JPH03215355A - Barium titanate-based semiconductor ceramic composition - Google Patents

Barium titanate-based semiconductor ceramic composition

Info

Publication number
JPH03215355A
JPH03215355A JP2007932A JP793290A JPH03215355A JP H03215355 A JPH03215355 A JP H03215355A JP 2007932 A JP2007932 A JP 2007932A JP 793290 A JP793290 A JP 793290A JP H03215355 A JPH03215355 A JP H03215355A
Authority
JP
Japan
Prior art keywords
mol
barium titanate
added
based semiconductor
ceramic composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007932A
Other languages
Japanese (ja)
Other versions
JP2990679B2 (en
Inventor
Takahiko Kawahara
河原 隆彦
Norimitsu Kito
鬼頭 範光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2007932A priority Critical patent/JP2990679B2/en
Publication of JPH03215355A publication Critical patent/JPH03215355A/en
Application granted granted Critical
Publication of JP2990679B2 publication Critical patent/JP2990679B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)

Abstract

PURPOSE:To provide the title composition having high dielectric strength and small resistivity by simultaneously replacing a part of Ba with Ca, Sr and Pb and specifying the amount of semiconducting agent to be added. CONSTITUTION:The objective composition consisting essentially of 30-95mol% BaTiO3, 3-25mol% CaTi, 1-25mol% SrTiO3 and 1-30mol% PbTiO3 and containing >=0.05 and <0.2mol% one or more kinds of rare earth elements such as Y, La and Ce or oxide of Nb, Bi, Sb, W and Th as semiconducting agent and containing 0.03-0.1mol% Mn (expressed in terms of MnO2) and 0.5-5mol% silica (expressed in terms of SiO2). The composition has excellent characteristics of >=100V/mm dielectric strength and <=10OMEGA.cm resistivity.

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明は、一定温度を越えると急激に電気抵抗値が変化
する正の抵抗温度特性を有するチタン酸バリウム系半導
体磁器に関し、特に必要な耐電圧を確保しながら、常温
における比抵抗を小さくでき、ひいては低抵抗回路素子
として有用なチタン酸バリウム系半導体磁器組成物に関
する.〔従来の技術〕 一般にチタン酸バリウム系半導体磁器は、主成分として
のチタン酸バリウムに、半導体化剤としてY,La,C
o等の希土類元素.あるいはNb,Bi,Sb.W,T
h等のうち少なくとも一種以上を微量添加し、これを高
温で焼成して得られる.この半導体磁器は、常温におけ
る比抵抗が小さく、かつキュリー点を超えると著しい正
の抵抗温度変化を示す特性を有しており、例えば定温度
発熱用素子.電流制限用素子.温度制御用素子等として
使用されている. また上記チタン酸バリウム系半導体磁器のキエリー点は
、その主成分であるチタン酸バリウムの影響により通常
120℃付近である.そして、このキエリー点を高温側
に移行させるためにBaの一部をpbで置換する方法が
知られている.逆に上記キエリー点を低温側に移行させ
るためにBaの一部をSrで置換したり、Tiの一部を
Zr.Sn等で置換したりする方法も知られている.ま
た、マンガンを微量(Mnに換算して0.03〜0.1
5■oj%)添加することにより、キエリー点を超えた
後の抵抗温度変化率を著しく増大させることも知られて
いる.さらにまた、Sin,を徽量(0.5〜5 so
 Z%)添加することで、常温における比抵抗を低《安
定したものにできることも知られている. ここで、上記チタン酸バリウム系半導体磁器においては
、耐電圧が高く、かつ常温における比抵抗の小さい低抵
抗回路素子として有用なものが要求されている.従来、
このような比抵抗特性の向上を図るために、Baの一部
をCa,又はSrで置換し、添加物としてMn,S i
Otを添加したものが提案されている.これによれば常
温における比抵抗が10Ω・1以下の特性が得られる.
また、特公昭63−28324号公報には、Baの一部
をpb,Sr.Caで同時に置換し、これらPb,Sr
,Caを共存状態で主成分のチタン酸バリウムに含有さ
せることにより、IOOV/■以上の耐電圧が得られる
ことが記載されている. 〔発明が解決しようとする問題点〕 しかしながら上記従来のチタン酸バリウム系半導体磁器
において、上述した13aの一部をCa,又はSrで置
換したものは、比抵抗では満足できる値が得られるもの
の、耐電圧が最高のもので48V/■しか得られず実用
上十分な値ではない.また、上記公報のようにBaの一
部をPb.  Sr, Caで同時に置換したものは、
高い耐電圧を得ることができるものの、比抵抗は35Ω
・備までしか下げることができない.従って、比延抗1
0Ω・ロ以下.耐電圧100V/■以上の両方を満足で
きるチタン酸バリウム系半導体磁器の出現が要請されて
いる.本発明の目的は、高い耐電圧を有し、かつ比抵抗
の小さいチタン酸バリウム系半導体磁器組成物を提供す
ることにある. 〔問題点を解決するための手段〕 本件発明者らは、上記目的を達成するために鋭意研究を
重ねたところ、BaTiOs.CaTiOs .SrT
iOs .PbTiOsを主成分とし、これに添加する
副成分を選定するとともに、これの添加量を限定すれば
比抵抗.耐電圧の両方の特性を満足できることを見出し
、本発明を成したものである. そこで本発明は、チタン酸バリウム又はその固溶体から
なる主成分に、半導体化剤.マンガン,及びシリカが添
加含有されているチタン酸バリウム系半導体磁器組成物
において、上記主成分が、B  a  T  i  O
 @  30〜95mo J ラGS C  a  T
  i  Os  3  〜2Smo1 %、 S  
r  T  i  O@  1  〜25so4 %、
 P  b T  t  O s1〜30mo J%か
らなり、該主成分に半導体化剤として、Y,La,Co
等の希土類元素あるいはNb.B t,Sb,W,Th
の酸化物のうち少なくとも一種が0.05mol%以上
0.2s+oj%未満添加され、かつマンガンがMnO
,に換算して0.03〜0.Imol%、シリカがS 
i O tに換算して0.5 〜51107%それぞれ
添加含有されていることを特徴としている. ここで、本発明における各種の条件を限定した理由につ
いて説明する. ■ 上記BaTiO,,CaTiO,,SrTi0s 
,PbTi 02を主成分としたのは、このBaの一部
をCa.Sr,Pbで同時に置換するこどにより、耐電
圧値を向上させるためである.上記Pb,Srは単独で
はキュリー点をそれぞれ高温側,低温側へ移行させるも
のであるが、これらCa,  Sr,Pbを共存状態で
主成分に含有させることにより、耐電圧100V/ m
以上を実現できる. ■ 上記各生成分の範囲の限定理由は以下のとおりであ
る. 上記BaTiO*を30〜95soJ%とじたのは、3
0so l%未満では半導体化が困難となり比抵抗も増
大するからであり、95mo j%を超えると電気的特
性が著しく低下するからである. また、上記C a T I O sを3 〜25mo 
l%としたのは、Smol%未満ではその含有効果が得
られず、かつ25■oJ%を超えると耐電圧特性.耐突
入電流特性の低下をもたらすからである. さらに、上記S r T i O sを1〜25mol
%としたのは、lmol%未満ではその改善特性の効果
が少なく、また25wbo It%を趨えると電気的特
性が劣化するからである. さらにまた、上記PbTiOsを1〜30II01%と
したのは、1mol%未満では特性改善の効果が少なく
実用に遺さないからであり、また30mo j%を超え
ると半導体化が困難となるからである.■ また、上記
マンガンを添加することによりキュリー点を越えた正の
抵抗温度特性の変化率を著しく増大させることができる
.このマンガンの添加量をMnOgに換算して0.03
〜0.1 mol%としたのは、この添加量が0.03
s+on!%未満では添加効果が現れず、かえって耐電
圧特性が劣化するからであり、0.1moffi%を越
えると常温での比抵抗が高くなるからである. ■ さらに、上記シリカをSiO富に換算して0.5〜
Smo7%としたのは、半導体化剤の微量添加のわずか
な変動によって生じる比抵抗の変化を抑制し、かつ焼結
体の異常粒成長を抑えるためであり、上記範囲を外れる
と上記効果が得られなくなるからである. ■ 上記半導体化剤の添加量を0.05mol%以上0
.2moIl%未満としたのは、上記マンガン.シリカ
の添加量を限定した場合、上記半導体化剖の添加量が上
記範囲を外れると比抵抗が大きくなることが判明したか
らである.従って、半導体化剤の添加量を0.05−o
j!%以上0.2閣o154未満とすることにより、比
抵抗lOΩ・(自)以下を実現できる.〔作用〕 本発明に係るチタン酸バリウム系半導体磁器組成物によ
れば、上述のようにBaTiO,,CaTies .S
rTiO..PbTiO.を主成分としたので、つまり
このBaの一部をCa,Sr,pbで同時に置換したの
で耐電圧を向上でき、さらに上記主成分に添加する半導
体化剤を0.05■oj%以上0.2mol%未満とし
たので、必要耐電圧を確保しながら比抵抗を小さくでき
、その結果耐電圧100V/ m以上、比抵抗10Ω・
1以下の低抵抗回路素子を実現でき、上述した要請に応
えられる.〔実施例〕 以下、本発明の実施例を説明する. 本実施例は、本発明における各生成分.各副成分の添加
量を見出した実験について説明する.まず、実験に使用
した試料の製造方法について説明する. 主成分としてB a T i O 1(60〜90mo
 1%).Ca T i O s (0〜30mo j
%) .  S r T i Os (0〜12mol
%) ,  P b T i Os (0〜13mol
!%)、半導体化剤としてYt’ Os (0.1〜1
.5 soj%>+1−atOx  (0.15110
  7 %)  ,  C  e  Ox(0.15 
 so  l %) ,N’s 03(0 .15mo
 j%)、及び添加物としてMn C O s(M n
 O tに換算して0.03〜0.12soIl%).
  S i Os(0.5 〜8.0 mo1%)を準
備する.この各原材料を第1表に示す比率のチタン酸バ
リウム系半導体磁器組成物が得られるように配合し、湿
式混合する. 次に、上記スラリー状の原料を脱水乾燥し、1150″
cX2時間で仮焼成する.次いでこの仮焼結体を粉砕混
合し、これにバインダーを加えて造粒し、成形圧力10
00kg/一で円板状にプレス成形する.次にこの円板
杖の成形体を10℃/winで1360℃まで昇温しで
所定時間保持した後、lO℃/一inで冷却する焼成プ
ロファイルで焼成した.これにより直径17.5wx厚
さ0.6鶴の円板状の半導体磁器を得る.そして、この
半導体磁器の両主面にIn−Ga合金からなる電極を付
与し、これを本実験用試料とした. そして本実験では、上記各試料の常温中(25℃)にお
ける比抵抗,耐電圧,キエリー点をそれぞれ測定した.
なお、上記耐電圧は試料に破壊が生じる寸前の最高印加
電圧値を測定した.第1表及び第2表はその結果を示し
、第1表は上記主成分,半導体化剤.及び添加物のそれ
ぞれの配合比率を示し、第2表は各測定結果を示す.表
中、試料Na7〜9、ll&hll〜13、Nal6.
及びNa18〜20は本発明の範囲内であり、これ以外
の中印は本発明の範囲外である. 同表からも明らかなように、各主成分の添加量が所定範
囲を外れた場合(Nal〜6)は、いずれも耐電圧が6
3v/■以下と低い.また半導体化剖,Slot,Mn
Ot.及びCaTiOzの添加量がそれぞれ所定範囲を
越えた場合(mlo.ml4.l5、Il&Ll?)は
、比抵抗が著しく増大したり、あるいは融着したりして
おり、いずれの試料においても比抵抗,耐電圧の両方と
も満足できる特性が得られていない.これに対して各添
加量が本発明範囲内の場合(Na7〜9、I1h11〜
l3、嵐l6、!klB〜20》は、いずれもキエリー
点は102〜120℃、比抵抗は4.2〜4.9Ω・ロ
と低く、かつ耐電圧は118〜153V/ wと高くな
っており、満足できる値が得られていることがわかる.
〔発明の効果〕 以上のように本発明に係るチタン酸バリウム系半導体磁
器組成物によれば、BaTiOs30〜951104 
%,   C a  T  i  Os  3 〜25
so1 %,   SrTiOs1 〜25mo 1%
.  P bT i Os 1 〜30mol% を主
成分とし、これに半導体化剖0.05mol%以上〜0
.2■oj%未満を添加するとともに、MnをM n 
O tに換算して0.03〜0.1■oj%、S i 
Ox 0.5〜5一ol%をそれぞれ添加含有したので
、耐電圧100V/鰭以上、比抵抗lOΩ・1以下の優
れた特性が得られるとともに、低抵抗回路素子として有
用な半導体磁器が得られる効果がある.
Detailed Description of the Invention (Industrial Application Field) The present invention relates to barium titanate-based semiconductor porcelain, which has positive resistance-temperature characteristics in which the electrical resistance value changes rapidly when a certain temperature is exceeded. It relates to a barium titanate-based semiconductor porcelain composition that can reduce specific resistance at room temperature while ensuring voltage, and is useful as a low-resistance circuit element. [Prior Art] In general, barium titanate-based semiconductor porcelain contains Y, La, and C are added to barium titanate as semiconducting agents.
Rare earth elements such as o. Or Nb, Bi, Sb. W,T
It is obtained by adding a trace amount of at least one of h, etc. and firing it at a high temperature. This semiconductor porcelain has a characteristic that it has a low specific resistance at room temperature and exhibits a significant positive temperature change in resistance when it exceeds the Curie point, and can be used, for example, as a constant temperature heating element. Current limiting element. It is used as a temperature control element, etc. Furthermore, the Chierie point of the barium titanate-based semiconductor porcelain is usually around 120°C due to the influence of its main component, barium titanate. A method is known in which part of Ba is replaced with Pb in order to shift this Chierly point to the high temperature side. On the contrary, in order to shift the Chierly point to the low temperature side, a part of Ba is replaced with Sr, a part of Ti is replaced with Zr. A method of substituting with Sn or the like is also known. In addition, a trace amount of manganese (0.03 to 0.1 in terms of Mn)
It is also known that the addition of Ni (5■oj%) significantly increases the rate of change in resistance temperature after exceeding the Chierie point. Furthermore, the amount of sin (0.5 to 5 so
It is also known that by adding Z%), the specific resistance at room temperature can be made low and stable. Here, the barium titanate-based semiconductor porcelain is required to have a high withstand voltage and a low specific resistance at room temperature, making it useful as a low-resistance circuit element. Conventionally,
In order to improve such resistivity characteristics, a part of Ba is replaced with Ca or Sr, and Mn, Si and Sr are added as additives.
A product containing Ot has been proposed. According to this, a characteristic with a specific resistance of 10Ω·1 or less at room temperature can be obtained.
In addition, Japanese Patent Publication No. 63-28324 discloses that a part of Ba is converted into pb, Sr. Simultaneously substituted with Ca, these Pb, Sr
, it is stated that a withstand voltage of IOOV/■ or more can be obtained by including Ca in the coexisting state in barium titanate, which is the main component. [Problems to be Solved by the Invention] However, in the above-mentioned conventional barium titanate-based semiconductor porcelain, in which a part of the above-mentioned 13a is replaced with Ca or Sr, although a satisfactory value of resistivity can be obtained, The highest voltage withstand voltage is only 48V/■, which is not a sufficient value for practical use. Further, as in the above publication, a part of Ba may be replaced with Pb. Those substituted with Sr and Ca at the same time are
Although high withstand voltage can be obtained, the specific resistance is 35Ω
・Can only be lowered to B. Therefore, the specific resistance 1
Less than 0Ω・Ro. There is a demand for the emergence of barium titanate-based semiconductor ceramics that can satisfy both of the requirements of a withstand voltage of 100 V/■ or more. An object of the present invention is to provide a barium titanate-based semiconductor ceramic composition that has high withstand voltage and low specific resistance. [Means for Solving the Problems] In order to achieve the above object, the inventors of the present invention conducted intensive research and found that BaTiOs. CaTiOs. SrT
iOs. PbTiOs is the main component, and by selecting the subcomponents added to it and limiting the amount added, the specific resistance can be increased. We have discovered that both characteristics of withstand voltage can be satisfied, and have completed the present invention. Therefore, the present invention provides a main component consisting of barium titanate or a solid solution thereof, and a semiconducting agent. In a barium titanate-based semiconductor ceramic composition containing manganese and silica, the main component is B a T i O
@30~95mo J LAGS C a T
iOs3~2Smo1%, S
r T i O @ 1 ~ 25so4 %,
P b T t O s 1 to 30 mo J%, with Y, La, Co as a semiconducting agent in the main component.
Rare earth elements such as Nb. B t, Sb, W, Th
0.05 mol% or more and less than 0.2 s+oj% of at least one of the oxides of
, converted to 0.03~0. Imol%, silica is S
It is characterized by the addition content of 0.5 to 51107% in terms of iOt. Here, the reasons for limiting various conditions in the present invention will be explained. ■ Above BaTiO,,CaTiO,,SrTi0s
, PbTi 02 as the main component is that a part of this Ba is Ca. This is to improve the withstand voltage value by replacing with Sr and Pb at the same time. When used alone, Pb and Sr shift the Curie point toward high and low temperatures, respectively, but by including Ca, Sr, and Pb in coexistence as the main components, the withstand voltage can be increased to 100 V/m.
The above can be achieved. ■ The reason for limiting the range of each generated component above is as follows. The above BaTiO* was filled with 30 to 95 soJ%.
This is because if it is less than 0 sol %, it will be difficult to make it into a semiconductor and the specific resistance will increase, and if it exceeds 95 mol %, the electrical characteristics will be significantly degraded. In addition, the above C a T I O s is added to 3 to 25 mo
The reason why it is set as 1% is that if it is less than Smol%, the effect of its inclusion will not be obtained, and if it exceeds 25■oJ%, the withstand voltage characteristics will deteriorate. This is because it results in a decrease in inrush current characteristics. Furthermore, 1 to 25 mol of the above SrTiOs
% because if it is less than 1 mol %, the effect of improving the characteristics will be small, and if it exceeds 25 wbo It %, the electrical characteristics will deteriorate. Furthermore, the reason why the above PbTiOs is set to 1 to 30II01% is because if it is less than 1 mol %, the effect of improving characteristics is small and it is not practical, and if it exceeds 30 mol %, it becomes difficult to make it into a semiconductor. ■Additionally, by adding the manganese mentioned above, the rate of change of the positive resistance temperature characteristic beyond the Curie point can be significantly increased. The amount of manganese added is converted to MnOg and is 0.03
The reason for setting it to ~0.1 mol% is that the amount added is 0.03
s+on! This is because if it is less than 0.1 moffi%, the addition effect will not be apparent and the withstand voltage characteristics will deteriorate, and if it exceeds 0.1 moffi%, the specific resistance at room temperature will increase. ■ Furthermore, the above silica is converted to SiO wealth from 0.5 to
The reason for setting Smo to 7% is to suppress changes in resistivity caused by slight fluctuations in the addition of a small amount of semiconducting agent and to suppress abnormal grain growth in the sintered body.If the Smo content is outside of the above range, the above effect will not be obtained. This is because you will no longer be able to do so. ■ The amount of the above semiconducting agent added should be 0.05 mol% or more.
.. The above-mentioned manganese. This is because it has been found that when the amount of silica added is limited, the resistivity increases when the amount of silica added is outside the above range. Therefore, the amount of the semiconducting agent added is 0.05-o.
j! % or more and less than 0.2% o154, it is possible to achieve a specific resistance of lOΩ・(self) or less. [Function] According to the barium titanate-based semiconductor ceramic composition according to the present invention, as described above, BaTiO, CaTies. S
rTiO. .. PbTiO. Since Ba is used as the main component, that is, part of this Ba is replaced with Ca, Sr, and PB at the same time, so the withstand voltage can be improved.Furthermore, the semiconducting agent added to the main component is 0.05 oz or more. Since it is less than 2 mol%, the specific resistance can be reduced while ensuring the necessary withstand voltage, resulting in a withstand voltage of 100 V/m or more and a specific resistance of 10 Ω.
It is possible to realize a circuit element with a low resistance of 1 or less, and meet the above requirements. [Examples] Examples of the present invention will be described below. This example describes each product in the present invention. We will explain the experiment in which we found the amount of each subcomponent added. First, we will explain the method for manufacturing the samples used in the experiment. B a T i O 1 (60 to 90 mo
1%). Ca TiOs (0~30moj
%). S r Ti Os (0-12 mol
%), PbTiOs (0 to 13 mol
! %), Yt'Os (0.1-1
.. 5 soj%>+1-atOx (0.15110
7%), C e Ox (0.15
sol%), N's 03(0.15mo
j%), and Mn CO s (M n
0.03 to 0.12 soIl% (converted to Ot).
Prepare S i Os (0.5 to 8.0 mo1%). These raw materials are blended and wet-mixed so as to obtain a barium titanate-based semiconductor ceramic composition having the ratio shown in Table 1. Next, the slurry-like raw material was dehydrated and dried to a size of 115"
Temporarily bake for 2 hours. Next, this pre-sintered body is pulverized and mixed, a binder is added thereto and granulated, and a molding pressure of 10
Press-form into a disc shape at 00 kg/1. Next, this disc cane molded body was heated to 1360°C at a rate of 10°C/win, held for a predetermined time, and then fired using a firing profile in which it was cooled at a rate of 10°C/in. As a result, a disk-shaped semiconductor porcelain with a diameter of 17.5w and a thickness of 0.6w is obtained. Then, electrodes made of In-Ga alloy were provided on both main surfaces of this semiconductor ceramic, and this was used as a sample for this experiment. In this experiment, the resistivity, withstand voltage, and Chierly point of each of the above samples at room temperature (25°C) were measured.
The above withstand voltage was measured at the maximum applied voltage value just before the sample was destroyed. Tables 1 and 2 show the results, and Table 1 shows the above main components and semiconductor forming agent. Table 2 shows the respective measurement results. In the table, samples Na7-9, ll&hll-13, Na16.
and Na18-20 are within the scope of the present invention, and other middle marks are outside the scope of the present invention. As is clear from the table, when the amount of each main component added is out of the specified range (Nal ~ 6), the withstand voltage is 6.
Low, less than 3v/■. Also, semiconductor chemistry, Slot, Mn
Ot. When the amount of addition of CaTiOz and CaTiOz exceeds the specified range (mlo.ml4.l5, Il&Ll?), the resistivity increases significantly or is fused, and in any sample, the resistivity, Satisfactory characteristics have not been obtained for both withstand voltage and voltage. On the other hand, when each addition amount is within the range of the present invention (Na7~9, I1h11~
l3, Arashi l6,! klB~20》 have a Chierie point of 102~120℃, a low specific resistance of 4.2~4.9Ω・Ro, and a high withstand voltage of 118~153V/w, which are satisfactory values. You can see that you are getting it.
[Effects of the Invention] As described above, according to the barium titanate-based semiconductor ceramic composition of the present invention, BaTiOs30-951104
%, C a Ti Os 3 ~ 25
so1%, SrTiOs1 ~25mo 1%
.. The main component is PbT i Os 1 to 30 mol%, and the semiconducting component is 0.05 mol% or more to 0.
.. While adding less than 2■oj%, Mn
0.03 to 0.1 ■oj% converted to Ot, Si
Since 0.5 to 51 ol% of Ox is added, excellent characteristics such as a withstand voltage of 100 V/fin or more and a specific resistance of 10Ω/1 or less can be obtained, and a semiconductor porcelain useful as a low resistance circuit element can be obtained. effective.

Claims (1)

【特許請求の範囲】[Claims] (1)チタン酸バリウム又はその固溶体からなる主成分
に、半導体化剤,マンガン,及びシリカが添加含有され
ているチタン酸バリウム系半導体磁器組成物において、
上記主成分は、BaTiO_3が30〜95mol%、
CaTiO_3が3〜25mol%、SrTiO_3が
1〜25mol%、PbTiO_3が1〜30mol%
からなり、上記主成分に対して半導体化剤として、Y,
La,Ce等の希土類元素あるいはNb,Bi,Sb,
W,Thの酸化物のうち少なくとも一種が0.05mo
l%以上0.2mol%未満添加含有され、かつマンガ
ンがMnO_2に換算して0.03〜0.1mol%、
シリカがSiO_2に換算して0.5〜5mol%それ
ぞれ添加含有されていることを特徴とするチタン酸バリ
ウム系半導体磁器組成物。
(1) A barium titanate-based semiconductor ceramic composition in which a semiconducting agent, manganese, and silica are added to the main component consisting of barium titanate or a solid solution thereof,
The above main components include 30 to 95 mol% of BaTiO_3;
CaTiO_3 is 3-25 mol%, SrTiO_3 is 1-25 mol%, PbTiO_3 is 1-30 mol%
Y, as a semiconducting agent for the above main component.
Rare earth elements such as La, Ce or Nb, Bi, Sb,
At least one of the oxides of W and Th is 0.05 mo
1% or more and less than 0.2 mol% added, and manganese is 0.03 to 0.1 mol% in terms of MnO_2,
A barium titanate semiconductor ceramic composition characterized in that silica is added in an amount of 0.5 to 5 mol% in terms of SiO_2.
JP2007932A 1990-01-16 1990-01-16 Barium titanate-based semiconductor porcelain composition Expired - Lifetime JP2990679B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007932A JP2990679B2 (en) 1990-01-16 1990-01-16 Barium titanate-based semiconductor porcelain composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007932A JP2990679B2 (en) 1990-01-16 1990-01-16 Barium titanate-based semiconductor porcelain composition

Publications (2)

Publication Number Publication Date
JPH03215355A true JPH03215355A (en) 1991-09-20
JP2990679B2 JP2990679B2 (en) 1999-12-13

Family

ID=11679294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007932A Expired - Lifetime JP2990679B2 (en) 1990-01-16 1990-01-16 Barium titanate-based semiconductor porcelain composition

Country Status (1)

Country Link
JP (1) JP2990679B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5777541A (en) * 1995-08-07 1998-07-07 U.S. Philips Corporation Multiple element PTC resistor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50124191A (en) * 1974-03-20 1975-09-30
JPS55134901A (en) * 1979-04-10 1980-10-21 Tdk Electronics Co Ltd Semiconductor porcelain composition
JPS57157502A (en) * 1981-03-24 1982-09-29 Murata Manufacturing Co Barium titanate series porcelain composition
JPS63110601A (en) * 1986-10-28 1988-05-16 松下電器産業株式会社 Manufacture of semiconductor porcelain material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50124191A (en) * 1974-03-20 1975-09-30
JPS55134901A (en) * 1979-04-10 1980-10-21 Tdk Electronics Co Ltd Semiconductor porcelain composition
JPS57157502A (en) * 1981-03-24 1982-09-29 Murata Manufacturing Co Barium titanate series porcelain composition
JPS63110601A (en) * 1986-10-28 1988-05-16 松下電器産業株式会社 Manufacture of semiconductor porcelain material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5777541A (en) * 1995-08-07 1998-07-07 U.S. Philips Corporation Multiple element PTC resistor

Also Published As

Publication number Publication date
JP2990679B2 (en) 1999-12-13

Similar Documents

Publication Publication Date Title
US4379319A (en) Monolithic ceramic capacitors and improved ternary ceramic compositions for producing same
JPS6328324B2 (en)
KR20170016805A (en) Semiconductive ceramic composition and ptc thermistor
US3962146A (en) Ptc thermistor composition and method of making the same
JP3245984B2 (en) Barium titanate-based semiconductor porcelain having a negative resistance temperature characteristic and method of manufacturing the same
JP6604653B2 (en) Semiconductor porcelain composition and method for producing the same
JP2541344B2 (en) Electronic parts using barium titanate based semiconductor porcelain
JP5881169B2 (en) Method for producing semiconductor porcelain composition
JP5988388B2 (en) Semiconductor porcelain composition and method for producing the same
JPH03215355A (en) Barium titanate-based semiconductor ceramic composition
JP2016184694A (en) Semiconductor ceramic composition and ptc thermistor
JPS63312616A (en) Semiconductor porcelain composition
JP2536679B2 (en) Positive characteristic thermistor material
JPH03215354A (en) Barium titanate-based semiconductor ceramic composition
JP3003201B2 (en) Barium titanate-based semiconductor porcelain composition
WO2004110952A1 (en) Barium titanate based semiconductor porcelain composition
JP6075877B2 (en) Semiconductor porcelain composition and method for producing the same
JPH03215356A (en) Barium titanate-based semiconductor ceramic composition
JPH03215353A (en) Barium titanate-based semiconductor ceramic composition
JP3598177B2 (en) Voltage non-linear resistor porcelain
JPS6117087B2 (en)
JP3273468B2 (en) Barium titanate-based semiconductor porcelain composition
JP3036051B2 (en) Barium titanate-based semiconductor porcelain composition
JPH0249307A (en) Dielectric porcelain compound
JP4800956B2 (en) Barium titanate semiconductor porcelain composition

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071015

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091015

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 11