present invention, and FIG. It is a diagram which shows the relationship between oxygen concentration, load, etc. of this.
FIG. 4 is a schematic view of a combined gasification combined power generation system according to Embodiment 1 of the present invention.
FIG. 5 is a schematic diagram of a combined gasification combined power generation system according to Embodiment 2 of the present invention.
FIG. 6 is a schematic view of a combined gasification combined power generation system according to Embodiment 3 of the present invention.
FIG. 7 is a schematic view of a combined gasification combined power generation system incorporating all of Examples 1 to 3.
FIG. 8 is a schematic view of a conventional combined gasification combined power generation system.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Gasification furnace 2 Product gas cooler 3 Cyclone 4 Porous filter 5 Dedusting device 6 Desulfurization device 7 Gas turbine 8 Coal coal 8a Pulverized coal supply device 9, 10 Regenerative heat exchanger 11 Waste heat recovery boiler 12 Steam turbine 13 Air separation Device 19 Control device 21 Extraction air compressor 22 Raw material air compressor 23 Nitrogen compressor 24 Oxygen compressor 31-40 Control valve 41-50 Flow meter 111 Extraction air system 113 Nitrogen supply line B Gasification combined power generation system

Claims (2)

化石燃料とガス化剤を接触させて可燃性ガスを生成するガス化炉と、
可燃性ガスの燃焼によりタービンを回転させて発電するガスタービンと、
ガスタービン空気圧縮機から一部抽気された空気を、上記ガス化炉にガス化剤として供給する抽気空気系ラインと
を備えたガス化発電システムにおいて、
大気を導入する原料用空気圧縮機と接続した空気分離装置を設け、
該空気分離装置で分離された窒素の一部を上記ガス化炉に導入し、残りの窒素を上記ガス化炉と上記ガスタービンの間のシステム系内へ導入する窒素供給ラインであって、上記窒素の一部を上記ガス化炉に導入する窒素供給ラインが、上記窒素を上記ガス化炉のアニュラス部に導入するアニュラスラインと、上記窒素を上記ガス化炉前段の微粉炭供給装置に導入する加圧ラインと、上記窒素を導入してチャーを上記ガス化炉に搬送する搬送ラインとを含む、窒素供給ラインと、
分離された酸素を上記抽気空気系ラインに混合する酸素富化空気供給ラインを有することを特徴とするガス化発電システム。
A gasification furnace for producing a combustible gas by contacting a fossil fuel with a gasifying agent;
A gas turbine that generates electricity by rotating the turbine by burning combustible gas; and
In a gasification power generation system provided with a bleed air system line for supplying air partially extracted from a gas turbine air compressor as a gasifying agent to the gasification furnace,
An air separation device connected to the raw material air compressor for introducing the atmosphere is provided.
A nitrogen supply line for introducing a part of nitrogen separated by the air separation device into the gasification furnace and introducing the remaining nitrogen into a system system between the gasification furnace and the gas turbine , A nitrogen supply line for introducing a part of nitrogen into the gasifier introduces an annulus line for introducing the nitrogen into the annulus portion of the gasifier and a pulverized coal supply device in the preceding stage of the gasifier. A nitrogen supply line including a pressure line and a transfer line for introducing the nitrogen and transferring the char to the gasification furnace;
A gasification power generation system comprising an oxygen-enriched air supply line for mixing separated oxygen into the extraction air system line.
上記窒素供給ライン、上記酸素富化空気供給ライン及び上記抽気空気系ラインの窒素及び酸素量を検知するガス流量計を設け、酸素富化空気供給ラインの酸素の流出量、窒素供給ラインの窒素の流出量及び抽気空気系ラインの空気の流出量を制御する制御装置を設けてなる請求項1に記載のガス化発電システム。  A gas flow meter for detecting the nitrogen and oxygen amounts in the nitrogen supply line, the oxygen-enriched air supply line and the extraction air system line is provided. The gasification power generation system according to claim 1, further comprising a control device for controlling the outflow amount and the outflow amount of air in the extraction air system line.
JP5677897A 1997-03-12 1997-03-12 Gasification power generation system Expired - Fee Related JP3977890B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5677897A JP3977890B2 (en) 1997-03-12 1997-03-12 Gasification power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5677897A JP3977890B2 (en) 1997-03-12 1997-03-12 Gasification power generation system

