JPH03215382A - Producing device of crystal - Google Patents

Producing device of crystal

Info

Publication number
JPH03215382A
JPH03215382A JP1025490A JP1025490A JPH03215382A JP H03215382 A JPH03215382 A JP H03215382A JP 1025490 A JP1025490 A JP 1025490A JP 1025490 A JP1025490 A JP 1025490A JP H03215382 A JPH03215382 A JP H03215382A
Authority
JP
Japan
Prior art keywords
heat source
crystal
memory
measured
manufacturing apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1025490A
Other languages
Japanese (ja)
Inventor
Takao Yokota
孝夫 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1025490A priority Critical patent/JPH03215382A/en
Publication of JPH03215382A publication Critical patent/JPH03215382A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable to uniform crystal growth without defect by providing heat sources at first foci and a crystalline raw material at a second focus in spheroidal reflectors and controlling an electric power supplying to the heat sources with a controller according to a measured energy of heat rays. CONSTITUTION:Heat sources 107 and 107' are provided at first focus parts and a crystalline raw material 101 is provided at a second focus part in spheroidal reflectors 100 and 100'. Said raw material 101 is fixed at top ends of rotatable shafts 105 and 106 and heat rays from said heat sources 107 and 107' are concentrated to the raw material 101. Energy of said heat rays is measured by brightness detectors 111 and 111' and a measured value for a rotation of the shafts is memorized. Then, an electric power supplied to the heat sources 107 and 107' is controlled by lamp controllers 114 and 114' so as the memorized value to attain a previously set value, thus uniform crystal without defect is grown.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は結晶成長等に利用される結晶製造装置に関し、
特に溶融帯法による結晶製造装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a crystal manufacturing apparatus used for crystal growth, etc.
In particular, it relates to a crystal manufacturing apparatus using the fused zone method.

〔従来の技術〕[Conventional technology]

結晶製造装置は、回転楕円面からなる反射鏡の第1の焦
点部分に熱源を置き、第2の焦点部分に結晶素材を置い
てその赤外線を集中し、結晶素材を加熱溶融して結晶成
長を行うものである。この装置には、反射鏡が1個の回
転楕円面のみで構成される単楕円型、反射鏡が2個の回
転楕円面の組合せで構成され第2の焦点を共有する構造
の双楕円型、さらに反射鏡が3個以上の回転楕円面の組
合せで構成され第2の焦点を共有する構造の多楕円型が
ある。
A crystal manufacturing device places a heat source at the first focal point of a reflecting mirror made of a spheroidal surface, places a crystal material at the second focal point, concentrates the infrared rays, and heats and melts the crystal material to grow the crystal. It is something to do. This device includes a single ellipsoid type in which the reflecting mirror is composed of only one spheroidal surface, a bielliptic type in which the reflecting mirror is composed of a combination of two spheroidal surfaces and shares a second focal point, Furthermore, there is a multi-ellipsoid type in which the reflecting mirror is composed of a combination of three or more spheroidal surfaces and shares a second focal point.

次に従来の結晶製造装置について図面を参照して説明す
る。
Next, a conventional crystal manufacturing apparatus will be explained with reference to the drawings.

第2図は特開昭58−181094号に示された従来構
造の結晶製造装置の加熱炉部分の断面と熱源の制御シス
テムのブロックダイヤグラムを示す説明図である。
FIG. 2 is an explanatory diagram showing a cross section of a heating furnace portion of a crystal manufacturing apparatus having a conventional structure and a block diagram of a heat source control system disclosed in Japanese Patent Application Laid-Open No. 58-181094.

図において、200及び200′は回転楕円反射鏡、2
01は多結晶素材、202は単結晶素材である。これら
の結晶素材はそれぞれ上部のチャック203、下部のチ
ャック204によって上部のシャフト205、下部のシ
ャフト206に取り付けられ、キセノンランプまたはハ
ロゲンランプ等の熱源207及び207′に電力を供給
し、熱源207から赤外線を発生させると、多結晶素材
201及び単結晶素材202との間すなわち結晶製造装
置の第2の焦点部分に溶融帯208が形成される。20
9は、多結晶素材201及び単結晶素材202から発生
するガスから回転楕円反射鏡を保護し、かつ多結晶素材
201及び単結晶素材202の周りを真空にしたり不活
性ガス等で満たすための炉芯管である。210及び2l
O′は、それぞれ回転楕円反射鏡200及び200′に
あけられた窓であ番ハ211及び211’は、例えばフ
ォトダイオードのような明るさ検出素子である。また2
12及び212′は、それぞれ明るさ検出素子211及
び211′の出力を増幅する増幅回路であり、明るさ検
出素子211及び211′が電流出力型の場合、電圧出
力への変換回路も含む。213及び213′は、熱源コ
ントローラでそれぞれ明るさ検出素子2+1及び211
’からの信号を増幅回路212及び212′ を介して
受け、別に入力される明るさ設定値の大きさと比較する
ことにより熱源207及び207′の明るさが予め設定
する明るさ設定値に一致するように熱源207及び20
7′に供給する電力をそれぞれ独立に制御するコントロ
ーラである。
In the figure, 200 and 200' are spheroidal reflectors, 2
01 is a polycrystalline material, and 202 is a single crystalline material. These crystalline materials are attached to an upper shaft 205 and a lower shaft 206 by an upper chuck 203 and a lower chuck 204, respectively, and supply power to heat sources 207 and 207', such as xenon lamps or halogen lamps, and draw electricity from the heat source 207. When infrared rays are generated, a molten zone 208 is formed between the polycrystalline material 201 and the single crystal material 202, that is, at the second focal point of the crystal manufacturing apparatus. 20
Reference numeral 9 denotes a furnace for protecting the spheroidal reflector from gas generated from the polycrystalline material 201 and the single-crystalline material 202, and for creating a vacuum around the polycrystalline material 201 and the single-crystalline material 202 or filling them with inert gas or the like. It is a core tube. 210 and 2l
O' is a window opened in the spheroidal reflecting mirrors 200 and 200', respectively, and numbers C 211 and 211' are brightness detection elements such as photodiodes. Also 2
12 and 212' are amplifier circuits that amplify the outputs of the brightness detection elements 211 and 211', respectively, and also include a conversion circuit to voltage output when the brightness detection elements 211 and 211' are of current output type. 213 and 213' are heat source controllers and brightness detection elements 2+1 and 211, respectively.
The brightness of the heat sources 207 and 207' matches the brightness setting value set in advance by receiving the signal from the heat source 207 and 207' through the amplifier circuits 212 and 212' and comparing it with the brightness setting value input separately. As heat sources 207 and 20
This is a controller that independently controls the power supplied to 7'.

結晶成長は、移動機構(図示せず)により溶融帯208
が多結晶素材201の方向に移動、すなわち回転楕円反
射鏡200及び200′を多結晶素材20+の方向に移
動することによって行われる。上部のシャフト205及
び下部のシャフト206にそれぞれに取り付けられてい
る回転機構(図示せず)は、チャック203及びチャッ
ク204を介して多結晶素材201及び単結晶素材20
2を回転させるとともに溶融帯208を回転させ、溶融
帯208の円周方向の温度分布を均一にしたり溶融帯2
08内部の撹拌を行うための機構である。結晶成長には
通常1日〜10日もの長時間を要するが、この間に熱源
の明るさが徐々に低下することがあっても、熱源の明る
さは結晶成長開始時の明るさに維持するように制御され
る。
Crystal growth is carried out in the molten zone 208 by a moving mechanism (not shown).
is performed by moving in the direction of the polycrystalline material 201, that is, by moving the spheroidal reflecting mirrors 200 and 200' in the direction of the polycrystalline material 20+. Rotating mechanisms (not shown) respectively attached to the upper shaft 205 and the lower shaft 206 rotate the polycrystalline material 201 and the single crystal material 20 through the chucks 203 and 204.
2 is rotated and the melting zone 208 is also rotated to make the temperature distribution of the melting zone 208 uniform in the circumferential direction.
This is a mechanism for stirring inside the 08. Crystal growth usually takes a long time, from 1 to 10 days, but even if the brightness of the heat source may gradually decrease during this time, the brightness of the heat source is maintained at the brightness at the start of crystal growth. controlled by.

(発明が解決しようとする課題〕 しかしながら、単結晶素材及び多結晶素材の形状が、軸
対称の円柱であればこれら素材の表面で反射する熱源か
らの光エネルギは常に一定になるが、四角柱のように角
のあるような単結晶素材及び多結晶素材を用いることも
あり、この場合シャフトの回転に伴って、明るさ検出素
子で計測される熱源からの赤外線の光エネルギは、回転
に同期して強くなったり弱くなったりする。また、単結
晶素材及び多結晶素材ばかりでなく、軸対称でないチャ
ックを用いることもあり、この場合にもシャフトの回転
に同期して、明るさ検出素子で計測される熱源からの赤
外線の光エネルギが強くなったり弱くなったりしていた
。このように、明るさ検出素子で計測される熱源からの
赤外線の光エネルギが変化するが、コントローラでは明
るさ検出素子で計測される熱源からの赤外線の光エネル
ギが一定になるように、熱源に供給する電力を制御する
ため、溶融帯の大きさも変化してしまい、結晶欠陥を生
じることがあった。
(Problem to be Solved by the Invention) However, if the shape of the single crystal material and polycrystalline material is an axially symmetrical cylinder, the light energy from the heat source reflected on the surface of these materials will always be constant; In some cases, monocrystalline and polycrystalline materials with corners are used, such as those shown in Figure 1. In this case, as the shaft rotates, the infrared light energy from the heat source measured by the brightness detection element is synchronized with the rotation. In addition to single-crystal materials and polycrystalline materials, chucks that are not axially symmetrical are also used, and in these cases, the brightness detection element is also used in synchronization with the rotation of the shaft. The infrared light energy from the heat source being measured was becoming stronger or weaker.In this way, the infrared light energy from the heat source measured by the brightness detection element changes, but the controller does not detect the brightness. Since the power supplied to the heat source is controlled so that the infrared light energy from the heat source measured by the element remains constant, the size of the molten zone also changes, which can lead to crystal defects.

本発明の目的はこのような従来の欠点を除去し、単結晶
素材,多結晶素材,チャックの形状が軸対称でない場合
でも、熱源に供給する電力が一定となり、結晶欠陥を生
じない結晶製造装置を提供することにある。
The purpose of the present invention is to eliminate such conventional drawbacks, and to provide a crystal manufacturing apparatus in which the power supplied to the heat source is constant and crystal defects do not occur even when the shapes of single crystal materials, polycrystal materials, and chucks are not axially symmetrical. Our goal is to provide the following.

[課題を解決するための手段] 前記目的を達成するため、本発明に係る結晶製造装置に
おいては、移動機構により移動可能な回転楕円反射鏡の
第1の焦点部分に熱源を設け、前記回転楕円反射鏡の第
2の焦点部分に回転可能なシャフトの先端に取り付けら
れた結晶素材を設け、前記熱源から発する赤外線を前記
結晶素材に集中し、明るさ検出素子によって前記赤外線
の光エネルギを計測し、前記赤外線量に応じて熱源に供
給する電力の制御を行い、前記結晶素材を溶融させ結晶
成長を行う溶融帯法による結晶製造装置であって、 前記シャフトが1回転する間の前記明るさ検出素子にお
ける計測値を記録するメモリと、前記メモリに記録され
た計測値が予め設定された値になるように、対応する熱
源に供給する電力の制御を行うコントローラとを有する
ものである。
[Means for Solving the Problem] In order to achieve the above object, in the crystal manufacturing apparatus according to the present invention, a heat source is provided at the first focal point of the spheroidal reflecting mirror movable by a moving mechanism, and the spheroidal reflector is provided with a heat source. A crystal material attached to the tip of a rotatable shaft is provided at the second focal point of the reflecting mirror, infrared rays emitted from the heat source are concentrated on the crystal material, and the optical energy of the infrared rays is measured by a brightness detection element. , a crystal manufacturing apparatus using a fused zone method that controls electric power supplied to a heat source according to the amount of infrared rays to melt the crystal material and grow the crystal, wherein the brightness is detected during one rotation of the shaft; It has a memory that records measured values in the element, and a controller that controls the power supplied to the corresponding heat source so that the measured value recorded in the memory becomes a preset value.

また、本発明に係る結晶製造装置においては、前記メモ
リはシャフトが1回転する間の明るさ検出素子における
計測値を記録し、前記コントローラは該メモリに記録さ
れた計測値の最小値によって熱源に供給する電力の制御
を行う機能を有するものである。また、本発明に係る結
晶製造装置においては、前記シャフトが1回転する間の
明るさ検出素子における計測値をメモリに記録し、前記
コントローラは該メモリに記録された計測値の平均値に
よって熱源に供給する電力の制御を行う機能を有するも
のである。
Further, in the crystal manufacturing apparatus according to the present invention, the memory records the measured value of the brightness detection element during one revolution of the shaft, and the controller controls the heat source according to the minimum value of the measured values recorded in the memory. It has the function of controlling the supplied power. Further, in the crystal manufacturing apparatus according to the present invention, the measured value of the brightness detection element during one rotation of the shaft is recorded in a memory, and the controller controls the heat source according to the average value of the measured values recorded in the memory. It has the function of controlling the supplied power.

[実施例] 以下、本発明の一実施例を図面を参照して説明する。[Example] Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例である結晶製造装置の加熱炉
部分の断面と熱源の制御システムのブロックダイヤグラ
ムを示す説明図である。
FIG. 1 is an explanatory diagram showing a cross section of a heating furnace portion of a crystal manufacturing apparatus according to an embodiment of the present invention and a block diagram of a heat source control system.

図において、100及び100′は回転楕円反射鏡、1
01は多結晶素材、102は単結晶素材である。これら
の結晶素材はそれぞれ、上部のチャック103、下部の
チャック+04によって上部のシャフト105、下部の
シャフト+06に取り付けられ、キセノンランプ又はハ
ロゲンランプ等の熱源107及び107′に電力を供給
し、熱源+07から赤外線を発生させると、多結晶素材
101及び単結晶素材102との間すなわち結晶製造装
置の第2の焦点部分に溶融帯+08が形成される。10
9は、多結晶素材+01及び単結晶素材+02から発生
するガスから回転楕円反射鏡を保護し、かつ多結晶素材
101及び単結晶素材+02の周りを真空にしたり不活
性ガス等で満たすための炉芯管である。110及び+1
0’は、それぞれ回転楕円反射鏡+00及びtoo’に
あけられた窓であり、Ill及びIll′は、例えばフ
ォトダイオードのような明るさ検出素子である。また1
12及び112′は、それぞれ明るさ検出素子+11及
びIll’の出力を増幅する増幅回路であり、明るさ検
出素子Ill及びIll’が電流出力型の場合、電圧出
力への変換回路も含む。+13及びll3′はメモリ回
路で、それぞれシャフト106が1回転する間の明るさ
検出素子Ill及び111′からの信号を増幅回路+1
2及び112′ を介して受け、これを記録し、最小値
及び平均値を出力するようになっている。114及び1
14′は熱源コントローラで、メモリ回路113及び1
13′からの出力を受け、別に入力される明るさ設定値
と比較することで、熱源107及び107′の明るさが
予め設定する明るさ設定値に一致するように熱源107
及び107′に供給する電力をそれぞれ独立に制御する
コントローラである。
In the figure, 100 and 100' are spheroidal reflectors, 1
01 is a polycrystalline material, and 102 is a single crystalline material. These crystal materials are attached to the upper shaft 105 and the lower shaft +06 by the upper chuck 103 and the lower chuck +04, respectively, and supply power to heat sources 107 and 107' such as xenon lamps or halogen lamps, and heat sources +07 When infrared rays are generated from the infrared rays, a molten zone +08 is formed between the polycrystalline material 101 and the single crystal material 102, that is, at the second focal point of the crystal manufacturing apparatus. 10
9 is a furnace for protecting the spheroidal reflector from gas generated from the polycrystalline material +01 and the single-crystalline material +02, and for creating a vacuum around the polycrystalline material 101 and the single-crystalline material +02 or filling it with inert gas, etc. It is a core tube. 110 and +1
0' is a window opened in the spheroidal reflector +00 and too', respectively, and Ill and Ill' are brightness detection elements such as photodiodes. Also 1
12 and 112' are amplifier circuits that amplify the outputs of the brightness detection elements +11 and Ill', respectively, and also include a conversion circuit to voltage output when the brightness detection elements Ill and Ill' are of current output type. +13 and ll3' are memory circuits, and the signals from the brightness detecting elements Ill and 111' during one rotation of the shaft 106 are amplified by an amplifying circuit +1.
2 and 112', this is recorded, and the minimum value and average value are output. 114 and 1
14' is a heat source controller that connects memory circuits 113 and 1;
By receiving the output from 13' and comparing it with the brightness setting value input separately, the heat source 107 is adjusted so that the brightness of the heat sources 107 and 107' matches the preset brightness setting value.
and 107' are controllers that independently control the power supplied to the controllers 107' and 107'.

結晶成長は、移動機構(図示せず)により溶融帯108
が多結晶素材lotの方向に移動、すなわち回転楕円反
射鏡100及び100′を多結晶素材lotの方向に移
動することによって行われる。シャフト105及びシャ
フト106にそれぞれに取り付けられている回転機構(
図示せず)は、チャック103及びチャック104を介
して多結晶素材lot及び単結晶素材102を回転させ
るとともに溶融帯108を回転させ、溶融帯108の円
周方向の温度分布を均一にしたり溶融帯108内部の撹
拌を行う。本発明において、コントローラ114,11
4’はメモリ113, 113′より出力される計測値
すなわち明るさ検出素子における光エネルギのシャフト
が1回転する間の計測値の最小値、又は明るさ検出素子
における光エネルギのシャフトが1回転する間の計測値
の平均値に基づいて熱源をコントロールする。
Crystal growth is carried out in the molten zone 108 by a moving mechanism (not shown).
is performed by moving in the direction of the polycrystalline material lot, that is, by moving the spheroidal reflectors 100 and 100' in the direction of the polycrystalline material lot. A rotating mechanism (
(not shown) rotates the polycrystalline material lot and the single crystal material 102 through the chuck 103 and the chuck 104, and also rotates the melting zone 108 to make the temperature distribution in the circumferential direction of the melting zone 108 uniform. Stir inside 108. In the present invention, the controllers 114, 11
4' is the measurement value output from the memories 113, 113', that is, the minimum value of the measurement value during one rotation of the light energy shaft in the brightness detection element, or the one rotation of the light energy shaft in the brightness detection element. The heat source is controlled based on the average value of the measured values.

なお、ここでは回転楕円反射鏡を移動させて結晶成長を
行う型の結晶成長装置について説明してきたが、結晶素
材を取り付けているシャフトを移動させて結晶成長を行
う形式の結晶成長装置についても本発明は同様に実施で
きる。また、ここでは双楕円型の結晶製造装置について
説明してきたが、単楕円型あるいは多楕円型の結晶製造
装置についても本発明は同様に実施できる。
Although this article has explained a type of crystal growth apparatus that grows crystals by moving a spheroidal reflector, this book also describes a type of crystal growth apparatus that grows crystals by moving a shaft to which a crystal material is attached. The invention can be practiced similarly. Furthermore, although a bielliptic crystal manufacturing apparatus has been described here, the present invention can be implemented in the same manner with a monoelliptic or polyelliptic crystal manufacturing apparatus.

さらに、以上の説明で述べた熱源としては、キセノンラ
ンプ,ハロゲンランプ等の任意の熱源について本発明は
同様に実施できる。
Further, as the heat source mentioned in the above explanation, the present invention can be similarly implemented using any heat source such as a xenon lamp or a halogen lamp.

〔発明の効果〕〔Effect of the invention〕

本発明による結晶製造装置によると、単結晶素材,多結
晶素材及びチャックの形状が軸対称でなく、単結晶素材
,多結晶素材及びチャックの表面で反射して明るさ検出
素子で検出する熱源からの赤外線の光エネルギがある場
合でも、単結晶素材,多結晶素材及びチャックの表面で
の反射の影響を受けないように、明るさ検出素子におけ
る光エネルギのシャフトが1回転する間の計測値の最小
値によって熱源をコントロールするため、熱源へ供給す
る電力も安定し、出来上がる結晶に欠陥を生じることが
なくなり、均一な単結晶を得ることが可能になる。また
、単結晶素材,多結晶素材及びチャックの形状が軸対称
でなく、単結晶素材,多結晶素材及びチャックの表面で
反射して明るさ検出素子で検出する熱源からの赤外線の
光エネルギが変化する場合でも、明るさ検出素子におけ
る光エネルギのシャフトが1回転する間の計測値の平均
値によって熱源をコントロールすることにより熱源へ供
給する電力が安定し、出来上がる結晶に欠陥を生じるこ
とがなくなり、均一な単結晶を得ることが可能になる。
According to the crystal manufacturing apparatus according to the present invention, the shapes of the single crystal material, the polycrystalline material, and the chuck are not axially symmetrical, and the heat source is reflected from the surfaces of the single crystal material, the polycrystalline material, and the chuck and detected by the brightness detection element. Even if there is infrared light energy of Since the heat source is controlled by the minimum value, the power supplied to the heat source is stable, eliminating defects in the resulting crystal, and making it possible to obtain a uniform single crystal. In addition, the shapes of the single crystal material, polycrystalline material, and chuck are not axially symmetrical, and the infrared light energy from the heat source reflected by the surfaces of the single crystal material, polycrystalline material, and chuck and detected by the brightness detection element changes. By controlling the heat source using the average value measured during one revolution of the light energy shaft in the brightness detection element, the power supplied to the heat source is stabilized, and no defects occur in the resulting crystal. It becomes possible to obtain a uniform single crystal.

制御方法に関しては、熱源への供給電力の制御が、電圧
による制御、電流による制御に置き換えられても、同様
の効果をえられることは明白である。
Regarding the control method, it is clear that the same effect can be obtained even if the control of the power supplied to the heat source is replaced with voltage control or current control.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による一実施例を示す結晶製造装置の加
熱炉部分の断面と熱源の制御システムのブロックダイヤ
グラムを示す説明図、第2図は従来例の結晶製造装置の
加熱炉部分の断面と熱源の制御システムのブロックダイ
ヤグラムを示す説明図である。 100, 100’,200,200’・・・回転楕円
反射鏡107, 107’,207,207’・・・熱
源  108, 208・・・溶融帯Ill, 111
’,211,211’・・・明るさ検出素子112, 
112’,212,212’・・・増幅回路113, 
113’・・・メモリ回路
FIG. 1 is an explanatory diagram showing a cross section of a heating furnace portion of a crystal manufacturing apparatus according to an embodiment of the present invention and a block diagram of a heat source control system, and FIG. 2 is a cross section of a heating furnace portion of a conventional crystal manufacturing apparatus. FIG. 2 is an explanatory diagram showing a block diagram of a control system for a heat source. 100, 100', 200, 200'...Spheroidal reflecting mirror 107, 107', 207, 207'...Heat source 108, 208...Melting zone Ill, 111
', 211, 211'...brightness detection element 112,
112', 212, 212'...Amplification circuit 113,
113'...Memory circuit

Claims (3)

【特許請求の範囲】[Claims] (1)移動機構により移動可能な回転楕円反射鏡の第1
の焦点部分に熱源を設け、前記回転楕円反射鏡の第2の
焦点部分に回転可能なシャフトの先端に取り付けられた
結晶素材を設け、前記熱源から発する赤外線を前記結晶
素材に集中し、明るさ検出素子によって前記赤外線の光
エネルギを計測し、前記赤外線量に応じて熱源に供給す
る電力の制御を行い、前記結晶素材を溶融させ結晶成長
を行う溶融帯法による結晶製造装置であって、 前記シャフトが1回転する間の前記明るさ検出素子にお
ける計測値を記録するメモリと、前記メモリに記録され
た計測値が予め設定された値になるように、対応する熱
源に供給する電力の制御を行うコントローラとを有する
ことを特徴とする結晶製造装置。
(1) The first spheroidal reflector that can be moved by a moving mechanism
A heat source is provided at the focal point of the spheroidal reflector, a crystal material attached to the tip of a rotatable shaft is provided at the second focal point of the spheroidal reflector, and the infrared rays emitted from the heat source are concentrated on the crystal material, thereby increasing the brightness. A crystal manufacturing apparatus using a fused zone method in which the optical energy of the infrared rays is measured by a detection element, the electric power supplied to the heat source is controlled according to the amount of infrared rays, and the crystal material is melted to grow the crystal, comprising: A memory for recording the measured value of the brightness detection element during one revolution of the shaft, and control of electric power supplied to the corresponding heat source so that the measured value recorded in the memory becomes a preset value. 1. A crystal manufacturing apparatus characterized by having a controller for performing the operation.
(2)前記メモリはシャフトが1回転する間の明るさ検
出素子における計測値を記録し、前記コントローラは該
メモリに記録された計測値の最小値によって熱源に供給
する電力の制御を行う機能を有することを特徴とする請
求項第(1)項に記載の結晶製造装置。
(2) The memory records the measured value of the brightness detection element during one revolution of the shaft, and the controller has a function of controlling the power supplied to the heat source based on the minimum value of the measured values recorded in the memory. The crystal manufacturing apparatus according to claim 1, further comprising:
(3)前記シャフトが1回転する間の明るさ検出素子に
おける計測値をメモリに記録し、前記コントローラは該
メモリに記録された計測値の平均値によって熱源に供給
する電力の制御を行う機能を有することを特徴とする請
求項第(1)項に記載の結晶製造装置。
(3) The controller has a function of recording the measured value of the brightness detection element during one rotation of the shaft in a memory, and controlling the electric power supplied to the heat source based on the average value of the measured values recorded in the memory. The crystal manufacturing apparatus according to claim 1, further comprising:
JP1025490A 1990-01-19 1990-01-19 Producing device of crystal Pending JPH03215382A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1025490A JPH03215382A (en) 1990-01-19 1990-01-19 Producing device of crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1025490A JPH03215382A (en) 1990-01-19 1990-01-19 Producing device of crystal

Publications (1)

Publication Number Publication Date
JPH03215382A true JPH03215382A (en) 1991-09-20

Family

ID=11745185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1025490A Pending JPH03215382A (en) 1990-01-19 1990-01-19 Producing device of crystal

Country Status (1)

Country Link
JP (1) JPH03215382A (en)

Similar Documents

Publication Publication Date Title
Kitazawa et al. A new thermal imaging system utilizing a Xe arc lamp and an ellipsoidal mirror for crystallization of refractory oxides
US6235110B1 (en) Method of producing recrystallized-material-member, and apparatus and heating method therefor
JPH04149092A (en) Method and device for controlling growth of cone part
JP4738966B2 (en) Floating zone melting device
JPH03215382A (en) Producing device of crystal
JP3085568B2 (en) Apparatus and method for producing silicon single crystal
JP2011037640A (en) Apparatus and method for growing single crystal
JP3592909B2 (en) Single crystal pulling device
JPH0148240B2 (en)
JP3531254B2 (en) Single crystal manufacturing method
JPH02289489A (en) Device for producing crystal and production thereof
JPH07172993A (en) Production of rutile single crystal
JPH0343237B2 (en)
JPH0769780A (en) Equipment for single crystal growth
JPS60112688A (en) Method for controlling melting condition of molten zone in infrared heating manufacturing device of single crystal
JPS6121992A (en) Device for preparation single crystal heated with convergent infrared ray
JPS6071591A (en) Image furnace
JPS6027686A (en) Apparatus for manufacturing single crystal
JP2558659B2 (en) Infrared heating single crystal manufacturing equipment
JPH0859388A (en) Device for producing single crystal
JPH0354186A (en) Floating zone-melting device
JPH0534317B2 (en)
JP2936694B2 (en) Single crystal growing method and high frequency work coil
JPH07315979A (en) Infrared-heated single crystal producing device
JPH01126291A (en) Radiant ray heater