JP3988008B2 - Coal gasification system and method of operating the system - Google Patents

Coal gasification system and method of operating the system Download PDF

Info

Publication number
JP3988008B2
JP3988008B2 JP14090599A JP14090599A JP3988008B2 JP 3988008 B2 JP3988008 B2 JP 3988008B2 JP 14090599 A JP14090599 A JP 14090599A JP 14090599 A JP14090599 A JP 14090599A JP 3988008 B2 JP3988008 B2 JP 3988008B2
Authority
JP
Japan
Prior art keywords
gas
char
coal
combustible gas
coal gasification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14090599A
Other languages
Japanese (ja)
Other versions
JP2000328074A (en
Inventor
雄一郎 ▲広▼野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP14090599A priority Critical patent/JP3988008B2/en
Publication of JP2000328074A publication Critical patent/JP2000328074A/en
Application granted granted Critical
Publication of JP3988008B2 publication Critical patent/JP3988008B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]

Landscapes

  • Industrial Gases (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent condensation of the water content in a gas when a carrier gas is mixed with a powder fuel and to stably effect carrying of the powder fuel. SOLUTION: This system has a coal gasification furnace 8 for forming a combustible gas by reacting pulverized coal with a gasifying agent, and the pulverized coal obtained by grinding coal is supplied to this coal gasification furnace 8. Further, char 13 is generated upon forming a combustible gas and this char 13 is recovered by a cyclone 17 and a filter 18 and recycled to the coal gasification furnace 8. In such a coal gasification system, part of the combustible gas after recovering the char is withdrawn and heated by a heat exchanger 44. Then, with the use of the combustible gas after heating as the carrier gas, the pulverized coal and the char are supplied to the coal gasification furnace 8.

Description

【0001】
【発明の属する技術分野】
本発明は石炭ガス化システムに係り、特に、石炭とガス化剤とを反応させて可燃性ガスを生成し、その可燃性ガスを脱硫して精製ガスを製造する石炭ガス化システムに関する。
【0002】
【従来の技術】
一般に石炭ガス化システムは、石炭ガス化炉において微粉炭とガス化剤とを反応させて可燃性ガスを生成し、その可燃性ガスを脱硫装置で脱硫することにより精製ガスを得るように構成されている。微粉炭は、搬送用ガスによって搬送されて石炭ガス化炉に供給される。また、石炭ガス化炉では可燃性ガス生成時にチャーが発生し、このチャーは可燃性ガスと共に石炭ガス化炉から排出される。そして、この可燃性ガスをサイクロンおよびフィルタに通すことにより、可燃性ガスからチャーが回収され、この回収されたチャーも搬送用ガスによって搬送され石炭ガス化炉に供給される。
【0003】
ところで、上記石炭ガス化システムでは、微粉炭やチャーなどの粉体燃料を搬送するための搬送用ガスとして、精留塔において空気から分離された窒素ガスを用いている。この窒素ガスを搬送用ガスとして用いるためには昇圧させる必要があり、そのための補機動力を増加させると、プラント効率が低下するという欠点があった。また、窒素ガスは不活性ガスであるので、このような不活性ガスが可燃性ガスに混入すると、脱硫後の精製ガスの発熱量が低下してしまうという欠点もあった。
【0004】
そこで、搬送用ガスとして窒素ガスの代わりに可燃性ガスを用いる方法が提案されている。この方法は、石炭ガス化炉で生成された可燃性ガスの一部を分岐させ、さらに昇圧して粉体燃料を搬送するようにした方法である。この場合、可燃性ガスを分岐させる箇所が水洗浄塔出口であるので、石炭ガス化炉との差圧は小さく、昇圧に要する補機動力は窒素ガスを用いた場合に比べて低減できる。また、不活性ガスが混入しないため、脱硫後の精製ガスの発熱量が低下することもない。
【0005】
さらに、脱硫装置において分離したCO2リッチガスを粉体燃料の搬送用ガスとして用いる方法も提案されている(例えば特開昭63−12690号公報)。
【0006】
【発明が解決しようとする課題】
しかし、上記のように可燃性ガスやCO2リッチガスをそのまま搬送用ガスとして用いると、搬送用ガスが粉体燃料と混合したときにガス中の水分が凝縮し、これによって、粉体燃料が搬送配管の内面に固着して、搬送配管が閉塞するという問題がある。
【0007】
本発明の目的は、搬送用ガスが粉体燃料と混合したときにガス中の水分の凝縮を防ぎ、粉体燃料の搬送を安定して行うことのできる石炭ガス化システム及び該システムの運用方法を提供することにある。
【0008】
【課題を解決するための手段】
上記目的を達成するために、本発明は、微粉炭とガス化剤とを反応させて可燃性ガスを生成する石炭ガス化炉と、該石炭ガス化炉に微粉炭を供給する微粉炭供給手段と、前記石炭ガス化炉で可燃性ガス生成時に発生するチャーを回収し石炭ガス化炉に供給するチャー供給手段と、チャー回収後の可燃性ガスを脱硫して精製ガスを得る脱硫手段とを備えた石炭ガス化システムにおいて、前記チャー回収後の可燃性ガスの一部を取り出し、該取り出した可燃性ガスを冷却する冷却手段、及び該冷却手段で冷却した可燃性ガスを昇圧する昇圧手段、及び該昇圧手段で昇圧した可燃性ガスを加熱する加熱手段が設けられ、前記微粉炭供給手段は前記加熱手段で加熱された可燃性ガスを搬送用ガスとして用いて微粉炭を前記石炭ガス化炉に供給し、前記チャー供給手段は前記加熱手段で加熱された可燃性ガスを搬送用ガスとして用いてチャーを前記石炭ガス化炉に供給することを特徴としている。
【0009】
上記構成によれば、加熱手段で加熱された可燃性ガスは温度が上昇しており、微粉炭やチャーなどの粉体燃料と混合しても、ガス中の水分が凝縮することはない。そのため、粉体燃料が搬送配管の内面に固着して搬送配管が閉塞することもなく、粉体燃料の搬送を安定して行うことができる。
【0010】
また、前記加熱手段は、該加熱手段で加熱された可燃性ガスが前記微粉炭供給手段で微粉炭に混合したとき、もしくは前記加熱手段で加熱された可燃性ガスが前記チャー供給手段でチャーに混合したときに、混合後の可燃性ガスの温度が露点以上となるように可燃性ガスを加熱することを特徴としている。
【0011】
可燃性ガスが微粉炭もしくはチャーと混合したときに、その混合後の温度が露点以上に制御されていれば、ガス中の水分が凝縮するのを防ぐことができる。
【0012】
【発明の実施の形態】
以下、本発明の実施の形態を図面に従って説明する。
図1は、本発明の石炭ガス化システムを応用した一例で、石炭ガス化複合発電システムの全体構成を示している。図1に示すように、石炭1は粉砕機2で粉砕されて微粉炭となり、熱風発生炉3に導入され、熱風発生炉3で発生する高温の加熱ガスにより乾燥される。乾燥後の微粉炭1は、一旦、ホッパ4に貯められた後、ロックホッパシステム5により加圧され、さらに搬送用ガス7で搬送されて石炭ガス化炉8に供給される。また、空気10は熱交換器11を通って精留塔12に送られ、この精留塔12で窒素と酸素に分離される。分離された酸素は圧縮機14で加圧され、ガス化剤として石炭ガス化炉8へ送られる。
【0013】
石炭ガス化炉8のガス化部では、上記酸素により微粉炭1がガス化され、同時にガス化炉底部からスラグ15が流下する。石炭ガス化炉8で生成された生成ガスは、シンガスクーラ16で冷却された後、サイクロン17およびフィルタ18に導入され、ここでチャー13が回収される。回収されたチャー13は、ホッパ19〜21により加圧され、さらに搬送用ガス7で石炭ガス化炉8に送られてリサイクルされる。
【0014】
一方、サイクロン17およびフィルタ18を通った生成ガスは、水洗浄塔24で冷却された後に、吸収塔26に導入される。そして生成ガスは、吸収塔26で脱硫され、硫化水素、硫化カルボニル等の硫黄化合物が除去されて、精製ガス29となる。
【0015】
精製ガス29はガスタービン31に導入される。ガスタービン31では精製ガス29を燃焼させて回転し、その回転力によって発電機32が回転駆動される。ガスタービン31駆動後の燃焼排ガスは廃熱回収ボイラ33へ送られ、廃熱回収後に煙突34から大気中に放出される。
【0016】
シンガスクーラ16および廃熱回収ボイラ33では熱交換によって蒸気が発生するが、シンガスクーラ16からの発生蒸気35と廃熱回収ボイラ33からの発生蒸気36は蒸気タービン37へ送られ、蒸気タービン37を回転させる。この蒸気タービン37も発電機32を回転駆動する。
【0017】
本実施の形態では、水洗浄塔24出口の可燃性ガスライン40にリサイクルガス(可燃性ガスの一部)の取り出しライン41が接続され、この取り出しライン41には熱交換器42、圧縮機43、熱交換器44がガスの流れに沿って設けられている。そして、取り出しライン41に取り出されたリサイクルガスは、一旦、熱交換器42で冷却された後、圧縮機43で昇圧され、さらに熱交換器44で加熱される。加熱されたリサイクルガスは、微粉炭およびチャーの搬送用ガス7として用いられる。
【0018】
なお、図中、22,25は熱交換器、23はタンク、27は再生器、28は再生廃ガス処理部、30は燃料遮断弁である。
【0019】
図2は、熱交換器44廻りの詳細を示している。取り出しライン41には、熱交換器44に並列にバイパスライン45が設けられ、このバイパスライン45の途中に流量調節弁46が取り付けられている。また、取り出しライン41のうち熱交換器44の下流側には、温度検出器47、流量検出器48および流量調節弁49が設けられている。
【0020】
熱交換器44には高温流体が流れており、リサイクルガスは熱交換器44で高温流体と熱交換して加熱される。そして、加熱後のリサイクルガスは温度が、常時、温度検出器47で検出され、その検出結果に基づいて流量調節弁44の開度が制御されている。すなわち、加熱後のリサイクルガスの温度が低い場合は、流量調節弁46の開度は閉じる方向に制御され、リサイクルガスの多くが熱交換器44を通って加熱される。また、加熱後のリサイクルガスの温度が高い場合は、流量調節弁46の開度は開ける方向に制御され、リサイクルガスの一部がバイパスライン45を通るようになり、熱交換器44での加熱が抑制される。これによって、リサイクルガスの温度を所定の温度に制御することが可能となる。