Publications (2)

Publication Number Publication Date
JPH10251669A JPH10251669A (en) 1998-09-22
JP3977890B2 true JP3977890B2 (en) 2007-09-19

Family

ID=13036909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5677897A Expired - Fee Related JP3977890B2 (en) 1997-03-12 1997-03-12 Gasification power generation system

Country Status (1)

Country Link
JP (1) JP3977890B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5964085A (en) * 1998-06-08 1999-10-12 Siemens Westinghouse Power Corporation System and method for generating a gaseous fuel from a solid fuel for use in a gas turbine based power plant
JP4533764B2 (en) * 2005-01-28 2010-09-01 三菱重工業株式会社 Pressurized coal gasification furnace and coal gasification combined cycle power generation facility
JP5000223B2 (en) * 2006-07-24 2012-08-15 三菱重工コンプレッサ株式会社 Compressor control device and coal gasification power generation system
US8028511B2 (en) 2007-05-30 2011-10-04 Mitsubishi Heavy Industries, Ltd. Integrated gasification combined cycle power generation plant
JP2010059383A (en) * 2008-09-08 2010-03-18 Mitsubishi Heavy Ind Ltd Gasification furnace apparatus
JP5972801B2 (en) * 2013-01-18 2016-08-17 三菱日立パワーシステムズ株式会社 Gasification furnace and gasification method
CN104197343B (en) * 2014-08-29 2017-01-11 华北电力大学 Oxygen-enriched combustion recycle flue gas catalytic desulfurization system and method
JP7086675B2 (en) * 2018-03-30 2022-06-20 三菱重工業株式会社 Gasifier system
CN108506928A (en) * 2018-04-16 2018-09-07 中国计量大学 A kind of non-oil ignition system and method for circulating fluidized bed combustion coal boiler

Also Published As

Publication number Publication date
JPH10251669A (en) 1998-09-22

Similar Documents

Publication Publication Date Title
JP4981771B2 (en) Coal gasification combined power generation facility
US7805923B2 (en) Integrated coal gasification combined cycle plant
US4631915A (en) Gas turbine and steam power-generating plant with integrated coal gasification plant
JP4981901B2 (en) Gasification combined power plant
US6588212B1 (en) Combustion turbine fuel inlet temperature management for maximum power outlet
US7921633B2 (en) System and method employing direct gasification for power generation
US7810310B2 (en) Integrated coal gasification combined cycle plant
JPH08500412A (en) Control system for integrated gasification combined cycle system
US9719038B2 (en) Gasifier start-up method, gasifier, and integrated gasification combined cycle facility
JP4337354B2 (en) How to use by-product gas at steelworks
JP3977890B2 (en) Gasification power generation system
JP2013170463A (en) Plant for combined cycle power generation using wet fuel, and fuel drying method thereof
JP5911137B2 (en) Gasification system
WO2014175405A1 (en) Gasification power plant control device, gasification power plant, and gasification power plant control method
US9890331B2 (en) Gasification facility
JP3988008B2 (en) Coal gasification system and method of operating the system
JP5733974B2 (en) CO shift conversion system and method, coal gasification power plant
JP6033380B2 (en) Coal gasification combined power generation facility
JP2014101838A (en) Coal gasification combined generation facility
JP6301118B2 (en) Gasified fuel cell combined power generation system and operation method of gasified fuel cell combined power generation system
JPH066710B2 (en) Coal gasification method
JPS63254192A (en) Operation of coal gasifying furnace of jet flow layer
JP5412205B2 (en) Gas turbine plant and gasification fuel power generation facility equipped with the same
JPH11106760A (en) Wet-feed-type gasification oven
JPS6032672B2 (en) Method for producing electrical energy and gas from pulverized caking coal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070622

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130629

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees