JP4738966B2 - Floating zone melting device - Google Patents

Floating zone melting device Download PDF

Info

Publication number
JP4738966B2
JP4738966B2 JP2005295620A JP2005295620A JP4738966B2 JP 4738966 B2 JP4738966 B2 JP 4738966B2 JP 2005295620 A JP2005295620 A JP 2005295620A JP 2005295620 A JP2005295620 A JP 2005295620A JP 4738966 B2 JP4738966 B2 JP 4738966B2
Authority
JP
Japan
Prior art keywords
mirror
sample
floating zone
elliptical
zone melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005295620A
Other languages
Japanese (ja)
Other versions
JP2007099602A (en
Inventor
勇 進藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Crystal Systems Corp
Original Assignee
Crystal Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Crystal Systems Corp filed Critical Crystal Systems Corp
Priority to JP2005295620A priority Critical patent/JP4738966B2/en
Priority to TW096101033A priority patent/TWI400368B/en
Publication of JP2007099602A publication Critical patent/JP2007099602A/en
Application granted granted Critical
Publication of JP4738966B2 publication Critical patent/JP4738966B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、回転楕円面反射鏡の一方の焦点に赤外線ランプを設け、回転楕円面反射鏡の反射面から反射された赤外線を他方の焦点に集光させることにより試料を加熱する赤外線集中加熱式の浮遊帯域溶融装置に関する。   In the present invention, an infrared lamp is provided at one focal point of a spheroid reflecting mirror, and a sample is heated by concentrating infrared rays reflected from the reflecting surface of the spheroid reflecting mirror on the other focal point. The present invention relates to a floating zone melting apparatus.

赤外線集中加熱式の浮遊帯域溶融装置は、
(i) 坩堝を使用せずに試料の溶融が行えること
(ii) 雰囲気ガスを任意に選べること
(iii)浮遊帯域法を利用して種々の組成の単結晶育成が行えること
(iv) 浮遊帯域徐冷法による相平衡研究が行えること
(v) 比較的少ない電力で高温度が容易に得られること
等の利点があり、単結晶の育成や相平衡の研究などのために広く利用されている。
Infrared central heating type floating zone melting equipment
(I) The sample can be melted without using a crucible (ii) The atmosphere gas can be selected arbitrarily (iii) Single crystal growth of various compositions can be performed using the floating zone method (iv) The floating zone Being able to conduct phase equilibrium studies by slow cooling (v) Has the advantage of being able to easily obtain high temperatures with relatively little power, and is widely used for single crystal growth and phase equilibrium studies.

浮遊帯域溶融装置を単結晶の育成に使用するには、試料の溶融部において高温が得られること、試料の棒軸を中心とした円周方向における温度が均質であること、垂直方向(試料の棒軸方向)における温度分布が急峻で、局部加熱が容易であり溶融液を試料棒に容易に保持できることなどの条件が求められる。従来、このような条件を達成するために様々な形式の赤外線集中加熱式の浮遊帯域溶融装置が開発されてきた。   In order to use the floating zone melting apparatus for single crystal growth, a high temperature is obtained in the melting part of the sample, the temperature in the circumferential direction around the rod axis of the sample is uniform, and the vertical direction (of the sample Conditions such as a steep temperature distribution (in the rod axis direction), easy local heating, and the ability to easily hold the melt on the sample rod are required. Conventionally, in order to achieve such conditions, various types of infrared central heating type floating zone melting apparatuses have been developed.

図6(a)は、単楕円鏡炉を用いた従来の赤外線集中加熱式の浮遊帯域溶融装置を説明する図であり、単楕円鏡炉11内で丸棒状の試料棒4aを加熱した状態を示す。この浮遊帯域溶融装置では、1個の楕円鏡2を使用し、その2箇所の焦点位置のうち一方の焦点位置に、ハロゲンランプ、キセノンランプ等の赤外線ランプ3が設置される。ここで、楕円鏡2は金属鏡である。一方の焦点位置から発せられる赤外線ランプ3からの赤外線は、楕円鏡2で反射され他方の焦点位置に集光される。この赤外線が集光した焦点位置で試料棒4aが加熱され、溶融体が形成される。試料棒4aと赤外線ランプ3とを軸方向へ徐々に相対移動させることにより、育成結晶4bを棒状に育成させる。   FIG. 6A is a diagram for explaining a conventional infrared concentrated heating type floating zone melting apparatus using a single elliptical mirror furnace, in which a round bar-shaped sample bar 4 a is heated in the single elliptical mirror furnace 11. Show. In this floating zone melting apparatus, one elliptical mirror 2 is used, and an infrared lamp 3 such as a halogen lamp or a xenon lamp is installed at one of the two focal positions. Here, the elliptical mirror 2 is a metal mirror. Infrared rays from the infrared lamp 3 emitted from one focal position are reflected by the elliptical mirror 2 and collected at the other focal position. The sample bar 4a is heated at the focal position where the infrared rays are collected, and a melt is formed. By gradually moving the sample rod 4a and the infrared lamp 3 relatively in the axial direction, the grown crystal 4b is grown in a rod shape.

この単楕円鏡炉11を用いた方式では、赤外線ランプ3の光の利用効率が最も高い。しかしながら、この方式では試料棒4aの赤外線ランプ3とは反対側の領域の温度が上がりにくく、赤外線ランプ3側の領域5の温度が相対的に高くなり、図6(b)に示したように(7は等温線、8は試料棒4aの中心軸からの等距離線を表す)、試料棒4aの溶融部の水平面上における棒軸を中心とした円周方向に温度分布が生じる。   In the method using the single elliptical mirror furnace 11, the light use efficiency of the infrared lamp 3 is the highest. However, in this method, the temperature of the region on the opposite side of the sample lamp 4a from the infrared lamp 3 is difficult to rise, and the temperature of the region 5 on the infrared lamp 3 side becomes relatively high, as shown in FIG. (7 represents an isotherm, 8 represents an equidistant line from the central axis of the sample rod 4a), and a temperature distribution is generated in the circumferential direction around the rod axis on the horizontal plane of the molten portion of the sample rod 4a.

この温度分布の偏りを改善するために、図7(a)に示した双楕円鏡炉21を用いた装置が開発された。この浮遊帯域溶融装置では、楕円の一部を切断した一対の楕円鏡2を、一方の焦点位置を互いに共有するように横方向へ直線上に配置し、これらの楕円鏡2の他方の焦点位量に配置された一対の赤外線ランプ3により両側から試料棒4aを加熱する。   In order to improve the uneven temperature distribution, an apparatus using the double elliptical mirror furnace 21 shown in FIG. 7A has been developed. In this floating zone melting apparatus, a pair of elliptical mirrors 2 obtained by cutting a part of an ellipse are arranged in a straight line in the lateral direction so as to share one focal position with each other, and the other focal position of these elliptical mirrors 2 is arranged. The sample rod 4a is heated from both sides by a pair of infrared lamps 3 arranged in a quantity.

この双楕円鏡炉21を用いた方式では、試料棒4aを横方向の両側から加熱できるので、単楕円鏡炉と比較して円周方向の温度分布は改善される。しかしながら、試料棒4aの円周方向には図7(b)のように温度分布が生じ、一対のランプ3が設置された方向と比較してその垂直方向の温度が低くなる。   In the method using the double elliptical mirror furnace 21, the sample rod 4a can be heated from both sides in the lateral direction, so that the temperature distribution in the circumferential direction is improved as compared with the single elliptical mirror furnace. However, a temperature distribution occurs in the circumferential direction of the sample bar 4a as shown in FIG. 7B, and the temperature in the vertical direction is lower than the direction in which the pair of lamps 3 are installed.

円周方向における温度差が実際にどの程度生じるかは、使用する赤外線ランプ3のフィラメントの大きさ、形状等にもよるが、通常の使用方法では、単楕円炉、双楕円炉のいず
れにおいても100℃程度か、あるいは100℃を超える場合が多い。
The actual temperature difference in the circumferential direction depends on the size, shape, etc. of the filament of the infrared lamp 3 to be used. In many cases, it is about 100 ° C or exceeds 100 ° C.

単楕円炉および双楕円炉における溶融部の円周方向の温度分布の一例を図8に示す。この例にも示されるように、最高温度部と最低温度部との温度差は、最高温度値の10%にも達する。このような温度分布が生じる条件下では、高品質な単結晶を育成することは難しい。   An example of the temperature distribution in the circumferential direction of the melted part in the single elliptical furnace and the double elliptical furnace is shown in FIG. As shown in this example, the temperature difference between the maximum temperature portion and the minimum temperature portion reaches 10% of the maximum temperature value. It is difficult to grow a high-quality single crystal under conditions where such a temperature distribution occurs.

この温度分布の偏りをさらに改善するために、双楕円鏡炉からさらに楕円鏡を2個追加して、一方の焦点位置を互いに共有する4個の楕円鏡を直交軸上に配置し、四方から試料棒を加熱できるようにした四楕円鏡型の装置が開発された(特許文献1)。
特開平9−235171号公報
In order to further improve the bias of this temperature distribution, two more elliptical mirrors are added from the double elliptical mirror furnace, and four elliptical mirrors sharing one focal position with each other are arranged on the orthogonal axis. A four-elliptic mirror type device that can heat a sample rod has been developed (Patent Document 1).
JP-A-9-235171

この楕円鏡を4個用いて四方から試料棒を加熱する方式により、円周方向の温度分布は大幅に改善された。しかし、単結晶の育成においては、円周方向の温度分布が均一であることの他、前述したように、その垂直方向の温度勾配が急峻であること、および最高到達温度が充分に高いことが必要とされるが、従来の四楕円鏡型の装置ではこれらの全ての条件を満足するものが得られていなかった。   By using the four ellipsoidal mirrors and heating the sample rod from all sides, the temperature distribution in the circumferential direction was greatly improved. However, in the growth of single crystals, the temperature distribution in the circumferential direction is uniform, the temperature gradient in the vertical direction is steep and the maximum temperature reached is sufficiently high as described above. Although required, a conventional four-elliptic mirror type device has not been obtained that satisfies all these conditions.

また、従来では、楕円鏡として機械加工により作製した金属鏡を使用していたが、試料棒の円周方向の温度分布および垂直方向の温度勾配を考慮して設計すると、最高到達温度が低下してしまうという問題があった。   In the past, metal mirrors made by machining were used as elliptical mirrors, but the maximum temperature reached would be reduced if the temperature distribution in the circumferential direction of the sample rod and the temperature gradient in the vertical direction were considered. There was a problem that.

本発明は、溶融部における試料の円周方向の温度勾配が小さく、その垂直方向の温度勾配が急峻であり、且つ充分に高い最高到達温度を得ることができ、安定した溶融状態を形成可能な赤外線集中加熱式の浮遊帯域溶融装置を提供することを目的としている。   The present invention has a small temperature gradient in the circumferential direction of the sample in the melting part, a steep temperature gradient in the vertical direction, and a sufficiently high maximum temperature can be obtained, so that a stable molten state can be formed. An object of the present invention is to provide an infrared concentrated heating type floating zone melting apparatus.

本発明の浮遊帯域溶融装置は、内面を反射面として直交軸上に対向配置した四個の回転楕円面反射鏡の一方の焦点に赤外線ランプを設け、前記反射面から反射された赤外線を他方の焦点に集光させることにより試料を加熱する赤外線集中加熱式の浮遊帯域溶融装置であって、
前記回転楕円面反射鏡は、離心率が0.40〜0.65であり、且つ、反射鏡の深さの開口部直径に対する比が0.38〜0.75であることを特徴とする。
The floating zone melting apparatus of the present invention is provided with an infrared lamp at one focal point of four spheroid reflecting mirrors arranged opposite to each other on an orthogonal axis with the inner surface as a reflecting surface, and the infrared rays reflected from the reflecting surface are reflected on the other side. Infrared concentration heating type floating zone melting device that heats a sample by focusing it on a focal point,
The spheroid reflecting mirror has an eccentricity of 0.40 to 0.65, and a ratio of a depth of the reflecting mirror to an opening diameter is 0.38 to 0.75.

ここで、上記の離心率は、次式:
(a2−b21/2/a
(ここで、aは楕円長軸の長さを示し、bは短軸の長さを示す。)
で定義される。
Where the above eccentricity is given by:
(A 2 -b 2 ) 1/2 / a
(Here, a indicates the length of the ellipse major axis, and b indicates the length of the minor axis.)
Defined by

このように、楕円鏡の離心率、および反射鏡の深さの開口部直径に対する比を所定範囲とすることにより、溶融部における試料の円周方向の温度勾配が小さく、垂直方向の温度勾配が急峻になり、且つ、高い最高到達温度が得られる。   Thus, by setting the ratio of the eccentricity of the ellipsoidal mirror and the depth of the reflecting mirror to the opening diameter to be within a predetermined range, the temperature gradient in the circumferential direction of the sample in the melting portion is small and the temperature gradient in the vertical direction is small. It becomes steep and a high maximum temperature is obtained.

本発明の浮遊帯域溶融装置は、前記回転楕円面反射鏡が、ガラス鏡であることを特徴とする。
回転楕円面反射鏡をガラス鏡で構成することによって、溶融部における試料の円周方向の温度勾配が小さく、垂直方向の温度勾配が急峻になると共に、さらに高い最高到達温度
が得られる。
The floating zone melting apparatus of the present invention is characterized in that the spheroidal reflecting mirror is a glass mirror.
By configuring the spheroid reflecting mirror with a glass mirror, the temperature gradient in the circumferential direction of the sample in the melting part is small, the temperature gradient in the vertical direction is steep, and a higher maximum temperature is obtained.

本発明の浮遊帯域溶融装置は、前記回転楕円面反射鏡が、前記一方の焦点から他方の焦点への直線が下方へ傾斜するように配置され、前記反射面で反射された赤外線が斜め上方から試料へ照射されることを特徴とする。   In the floating zone melting apparatus of the present invention, the spheroid reflecting mirror is disposed so that a straight line from the one focus to the other focus is inclined downward, and infrared rays reflected by the reflection surface are obliquely upward. It is characterized by irradiating the sample.

このようにすることで、結晶側の固液界面の形状が凸状になることが抑制される。そのため、より大口径の単結晶を育成することができる。
本発明の浮遊帯域溶融装置は、前記回転楕円面反射鏡を、前記試料が配置される位置を中心として径方向へ水平移動させる位置調節機構を備えることを特徴とする。
By doing in this way, it is suppressed that the shape of the solid-liquid interface by the side of a crystal becomes convex. Therefore, a single crystal having a larger diameter can be grown.
The floating zone melting apparatus of the present invention includes a position adjusting mechanism that horizontally moves the spheroid reflecting mirror in a radial direction around a position where the sample is arranged.

このように回転楕円面反射鏡の位置を調整できる機構を設けることにより、焦点位置を単結晶の口径の程度に合わせた最適位置に容易に配置することができ、単結晶の口径に応じた最適な光学配置において安定した育成を行うことができる。   By providing a mechanism that can adjust the position of the ellipsoidal reflecting mirror in this way, the focal position can be easily placed at the optimum position according to the diameter of the single crystal, and the optimum according to the diameter of the single crystal. Stable growth can be performed in a simple optical arrangement.

本発明の浮遊帯域溶融装置によれば、溶融部における試料の円周方向の温度勾配が小さく、その垂直方向の温度勾配が急峻であり、且つ充分に高い最高到達温度を得ることができ、安定した溶融状態を形成することができる。   According to the floating zone melting apparatus of the present invention, the temperature gradient in the circumferential direction of the sample in the melting part is small, the temperature gradient in the vertical direction is steep, and a sufficiently high maximum temperature can be obtained, which is stable. A molten state can be formed.

以下、図面を参照しながら本発明について説明する。図1は、本発明の一実施形態における浮遊帯域溶融装置の楕円鏡炉を示した図であり、図1(a)は縦断面図、図1(b)は横断面図である。図示したように、この楕円鏡炉1では、4個の回転楕円面反射鏡(楕円鏡2)が、試料棒4aを囲むように直交軸上に配置されている。これらの4個の楕円鏡2は、試料棒4aが位置する中心位置においてその焦点を互いに共有している。   Hereinafter, the present invention will be described with reference to the drawings. FIG. 1 is a view showing an elliptic mirror furnace of a floating zone melting apparatus according to an embodiment of the present invention, in which FIG. 1 (a) is a longitudinal sectional view and FIG. 1 (b) is a transverse sectional view. As shown in the figure, in this elliptical mirror furnace 1, four rotating ellipsoidal reflecting mirrors (elliptical mirror 2) are arranged on the orthogonal axis so as to surround the sample rod 4a. These four elliptical mirrors 2 share the focal point with each other at the center position where the sample rod 4a is located.

それぞれの楕円鏡2における集光側とは反対側の焦点位置には、赤外線ランプ3のフィラメントが配置され、このフィラメントから発せられた赤外線が楕円鏡2で反射し、他方の焦点で集光されて試料棒4aを加熱する。   The filament of the infrared lamp 3 is disposed at the focal position on the opposite side of the condensing side of each elliptical mirror 2, and the infrared rays emitted from this filament are reflected by the elliptical mirror 2 and collected at the other focal point. The sample bar 4a is heated.

図2にも示したように、4個の楕円鏡2は、その長軸方向の断面が、集光側から楕円の一部を垂直に切断した形状を有し、長軸方向に対する垂直断面が円形となっている。楕円鏡2の集光側端部には円形の開口10が形成されている。   As shown in FIG. 2, the four elliptical mirrors 2 have a cross section in the major axis direction in which a part of the ellipse is cut perpendicularly from the light collecting side. It is circular. A circular opening 10 is formed at the condensing side end of the elliptical mirror 2.

楕円鏡2の離心率は0.40〜0.65であり、楕円鏡2の深さLの、開口部11の直径Dに対する比L/Dは0.38〜0.75である。楕円鏡2の形状をこの範囲内とすることによって、試料棒4aの垂直方向の温度勾配が急峻となり、且つ、高い最高到達温度を得ることができ、安定した溶融状態を形成することができる。離心率が0.40未満である場合、あるいはL/Dが0.38未満である場合には、最高到達温度が低下し、離心率が0.65を超える場合、あるいはL/Dが0.75を超える場合には、試料棒4aの垂直方向の温度勾配が緩やかになり、単結晶の育成に悪影響を与える他、場合によっては溶融液が落下してしまう。   The eccentricity of the elliptical mirror 2 is 0.40 to 0.65, and the ratio L / D of the depth L of the elliptical mirror 2 to the diameter D of the opening 11 is 0.38 to 0.75. By setting the shape of the elliptical mirror 2 within this range, the temperature gradient in the vertical direction of the sample rod 4a becomes steep and a high maximum temperature can be obtained, so that a stable molten state can be formed. When the eccentricity is less than 0.40, or when L / D is less than 0.38, the maximum temperature is lowered, and when the eccentricity exceeds 0.65, or L / D is 0.1. When it exceeds 75, the temperature gradient in the vertical direction of the sample bar 4a becomes gentle, which adversely affects the growth of the single crystal and, in some cases, the molten liquid falls.

例えば、図9(a)のような離芯率が大きい楕円鏡2aでは、赤外線ランプ3から発せられる赤外線の利用効率を高く維持できるが、フォーカス部9の大きさが広がり垂直方向の温度勾配が緩やかになる。   For example, in the elliptical mirror 2a having a large eccentricity as shown in FIG. 9A, the use efficiency of the infrared rays emitted from the infrared lamp 3 can be maintained high, but the size of the focus unit 9 increases and the vertical temperature gradient is increased. Be gentle.

一方、図9(b)のような離芯率が小さい楕円鏡2bでは、フォーカス部9のサイズを小さくすることができるが、隣接する楕円鏡同士が互いに重ならないように、この重なり
部分を切断したものを用いて4個の楕円鏡を配置する必要があるため、楕円を切断した分だけ光の利用効率が低くなり、安定した溶融状態を形成すべき領域における最高到達温度が低下する。
On the other hand, in the elliptical mirror 2b having a small eccentricity as shown in FIG. 9B, the size of the focus unit 9 can be reduced, but this overlapping portion is cut so that adjacent elliptical mirrors do not overlap each other. Since it is necessary to arrange four elliptical mirrors using this, the light utilization efficiency is lowered by the amount of cutting the ellipse, and the maximum temperature reached in the region where a stable molten state is to be formed is lowered.

なお、4個の楕円鏡2を直交軸上に配置することにより、試料棒4aの円周方向における温度の偏りは図3に示したように非常に小さく、使用するランプ、フィラメント形状等にもよるが、円周方向の温度差は例えば30℃以下程度とすることができる。   In addition, by arranging the four elliptical mirrors 2 on the orthogonal axis, the temperature deviation in the circumferential direction of the sample rod 4a is very small as shown in FIG. However, the temperature difference in the circumferential direction can be about 30 ° C. or less, for example.

本実施例では、4個の楕円鏡2にガラス鏡を使用している。ガラス鏡は赤外線に対する反射効率が高く、ハロゲンランプ、キセノンランプ等の赤外線ランプ3からの赤外線を効率よく反射し、高い最高到達温度が得られる。   In this embodiment, glass mirrors are used for the four elliptical mirrors 2. The glass mirror has a high reflection efficiency with respect to infrared rays, and efficiently reflects infrared rays from the infrared lamp 3 such as a halogen lamp or a xenon lamp, and a high maximum temperature is obtained.

ガラス鏡からなる楕円鏡2は、具体的には、予め作製したセラミックの型に対して、加熱により軟化させたガラス板を被せて、その後冷却してからガラス鏡を型から取り外すことにより作製する。   Specifically, the elliptical mirror 2 made of a glass mirror is manufactured by covering a previously prepared ceramic mold with a glass plate softened by heating, and then cooling it and then removing the glass mirror from the mold. .

ガラス鏡の形成材としては、あらゆるガラス材が使用可能であるが、通常は加工が容易で、価格も安定しているパイレックス(登録商標)ガラスが使用される。ガラス鏡の内面には、赤外線反射能に優れるアルミニウム、金などを蒸着し、その最表面には硬度の高い酸化珪素などを蒸着することが好ましい。アルミニウム、金などを内面に蒸着することにより、ガラス材への赤外吸収が少なくなり、ガラス鏡の温度上昇が少なくなるので、冷却が容易になる。なお、ガラス鏡の外面側には、取り扱い性および衝撃吸収性を向上させるために、薄いアルミ板などを被せることが好ましい。   Any glass material can be used as a material for forming the glass mirror, but Pyrex (registered trademark) glass, which is easy to process and stable in price, is usually used. It is preferable to deposit aluminum, gold or the like having excellent infrared reflectivity on the inner surface of the glass mirror, and to deposit high hardness silicon oxide or the like on the outermost surface. By depositing aluminum, gold or the like on the inner surface, infrared absorption into the glass material is reduced, and the temperature rise of the glass mirror is reduced, so that cooling is facilitated. The outer surface of the glass mirror is preferably covered with a thin aluminum plate or the like in order to improve handling and shock absorption.

この楕円鏡炉1による単結晶の育成は、例えば次のように行われる。楕円鏡炉1には、石英管からなる試料室が形成され、試料棒4aは、石英管の中に収容される。石英管内は、真空状態にしたり、あるいは雰囲気ガスを流通させたりすることができる。   The growth of the single crystal by the elliptical mirror furnace 1 is performed as follows, for example. A sample chamber made of a quartz tube is formed in the elliptical mirror furnace 1, and the sample rod 4a is accommodated in the quartz tube. The quartz tube can be evacuated or an atmospheric gas can be circulated.

試料棒4aは、この石英管内に、集光側の焦点位置を通過するように上下方向に設置され、その上端側がシャフト状の試料棒支持部に支持される。一方、育成結晶を成長させる種子結晶は、その下端側がシャフト状の育成結晶支持部に支持される。これらの各支持部は、これらに取り付けられた駆動部を介して駆動装置により上下方向への移動および棒軸を中心とした回転ができるようになっている。これらの楕円鏡炉1、各支持部およびこれらの駆動部、試料室等は、収納体内に収納され、別途の制御盤により操作者が試料棒の移動、ランプ電圧の調整などの各操作を行う。収納体内には、溶融域を撮像するCCDカメラが設置され、操作者が溶融域の観察を行いながら赤外線ランプ3に対する印加電圧などを制御する。なお、赤外線ランプ3および楕円鏡2は、例えばファンなどによる空冷等で冷却するようにしている。   The sample rod 4a is installed in the vertical direction in the quartz tube so as to pass through the focal position on the condensing side, and the upper end side thereof is supported by the shaft-shaped sample rod support portion. On the other hand, the lower end side of the seed crystal for growing the grown crystal is supported by the shaft-shaped grown crystal support portion. Each of these support portions can be moved in the vertical direction and rotated around the rod axis by a drive device via a drive portion attached to them. The elliptical mirror furnace 1, the support portions, the drive portions, the sample chamber, and the like are housed in the storage body, and the operator performs various operations such as moving the sample rod and adjusting the lamp voltage using a separate control panel. . A CCD camera for imaging the melting area is installed in the storage body, and an operator controls the voltage applied to the infrared lamp 3 while observing the melting area. The infrared lamp 3 and the elliptical mirror 2 are cooled by, for example, air cooling using a fan or the like.

単結晶の育成開始時には、試料棒支持部に支持された試料棒4aの先端部と、育成結晶支持部に支持された種子結晶の先端部とを対向させ、石英管を配置した後、赤外線ランプ3を点灯し、試料棒および種子結晶に回転を与えながら赤外線ランプ3への印加電圧を徐々に上昇させ、これらの各先端部を溶融させる。両方の先端部が溶融した段階で、両者を接近させ、溶融部を合体させる。この際、試料棒4aおよび種子結晶の両方に回転を与え、赤外線ランプ3のへの印加電圧を制御することによって、溶融部の大きさを調整し、安定な溶融域を形成させる。   At the start of single crystal growth, the tip of the sample rod 4a supported by the sample rod support is opposed to the tip of the seed crystal supported by the growth crystal support, and a quartz tube is disposed, and then an infrared lamp 3 is turned on, the voltage applied to the infrared lamp 3 is gradually increased while rotating the sample rod and the seed crystal, and the tip portions thereof are melted. At the stage where both tip portions are melted, the two portions are brought close to each other and the melted portions are united. At this time, the sample bar 4a and the seed crystal are both rotated, and the voltage applied to the infrared lamp 3 is controlled to adjust the size of the melting part and form a stable melting region.

安定な溶融域が形成された後、上記の駆動装置により試料棒4aおよび種子結晶を同じ速度で下方に移動させることにより(例えば0.1〜100mm/h)、試料の溶融と結晶の育成が継続され、棒状の単結晶の育成が行われる。   After the stable melting zone is formed, the sample rod 4a and the seed crystal are moved downward at the same speed by the above driving device (for example, 0.1 to 100 mm / h), thereby melting the sample and growing the crystal. Continuously, rod-shaped single crystals are grown.

以上に、楕円鏡炉1を用いた単結晶の育成方法およびそのための装置構成の一例を説明したが、これに限定されることはなく各種の変更が可能である。例えば、赤外線ランプ3および楕円鏡2を試料棒4aに対して上下方向に相対移動させて単結晶の育成を行うようにしてもよい。   The example of the method for growing a single crystal using the elliptical mirror furnace 1 and the apparatus configuration therefor have been described above. However, the present invention is not limited to this, and various modifications can be made. For example, the single crystal may be grown by moving the infrared lamp 3 and the elliptical mirror 2 relative to the sample bar 4a in the vertical direction.

図4は、本発明の他の実施形態における浮遊帯域溶融装置の楕円鏡炉を示した図であり、図4(a)は縦断面図、図4(b)は横断面図である。本実施形態の浮遊帯域溶融装置は、大口径の単結晶の育成に適した構成であり、4個のそれぞれの楕円鏡2が、下方へ傾斜するように配置されている。   4A and 4B are diagrams showing an elliptic mirror furnace of a floating zone melting apparatus according to another embodiment of the present invention. FIG. 4A is a longitudinal sectional view, and FIG. 4B is a transverse sectional view. The floating zone melting apparatus of the present embodiment has a configuration suitable for growing a large-diameter single crystal, and each of the four elliptical mirrors 2 is disposed so as to be inclined downward.

これにより、楕円鏡2の反射面で反射された赤外線が斜め上方から試料の溶融部4cへ照射される。このようにすることで、単結晶の口径が大きい場合であっても育成結晶4bと溶融部4cとの固液界面の形状が安定になり、良質の単結晶が得られる。これに対して、図1のように楕円鏡2の軸が水平方向を向くように4個の楕円鏡2を配置し、楕円鏡2の反射面で反射された赤外線を水平に試料の溶融部4cへ照射すると、単結晶の口径が大きい場合に育成結晶4bと溶融部4cとの固液界面の形状が凸状になり過ぎることがある。このように固液界面の形状が凸状になり過ぎると、単結晶を安定に育成させることが困難になる。   Thereby, the infrared rays reflected by the reflecting surface of the elliptical mirror 2 are irradiated obliquely from above to the melting portion 4c of the sample. By doing so, even when the diameter of the single crystal is large, the shape of the solid-liquid interface between the grown crystal 4b and the melted part 4c becomes stable, and a high-quality single crystal is obtained. On the other hand, as shown in FIG. 1, the four elliptical mirrors 2 are arranged so that the axis of the elliptical mirror 2 is oriented in the horizontal direction, and the infrared rays reflected by the reflecting surface of the elliptical mirror 2 are horizontally horizontal. When irradiating 4c, when the diameter of the single crystal is large, the shape of the solid-liquid interface between the grown crystal 4b and the melted part 4c may become too convex. Thus, when the shape of the solid-liquid interface becomes too convex, it becomes difficult to stably grow the single crystal.

本実施例の浮遊帯域溶融装置によれば、口径が25〜45mmである大口径の単結晶を安定に育成することができる。このような大口径の単結晶を安定に育成するためには、楕円鏡2の一方の焦点から他方の焦点への直線の水平方向に対する角度θを25〜35度とすることが好ましい。   According to the floating zone melting apparatus of the present embodiment, a large-diameter single crystal having a diameter of 25 to 45 mm can be stably grown. In order to stably grow such a large-diameter single crystal, it is preferable to set the angle θ with respect to the horizontal direction of the straight line from one focal point of the elliptical mirror 2 to the other focal point to 25 to 35 degrees.

さらに本実施形態では、楕円鏡2を、試料棒4aを中心軸として径方向へ水平移動させる位置調節機構5を備えている。位置調節機構5は、例えば、楕円鏡2に取り付けた移動部材と、この移動部材を上記の径方向へ案内し、所望の位置で固定可能なガイド部材とから構成することができる。   Furthermore, in the present embodiment, a position adjusting mechanism 5 that horizontally moves the elliptical mirror 2 in the radial direction with the sample rod 4a as the central axis is provided. The position adjusting mechanism 5 can be composed of, for example, a moving member attached to the elliptical mirror 2 and a guide member that guides the moving member in the radial direction and can be fixed at a desired position.

このような位置調節機構5によって、楕円鏡2の径方向の位置を調節し、焦点位置を単結晶の口径の程度に合わせた最適位置に配置する。これにより、単結晶の口径に応じた最適な光学配置において安定した育成を行うことができる。   Such a position adjusting mechanism 5 adjusts the position of the elliptical mirror 2 in the radial direction and arranges the focal position at an optimum position according to the diameter of the single crystal. Thereby, stable growth can be performed in an optimal optical arrangement according to the diameter of the single crystal.

以下、実施例により本発明を説明するが、本発明はこれらの実施例に限定されるものではない。
[実施例1]
石英ガラスからなる4個の回転楕円面反射鏡を、一方の焦点位置を互いに共有するように直交軸上に設置し、各回転楕円面反射鏡の他方の焦点位置にハロゲンランプを設置して楕円鏡炉を構成した。4個の回転楕円面反射鏡の離芯率は0.55、開口部の直径は220mmであり、反射鏡の深さの開口部直径に対する比は0.6であった。ハロゲンランプには、二重螺旋構造のフィラメント形状を有する出力1000Wのランプを使用した。
EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited to these Examples.
[Example 1]
Four spheroid reflecting mirrors made of quartz glass are installed on the orthogonal axis so that one focal point position is shared with each other, and a halogen lamp is installed at the other focal point of each spheroid reflecting mirror. A mirror furnace was constructed. The four spheroidal reflecting mirrors had an eccentricity of 0.55, an opening diameter of 220 mm, and a ratio of the depth of the reflecting mirror to the opening diameter was 0.6. As the halogen lamp, a lamp with an output of 1000 W having a filament shape of a double helix structure was used.

試料棒が楕円鏡炉の中心に上下方向へ配置されるように、焼結試料棒を試料棒支持部によって上方から支持すると共に、種子結晶を下方から育成結晶支持部に支持し、試料棒の先端部と種子結晶の先端部とを対向させた。   The sintered sample rod is supported from above by the sample rod support so that the sample rod is arranged vertically in the center of the elliptical mirror furnace, and the seed crystal is supported by the growth crystal support from below. The tip and the tip of the seed crystal were made to face each other.

石英管を楕円鏡炉の周囲に設置した後、ハロゲンランプを点灯し、試料棒および種子結晶に回転を与えながらハロゲンランプへの印加電圧を徐々に上昇させ、これらの各先端部を溶融させた。両方の先端部が溶融した段階で、両者を接近させて溶融部を合体させた。
安定な溶融体が形成された後、試料棒および種子結晶を等速でゆっくりと下方に移動させながら試料の溶融と結晶の育成を継続し、棒状の単結晶を育成した。溶融体は容易に保持することができ、安定した結晶育成が可能であった。
After installing the quartz tube around the elliptical mirror furnace, the halogen lamp was turned on, the voltage applied to the halogen lamp was gradually increased while rotating the sample rod and the seed crystal, and each of these tips was melted. . At the stage where both tips were melted, the two were brought close together to merge the melted parts.
After the stable melt was formed, melting of the sample and growth of the crystal were continued while slowly moving the sample rod and the seed crystal downward at a constant speed to grow a rod-shaped single crystal. The melt could be easily held and stable crystal growth was possible.

図5に、溶融部における垂直方向(棒軸方向)の温度分布を示す。この実施例では、温度分布が同図の曲線Bとなり、最高到達温度は約1000℃と高温が維持されると共に、この最高到達温度位置から棒軸方向へ温度が急激に低下した。また、溶融部の円周方向における最高温度と最低温度の差は30℃以下であった。   FIG. 5 shows the temperature distribution in the vertical direction (bar axis direction) in the melting part. In this example, the temperature distribution became curve B in the figure, and the maximum temperature reached about 1000 ° C., and the temperature rapidly decreased from the maximum temperature position toward the rod axis. Further, the difference between the maximum temperature and the minimum temperature in the circumferential direction of the melted portion was 30 ° C. or less.

反射鏡深さの開口部直径に対する比を代えた種々の石英ガラス製楕円鏡を用いて垂直方向の温度分布を測定したが、この比が0.38〜0.75である場合には同様に高い最高到達温度が維持され、垂直方向の温度勾配は急峻であった。
[比較例1]
離芯率が0.35で、反射鏡深さの開口部直径に対する比が0.8である4個の回転楕円面反射鏡を用いた以外は実施例1と同様の条件で楕円炉を構成し、焼結した口径10mmの試料棒を溶解させて溶融体を保持しようと試みたが、溶融体は直ぐに落下してしまい、安定した溶融体は形成できなかった。
The temperature distribution in the vertical direction was measured using various quartz glass ellipsoidal mirrors in which the ratio of the reflector depth to the opening diameter was changed, but when this ratio was 0.38 to 0.75, the same applies. A high maximum temperature was maintained and the vertical temperature gradient was steep.
[Comparative Example 1]
An elliptical furnace was constructed under the same conditions as in Example 1 except that four spheroidal reflecting mirrors having an eccentricity of 0.35 and a ratio of the reflecting mirror depth to the opening diameter of 0.8 were used. Then, an attempt was made to melt the sintered sample rod having a diameter of 10 mm to hold the melt, but the melt immediately dropped and a stable melt could not be formed.

図5に、溶融部における垂直方向(棒軸方向)の温度分布を示す。この比較例では、温度分布が同図の曲線Cとなり、最高到達温度は約1000℃と高温であったが、この最高到達温度位置から垂直方向に離れた位置での温度も高く、温度勾配は緩やかになった。
[比較例2]
離芯率が0.8で、反射鏡深さの開口部直径に対する比が0.3である4個の回転楕円面反射鏡を用いた以外は実施例1と同様の条件で楕円炉を構成し、単結晶を育成したが、溶融部における温度が低く、安定な溶融体が得られず品質の良い単結晶が得られなかった。
FIG. 5 shows the temperature distribution in the vertical direction (bar axis direction) in the melting part. In this comparative example, the temperature distribution is the curve C in the figure, and the highest temperature reached as high as about 1000 ° C., but the temperature at a position away from the highest temperature position in the vertical direction is also high, and the temperature gradient is It became moderate.
[Comparative Example 2]
An elliptical furnace was constructed under the same conditions as in Example 1 except that four spheroidal reflecting mirrors having an eccentricity ratio of 0.8 and a ratio of the reflecting mirror depth to the opening diameter of 0.3 were used. However, although the single crystal was grown, the temperature in the melting part was low, and a stable melt could not be obtained, and a high quality single crystal could not be obtained.

図5に、溶融部における垂直方向(棒軸方向)の温度分布を示す。この比較例では、温度分布が同図の曲線Aとなり、最高到達温度は大幅に低下した。
[実施例2]
実施例1の装置において、4個の回転楕円面反射鏡を、図4のように下方へ傾斜するように配置した。回転楕円面反射鏡の一方の焦点から他方の焦点への直線の水平方向に対する角度θを30度として、回転楕円面反射鏡の反射面で反射された赤外線を斜め上方から試料の溶融部へ照射した。
FIG. 5 shows the temperature distribution in the vertical direction (bar axis direction) in the melting part. In this comparative example, the temperature distribution was the curve A in the figure, and the maximum temperature reached was greatly reduced.
[Example 2]
In the apparatus of Example 1, four spheroid reflectors were arranged so as to be inclined downward as shown in FIG. The angle θ with respect to the horizontal direction of the straight line from one focal point of the spheroid reflecting mirror to the other focal point is set to 30 degrees, and infrared rays reflected from the reflecting surface of the spheroid reflecting mirror are irradiated obliquely from above to the melting portion of the sample. did.

試料棒が楕円鏡炉の中心に上下方向へ配置されるように、口径25mmの焼結試料棒を試料棒支持部によって上方から支持すると共に、種子結晶を下方から育成結晶支持部に支持し、実施例1と同様にして溶融体を形成した。楕円鏡炉をゆっくりと等速で上昇させながら焼結試料棒をゆっくりと下方に等速で移動させ試料の溶融と結晶の育成を継続したところ、育成結晶と溶融部との固液界面の形状が凸状となり過ぎることがなく、口径40mmの単結晶を安定に育成することができた。   A sintered sample rod having a diameter of 25 mm is supported from above by a sample rod support portion so that the sample rod is arranged in the vertical direction in the center of the elliptical mirror furnace, and a seed crystal is supported from below on the grown crystal support portion, A melt was formed in the same manner as in Example 1. While the elliptical mirror furnace was slowly raised at a constant speed, the sintered sample rod was moved slowly downward at a constant speed to continue the sample melting and crystal growth, and the shape of the solid-liquid interface between the grown crystal and the molten part Therefore, a single crystal having a diameter of 40 mm could be stably grown.

図1は、本発明の一実施形態における浮遊帯域溶融装置の楕円鏡炉を示した図であり、図1(a)は縦断面図、図1(b)は横断面図である。FIG. 1 is a view showing an elliptic mirror furnace of a floating zone melting apparatus according to an embodiment of the present invention, in which FIG. 1 (a) is a longitudinal sectional view and FIG. 1 (b) is a transverse sectional view. 図2は、図1の楕円鏡炉の回転楕円面反射鏡を示した断面図である。FIG. 2 is a sectional view showing a spheroidal reflecting mirror of the elliptical mirror furnace of FIG. 図3、図1の楕円鏡炉を用いた場合における溶融部の円周方向の温度分布を示した図である。It is the figure which showed the temperature distribution of the circumferential direction of the fusion | melting part at the time of using the elliptical mirror furnace of FIG. 3, FIG. 図4は、本発明の他の実施形態における浮遊帯域溶融装置の楕円鏡炉を示した図であり、図4(a)は縦断面図、図4(b)は横断面図である。4A and 4B are diagrams showing an elliptic mirror furnace of a floating zone melting apparatus according to another embodiment of the present invention. FIG. 4A is a longitudinal sectional view, and FIG. 4B is a transverse sectional view. 図5は、反射鏡の深さと反射鏡の開口部直径との比を変えた場合における垂直方向の温度分布を示したグラフである。FIG. 5 is a graph showing the temperature distribution in the vertical direction when the ratio between the depth of the reflecting mirror and the opening diameter of the reflecting mirror is changed. 図6(a)は、単楕円鏡炉を用いた従来の赤外線集中加熱式の浮遊帯域溶融装置を説明する図であり、単楕円鏡炉内で試料棒を加熱した状態を示す。図6(b)は、この装置を用いた場合における溶融部の円周方向における温度分布を示した図である。FIG. 6A is a diagram for explaining a conventional infrared concentrated heating type floating zone melting apparatus using a single elliptical mirror furnace, and shows a state in which a sample rod is heated in the single elliptical mirror furnace. FIG. 6B is a diagram showing the temperature distribution in the circumferential direction of the melted part when this apparatus is used. 図7(a)は、双楕円鏡炉を用いた従来の赤外線集中加熱式の浮遊帯域溶融装置を説明する図であり、双楕円鏡炉内で試料棒を加熱した状態を示す。図7(b)は、この装置を用いた場合における溶融部の円周方向における温度分布を示した図である。FIG. 7A is a view for explaining a conventional infrared concentrated heating type floating zone melting apparatus using a double elliptical mirror furnace, and shows a state in which a sample rod is heated in the double elliptical mirror furnace. FIG.7 (b) is the figure which showed the temperature distribution in the circumferential direction of the fusion | melting part at the time of using this apparatus. 図8は、単楕円炉および双楕円炉における溶融部の円周方向の温度分布を示したグラフである。FIG. 8 is a graph showing the temperature distribution in the circumferential direction of the fusion zone in the single and double elliptical furnaces. 図9は、離心率とフォーカスの大きさの関係を説明する図である。FIG. 9 is a diagram for explaining the relationship between the eccentricity and the focus size.

符号の説明Explanation of symbols

1 楕円鏡炉
2 楕円鏡
2a 楕円鏡
2b 楕円鏡
3 赤外線ランプ
4a 試料棒
4b 育成結晶
4c 溶融部
5 位置調節機構
6 高温度領域
7 等温線
8 焦点中心からの等距離線
9 フォーカス部
10 開口部
11 単楕円鏡炉
12 楕円鏡
21 双楕円鏡炉
DESCRIPTION OF SYMBOLS 1 Ellipsoidal mirror furnace 2 Elliptical mirror 2a Elliptical mirror 2b Elliptical mirror 3 Infrared lamp 4a Sample rod 4b Growth crystal 4c Melting part 5 Position adjustment mechanism 6 High temperature area 7 Isothermal line 8 Equidistant line from focus center 9 Focusing part 10 Opening part 11 Single elliptical mirror furnace 12 Elliptical mirror 21 Double elliptical mirror furnace

Claims (3)

内面を反射面として直交軸上に対向配置した4個の回転楕円面反射鏡の一方の焦点に赤外線ランプを設け、前記反射面から反射された赤外線を他方の焦点に集光させることにより試料を加熱する赤外線集中加熱式の浮遊帯域溶融装置であって、
前記回転楕円面反射鏡は、離心率が0.40〜0.65であり、且つ、反射鏡の深さの開口部直径に対する比が0.38〜0.75であるとともに、
前記回転楕円面反射鏡が、前記一方の焦点から他方の焦点への直線が、水平方向に対して25〜35度下方へ傾斜するように配置され、前記反射面で反射された赤外線が斜め上方から試料へ照射されることを特徴とする浮遊帯域溶融装置。
An infrared lamp is provided at one focal point of four spheroid reflecting mirrors arranged opposite to each other on the orthogonal axis with the inner surface as a reflecting surface, and the sample reflected by the infrared ray reflected from the reflecting surface is collected at the other focal point. An infrared concentration heating type floating zone melting device for heating,
The spheroid reflecting mirror has an eccentricity of 0.40 to 0.65, and a ratio of a depth of the reflecting mirror to an opening diameter is 0.38 to 0.75 ,
The spheroid reflecting mirror is arranged such that a straight line from the one focal point to the other focal point is inclined downward by 25 to 35 degrees with respect to the horizontal direction, and the infrared ray reflected by the reflecting surface is obliquely upward A floating zone melting apparatus characterized by irradiating a sample from
前記回転楕円面反射鏡が、ガラス鏡であることを特徴とする請求項1に記載の浮遊帯域溶融装置。   The floating zone melting apparatus according to claim 1, wherein the spheroidal reflecting mirror is a glass mirror. 前記回転楕円面反射鏡を、前記試料が配置される位置を中心として径方向へ水平移動させる位置調整機構を備えることを特徴とする請求項1または2に記載の浮遊帯域溶融装置。 The floating zone melting apparatus according to claim 1 , further comprising a position adjusting mechanism that horizontally moves the spheroid reflecting mirror in a radial direction around a position where the sample is arranged.
JP2005295620A 2005-10-07 2005-10-07 Floating zone melting device Active JP4738966B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005295620A JP4738966B2 (en) 2005-10-07 2005-10-07 Floating zone melting device
TW096101033A TWI400368B (en) 2005-10-07 2007-01-11 Floating band melting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005295620A JP4738966B2 (en) 2005-10-07 2005-10-07 Floating zone melting device

Publications (2)

Publication Number Publication Date
JP2007099602A JP2007099602A (en) 2007-04-19
JP4738966B2 true JP4738966B2 (en) 2011-08-03

Family

ID=38026895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005295620A Active JP4738966B2 (en) 2005-10-07 2005-10-07 Floating zone melting device

Country Status (2)

Country Link
JP (1) JP4738966B2 (en)
TW (1) TWI400368B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101910473A (en) * 2007-12-25 2010-12-08 株式会社水晶系统 Floating-zone melting apparatus
DE102011089429A1 (en) * 2011-12-21 2013-06-27 Siltronic Ag Method and device for producing a single crystal
JP2013224237A (en) * 2012-04-23 2013-10-31 Univ Of Yamanashi Multi-light source centralized heating apparatus
JP6778376B2 (en) * 2015-01-29 2020-11-04 国立大学法人山梨大学 Floating zone melting method and equipment using it
JP6106815B2 (en) * 2015-02-09 2017-04-05 伸 阿久津 Single crystal manufacturing apparatus and single crystal manufacturing method
RU2734936C1 (en) * 2020-06-01 2020-10-26 Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук Method of producing a niobium oxide monocrystal
JP2022149310A (en) * 2021-03-25 2022-10-06 Tdk株式会社 Crystal manufacturing method, crystal manufacturing apparatus, and single crystal

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62187626U (en) * 1986-05-20 1987-11-28
JPH09235171A (en) * 1995-09-18 1997-09-09 Crystal Syst:Kk Floatation zone melting apparatus
JP2001192290A (en) * 2000-01-07 2001-07-17 Nec Machinery Corp Device for growing single crystal

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62187626A (en) * 1986-02-14 1987-08-17 Nissan Motor Co Ltd Display device for vehicle
JP3106182B2 (en) * 1997-09-22 2000-11-06 科学技術庁金属材料技術研究所長 Manufacturing method of bulk single crystal
JP3078547B1 (en) * 1999-11-05 2000-08-21 科学技術振興事業団 Method for producing oxide single crystal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62187626U (en) * 1986-05-20 1987-11-28
JPH09235171A (en) * 1995-09-18 1997-09-09 Crystal Syst:Kk Floatation zone melting apparatus
JP2001192290A (en) * 2000-01-07 2001-07-17 Nec Machinery Corp Device for growing single crystal

Also Published As

Publication number Publication date
JP2007099602A (en) 2007-04-19
TW200829729A (en) 2008-07-16
TWI400368B (en) 2013-07-01

Similar Documents

Publication Publication Date Title
JP4738966B2 (en) Floating zone melting device
JP5279727B2 (en) Floating zone melting device
KR101157311B1 (en) Floating zone melting apparatus
US3943324A (en) Apparatus for forming refractory tubing
JP5181396B2 (en) Single crystal growth apparatus and single crystal growth method
Kitazawa et al. A new thermal imaging system utilizing a Xe arc lamp and an ellipsoidal mirror for crystallization of refractory oxides
US4197157A (en) Method for forming refractory tubing
US4184065A (en) Heating apparatus having ellipsoidal reflecting mirror
JP2550344B2 (en) Infrared heating single crystal manufacturing equipment
JP5767299B2 (en) Single crystal manufacturing apparatus and single crystal manufacturing method
JP2017066006A (en) Single crystal production device and single crystal production method
JP2009051679A (en) Device and method for growing single crystal
JPH09235171A (en) Floatation zone melting apparatus
JP2007145629A (en) Method and apparatus for growing single crystal
JP2017154919A (en) Floating zone melting apparatus
JP6343093B2 (en) Single crystal manufacturing apparatus and single crystal manufacturing method
JP5955575B2 (en) Single crystal growth equipment
JPH0388790A (en) Infrared-heated single crystal producing device
JPH07315979A (en) Infrared-heated single crystal producing device
JP2982642B2 (en) Infrared heating single crystal manufacturing equipment
JP2558659B2 (en) Infrared heating single crystal manufacturing equipment
JP2023535631A (en) Laser-based post-heating for crystal growth
JPH0811716B2 (en) Infrared heating single crystal manufacturing method
JP6106815B2 (en) Single crystal manufacturing apparatus and single crystal manufacturing method
JPH08208368A (en) Suspended zone melting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110427

R150 Certificate of patent or registration of utility model

Ref document number: 4738966

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250