【0021】
このように、本実施の形態では、リサイクルガスが所定温度となるように加熱制御されているので、リサイクルガスが微粉炭やチャーなどの粉体燃料と混合したときでも、リサイクルガス中の水分が凝縮することがなく、微粉炭やチャーの搬送配管の閉塞を防止できる。
【0022】
次に、リサイクルガスと粉体燃料が混合した場合の、リサイクルガスの温度と露点との関係について説明する。図3は、リサイクルガスつまり搬送用ガスの温度と混合後の温度との関係を示している。従来方式すなわち搬送用ガスを加熱せずそのまま粉体燃料と混合させた場合、粉体燃料の温度によっては、粉体燃料と搬送用ガスが、混合した後の温度(以下、混合後の温度)が搬送用ガスの露点を下回り、搬送用ガス中の水分が凝縮することが分かる。
【0023】
しかし、本実施の形態のように搬送用ガスを加熱すれば、混合後の温度が露点以上となり、搬送用ガス中の水分が凝縮することはない。よって、混合後の温度が露点以上となるように、搬送用ガスを加熱する必要がある。
【0024】
本実施の形態によれば、リサイクルガスによる粉体燃料の搬送が可能となるため、補機動力の低減が可能となる。また、窒素ガス等の不活性ガスが精製ガスに混入するのを最小限に抑えることができるので、精製ガスの発熱量低下もなく、ガスタービンの出力向上を図ることができる。
【0025】
【発明の効果】
以上説明したように、本発明によれば、可燃性ガスが加熱されてから微粉炭やチャー等の粉体燃料に混合されるので、可燃性ガス中の水分が凝縮することがなく、また粉体燃料を搬送するための配管が閉塞するのも防止できる。その結果、粉体燃料の搬送を安定して行うことのできる。
【0026】
また、リサイクルガスでの粉体燃料の搬送が可能となり、プラントの効率を向上させることが可能となる。
【図面の簡単な説明】
【図1】本発明の石炭ガス化システムを応用した一例で、石炭ガス化複合発電システムの全体構成図である。
【図2】本発明の要部である熱交換器廻りの系統図である。
【図3】搬送用ガス温度と混合後の温度との関係を示した図である。
【符号の説明】
7 搬送用ガス
8 石炭ガス化炉
13 チャー
16 シンガスクーラ
17 サイクロン
18 フィルタ
24 水洗浄塔
26 吸収塔
29 精製ガス
31 ガスタービン
32 発電機
40 可燃性ガスライン
41 取り出しライン
44 熱交換器
45 バイパスライン
46 流量調節弁
47 温度検出器
48 流量検出器
49 流量調節弁
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a coal gasification system, and more particularly to a coal gasification system in which a combustible gas is produced by reacting coal with a gasifying agent and purified gas is produced by desulfurizing the combustible gas.
[0002]
[Prior art]
Generally, a coal gasification system is configured to generate flammable gas by reacting pulverized coal with a gasifying agent in a coal gasification furnace, and desulfurizing the combustible gas with a desulfurizer to obtain purified gas. ing. The pulverized coal is conveyed by the conveying gas and supplied to the coal gasification furnace. In the coal gasifier, char is generated when combustible gas is generated, and the char is discharged from the coal gasifier together with the combustible gas. And by passing this combustible gas through a cyclone and a filter, char is recovered from the combustible gas, and the recovered char is also transported by the transport gas and supplied to the coal gasifier.
[0003]
By the way, in the said coal gasification system, nitrogen gas isolate | separated from air in the rectification tower is used as conveyance gas for conveying pulverized fuels, such as pulverized coal and char. In order to use this nitrogen gas as a carrier gas, it is necessary to increase the pressure, and if the auxiliary power for that purpose is increased, there is a disadvantage that the plant efficiency decreases. Moreover, since nitrogen gas is an inert gas, when such an inert gas is mixed in a combustible gas, there also existed a fault that the emitted-heat amount of the refined gas after desulfurization will fall.
[0004]
Therefore, a method of using a combustible gas instead of nitrogen gas as a carrier gas has been proposed. This method is a method in which a part of combustible gas generated in a coal gasification furnace is branched and further pressurized to convey pulverized fuel. In this case, since the location where the combustible gas is branched is the outlet of the water washing tower, the differential pressure with the coal gasification furnace is small, and the auxiliary power required for the pressure increase can be reduced as compared with the case where nitrogen gas is used. Further, since the inert gas is not mixed, the calorific value of the purified gas after desulfurization does not decrease.
[0005]
Furthermore, a method of using CO2 rich gas separated in the desulfurization apparatus as a gas for conveying pulverized fuel has also been proposed (for example, JP-A-63-12690).
[0006]
[Problems to be solved by the invention]
However, if the flammable gas or the CO2 rich gas is used as it is as the carrier gas as described above, the moisture in the gas is condensed when the carrier gas is mixed with the pulverized fuel. There is a problem that the transfer pipe is blocked by being fixed to the inner surface of the sheet.
[0007]
An object of the present invention is to provide a coal gasification system capable of preventing the condensation of moisture in the gas when the carrier gas is mixed with the pulverized fuel and stably carrying the pulverized fuel, and a method of operating the system. Is to provide.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a coal gasification furnace that generates flammable gas by reacting pulverized coal with a gasifying agent, and pulverized coal supply means for supplying pulverized coal to the coal gasification furnace. And char supply means for recovering char generated when combustible gas is generated in the coal gasification furnace and supplying the char to the coal gasification furnace; and desulfurization means for obtaining purified gas by desulfurizing the combustible gas after char recovery. In the coal gasification system provided, a cooling means for taking out a part of the combustible gas after the char recovery , cooling the taken out combustible gas, and a pressure increasing means for increasing the pressure of the combustible gas cooled by the cooling means, And a heating means for heating the combustible gas boosted by the boosting means, and the pulverized coal supply means uses the flammable gas heated by the heating means as a carrier gas to convert the pulverized coal into the coal gasification furnace. To supply said Catcher over supply means is characterized by supplying to the coal gasifier char with combustible gas heated by said heating means as a carrier gas.
[0009]
According to the said structure, the temperature of the combustible gas heated with the heating means has risen, and even if it mixes with pulverized fuels, such as pulverized coal and char, the water | moisture content in gas will not condense. Therefore, the pulverized fuel can be stably conveyed without the pulverized fuel adhering to the inner surface of the conveying pipe and closing the conveying pipe.
[0010]
The heating means may be configured such that when the combustible gas heated by the heating means is mixed with the pulverized coal by the pulverized coal supply means, or the combustible gas heated by the heating means is supplied to the char by the char supply means. When mixed, the combustible gas is heated so that the temperature of the combustible gas after mixing is equal to or higher than the dew point.
[0011]
When the combustible gas is mixed with pulverized coal or char, if the temperature after the mixing is controlled to be higher than the dew point, it is possible to prevent the moisture in the gas from condensing.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is an example in which the coal gasification system of the present invention is applied, and shows the overall configuration of a combined coal gasification combined power generation system. As shown in FIG. 1, coal 1 is pulverized by a pulverizer 2 to become pulverized coal, introduced into a hot air generating furnace 3, and dried by high-temperature heated gas generated in the hot air generating furnace 3. The dried pulverized coal 1 is once stored in the hopper 4, then pressurized by the lock hopper system 5, further transported by the transport gas 7, and supplied to the coal gasifier 8. Further, the air 10 is sent to the rectifying column 12 through the heat exchanger 11, and is separated into nitrogen and oxygen by the rectifying column 12. The separated oxygen is pressurized by the compressor 14 and sent to the coal gasifier 8 as a gasifying agent.
[0013]
In the gasification section of the coal gasification furnace 8, the pulverized coal 1 is gasified by the oxygen, and at the same time, the slag 15 flows down from the bottom of the gasification furnace. The product gas generated in the coal gasification furnace 8 is cooled by the syngas cooler 16 and then introduced into the cyclone 17 and the filter 18 where the char 13 is recovered. The recovered char 13 is pressurized by the hoppers 19 to 21, and further sent to the coal gasification furnace 8 by the transfer gas 7 for recycling.
[0014]
On the other hand, the product gas that has passed through the cyclone 17 and the filter 18 is cooled by the water washing tower 24 and then introduced into the absorption tower 26. The product gas is desulfurized in the absorption tower 26, and sulfur compounds such as hydrogen sulfide and carbonyl sulfide are removed to become purified gas 29.
[0015]
The purified gas 29 is introduced into the gas turbine 31. In the gas turbine 31, the purified gas 29 is burned and rotated, and the generator 32 is driven to rotate by the rotational force. The combustion exhaust gas after driving the gas turbine 31 is sent to the waste heat recovery boiler 33, and is discharged from the chimney 34 to the atmosphere after the waste heat recovery.
[0016]
In the syngas cooler 16 and the waste heat recovery boiler 33, steam is generated by heat exchange, but the generated steam 35 from the syngas cooler 16 and the generated steam 36 from the waste heat recovery boiler 33 are sent to the steam turbine 37, and the steam turbine 37 Rotate. This steam turbine 37 also drives the generator 32 to rotate.
[0017]
In this embodiment, a recycle gas (a part of the combustible gas) take-out line 41 is connected to the combustible gas line 40 at the outlet of the water washing tower 24, and a heat exchanger 42 and a compressor 43 are connected to the take-out line 41. A heat exchanger 44 is provided along the gas flow. The recycle gas taken out to the take-out line 41 is once cooled by the heat exchanger 42, then pressurized by the compressor 43, and further heated by the heat exchanger 44. The heated recycle gas is used as pulverized coal and char transport gas 7.
[0018]
In the figure, 22 and 25 are heat exchangers, 23 is a tank, 27 is a regenerator, 28 is a regeneration waste gas processing section, and 30 is a fuel cutoff valve.
[0019]
FIG. 2 shows the details around the heat exchanger 44. In the extraction line 41, a bypass line 45 is provided in parallel with the heat exchanger 44, and a flow rate adjustment valve 46 is attached in the middle of the bypass line 45. A temperature detector 47, a flow rate detector 48, and a flow rate adjustment valve 49 are provided on the downstream side of the heat exchanger 44 in the take-out line 41.
[0020]
A high-temperature fluid flows through the heat exchanger 44, and the recycle gas is heated by exchanging heat with the high-temperature fluid in the heat exchanger 44. The temperature of the recycled gas after heating is always detected by the temperature detector 47, and the opening degree of the flow rate adjusting valve 44 is controlled based on the detection result. That is, when the temperature of the recycled gas after heating is low, the opening degree of the flow control valve 46 is controlled in the closing direction, and most of the recycled gas is heated through the heat exchanger 44. In addition, when the temperature of the recycled gas after heating is high, the opening degree of the flow rate control valve 46 is controlled in the opening direction, and a part of the recycled gas passes through the bypass line 45 and is heated by the heat exchanger 44. Is suppressed. This makes it possible to control the temperature of the recycled gas to a predetermined temperature.
[0021]
As described above, in this embodiment, since the recycle gas is controlled to be at a predetermined temperature, even when the recycle gas is mixed with pulverized coal, char or other pulverized fuel, the moisture in the recycle gas remains. Without condensing, blockage of the pulverized coal and char transport piping can be prevented.
[0022]
Next, the relationship between the temperature of the recycle gas and the dew point when the recycle gas and pulverized fuel are mixed will be described. FIG. 3 shows the relationship between the temperature of the recycled gas, that is, the carrier gas, and the temperature after mixing. When the conventional method, that is, the carrier gas is mixed with the pulverized fuel as it is without being heated, depending on the temperature of the pulverized fuel, the temperature after the pulverized fuel and the carrier gas are mixed (hereinafter, the temperature after mixing) Is below the dew point of the carrier gas, and the moisture in the carrier gas is condensed.
[0023]
However, if the carrier gas is heated as in the present embodiment, the temperature after mixing becomes the dew point or higher, and the moisture in the carrier gas does not condense. Therefore, it is necessary to heat the carrier gas so that the temperature after mixing is equal to or higher than the dew point.
[0024]
According to the present embodiment, since the pulverized fuel can be transported by the recycle gas, the auxiliary power can be reduced. Further, since it is possible to minimize the mixing of an inert gas such as nitrogen gas into the purified gas, the output of the gas turbine can be improved without reducing the amount of heat generated by the purified gas.
[0025]
【The invention's effect】
As described above, according to the present invention, since the combustible gas is heated and then mixed with powdered fuel such as pulverized coal or char, moisture in the combustible gas is not condensed, and the powder It is possible to prevent the piping for conveying the body fuel from being blocked. As a result, the pulverized fuel can be stably conveyed.
[0026]
Further, it becomes possible to transport the pulverized fuel with the recycle gas, and the efficiency of the plant can be improved.
[Brief description of the drawings]
FIG. 1 is an example of an application of a coal gasification system of the present invention, and is an overall configuration diagram of a coal gasification combined power generation system.
FIG. 2 is a system diagram around a heat exchanger which is a main part of the present invention.
FIG. 3 is a diagram showing a relationship between a conveying gas temperature and a temperature after mixing.
[Explanation of symbols]
7 Gas for transportation 8 Coal gasifier 13 Char 16 Syngas cooler 17 Cyclone 18 Filter 24 Water washing tower 26 Absorption tower 29 Purified gas 31 Gas turbine 32 Generator 40 Combustible gas line 41 Extraction line 44 Heat exchanger 45 Bypass line 46 Flow control valve 47 Temperature detector 48 Flow detector 49 Flow control valve

Claims (3)

微粉炭とガス化剤とを反応させて可燃性ガスを生成する石炭ガス化炉と、該石炭ガス化炉に微粉炭を供給する微粉炭供給手段と、前記石炭ガス化炉で可燃性ガス生成時に発生するチャーを回収し石炭ガス化炉に供給するチャー供給手段と、チャー回収後の可燃性ガスを脱硫して精製ガスを得る脱硫手段とを備えた石炭ガス化システムにおいて、前記チャー回収後の可燃性ガスの一部を取り出し、該取り出した可燃性ガスを冷却する冷却手段、及び該冷却手段で冷却した可燃性ガスを昇圧する昇圧手段、及び該昇圧手段で昇圧した可燃性ガスを加熱する加熱手段が設けられ、前記微粉炭供給手段は前記加熱手段で加熱された可燃性ガスを搬送用ガスとして用いて微粉炭を前記石炭ガス化炉に供給し、前記チャー供給手段は前記加熱手段で加熱された可燃性ガスを搬送用ガスとして用いてチャーを前記石炭ガス化炉に供給することを特徴とする石炭ガス化システム。A coal gasification furnace that generates flammable gas by reacting pulverized coal with a gasifying agent, pulverized coal supply means for supplying pulverized coal to the coal gasification furnace, and combustible gas generation in the coal gasification furnace In a coal gasification system comprising a char supply means for recovering char generated at times and supplying it to a coal gasification furnace, and a desulfurization means for desulfurizing combustible gas after char recovery to obtain purified gas, after the char recovery A part of the combustible gas is taken out , a cooling means for cooling the taken out combustible gas, a boosting means for boosting the combustible gas cooled by the cooling means, and a combustible gas pressurized by the boosting means are heated. Heating means is provided, the pulverized coal supply means supplies the pulverized coal to the coal gasification furnace using the combustible gas heated by the heating means as a carrier gas , and the char supply means includes the heating means. Heated in Coal gasification system and supplying the char to the coal gasifier with the combustible gas as carrier gas. 請求項1に記載の石炭ガス化システムにおいて、前記加熱手段は、該加熱手段で加熱された可燃性ガスが前記微粉炭供給手段で微粉炭に混合したとき、もしくは前記加熱手段で加熱された可燃性ガスが前記チャー供給手段でチャーに混合したときに、混合後の可燃性ガスの温度が露点以上となるように可燃性ガスを加熱することを特徴とする石炭ガス化システム。2. The coal gasification system according to claim 1, wherein the heating unit includes a combustible gas heated by the heating unit when the combustible gas heated by the heating unit is mixed with the pulverized coal by the pulverized coal supply unit. when the sex gas was mixed with the char in the char supply device, coal gasification system, wherein the temperature of the combustible gas after mixing heats the combustible gas so that the above dew point. 微粉炭とガス化剤とを反応させて可燃性ガスを生成する石炭ガス化炉と、該石炭ガス化炉に微粉炭を供給する微粉炭供給手段と、前記石炭ガス化炉で可燃性ガス生成時に発生するチャーを回収し石炭ガス化炉に供給するチャー供給手段と、チャー回収後の可燃性ガスを脱硫して精製ガスを得る脱硫手段とを備えた石炭ガス化システムにおいて、前記チャー回収後の可燃性ガスの一部を取り出して、冷却した後昇圧し、さらに加熱して前記微粉炭供給手段と前記チャー供給手段の前記微粉炭と前記チャーの搬送用ガスとして用いることを特徴とする石炭ガス化システムの運用方法。A coal gasification furnace that reacts pulverized coal with a gasifying agent to generate combustible gas, pulverized coal supply means for supplying pulverized coal to the coal gasification furnace, and combustible gas generation in the coal gasification furnace In a coal gasification system comprising a char supply means for recovering char generated at times and supplying it to a coal gasification furnace, and a desulfurization means for desulfurizing combustible gas after char recovery to obtain purified gas, after the char recovery A portion of the combustible gas is taken out, cooled and then pressurized, and further heated to be used as the pulverized coal supply means, the pulverized coal of the char supply means, and the char transport gas. How to operate the gasification system.
JP14090599A 1999-05-21 1999-05-21 Coal gasification system and method of operating the system Expired - Fee Related JP3988008B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14090599A JP3988008B2 (en) 1999-05-21 1999-05-21 Coal gasification system and method of operating the system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14090599A JP3988008B2 (en) 1999-05-21 1999-05-21 Coal gasification system and method of operating the system

Publications (2)

Publication Number Publication Date
JP2000328074A JP2000328074A (en) 2000-11-28
JP3988008B2 true JP3988008B2 (en) 2007-10-10

Family

ID=15279545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14090599A Expired - Fee Related JP3988008B2 (en) 1999-05-21 1999-05-21 Coal gasification system and method of operating the system

Country Status (1)

Country Link
JP (1) JP3988008B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4095829B2 (en) * 2002-05-21 2008-06-04 三菱重工業株式会社 Char circulation type coal gasification power plant system
JP5606045B2 (en) * 2009-11-11 2014-10-15 三菱重工業株式会社 Gasification equipment
JP5675297B2 (en) * 2010-11-22 2015-02-25 三菱重工業株式会社 Gasification facilities and coal gasification combined power generation facilities
WO2012073300A1 (en) 2010-11-29 2012-06-07 三菱重工業株式会社 Gasification device
JP6139845B2 (en) * 2012-10-09 2017-05-31 三菱日立パワーシステムズ株式会社 Carbon fuel gasification system
JP6109796B2 (en) 2014-09-16 2017-04-05 三菱日立パワーシステムズ株式会社 Powder conveying device and char recovery device

Also Published As

Publication number Publication date
JP2000328074A (en) 2000-11-28

Similar Documents

Publication Publication Date Title
JP4981771B2 (en) Coal gasification combined power generation facility
US7814742B2 (en) Integrated coal gasification combined cycle plant
AU2010219421B2 (en) Method and apparatus for drying solid feedstock using steam
WO2011122594A1 (en) Integrated coal gasification combined cycle power generation plant
KR20130054230A (en) System for heat integration with methanation system
KR20000015802A (en) Coal gasification apparatus, coal gasification method and integrated coal gasification combined cycle power generating system
JP3988008B2 (en) Coal gasification system and method of operating the system
AU2013237711B2 (en) Gasification system for carbon containing fuel
US9890331B2 (en) Gasification facility
JP3977890B2 (en) Gasification power generation system
JP4095829B2 (en) Char circulation type coal gasification power plant system
JP5651440B2 (en) Coal transportation system for coal gasification power plant
JP7236194B2 (en) Gas turbine facility, gasification facility, and method of operating gas turbine facility
JP3924172B2 (en) Waste pyrolysis gasification system
JP7086675B2 (en) Gasifier system
JP6008514B2 (en) Gas purification equipment for gasification gas
JP6957198B2 (en) Gasification furnace equipment and gasification combined cycle equipment equipped with this
JP2001348578A (en) Apparatus and method for gasifying carbonaceous fossil fuel and biomass
JPH066710B2 (en) Coal gasification method
JP3952236B2 (en) Fossil fuel gasification power plant and method for preheating the equipment
JP7286504B2 (en) Gasification facility and gasification combined cycle facility equipped with the same
JPH11165033A (en) Coal gasification complex power plant and formed gas treatment on abnormality thereof
JP6556639B2 (en) Gasification system and operation method of gasification system
JPH11106760A (en) Wet-feed-type gasification oven
JPH11106759A (en) Method and apparatus for gasifying carbon compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070703

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees