JPH03215115A - Bus protecting relay device - Google Patents

Bus protecting relay device

Info

Publication number
JPH03215115A
JPH03215115A JP2156138A JP15613890A JPH03215115A JP H03215115 A JPH03215115 A JP H03215115A JP 2156138 A JP2156138 A JP 2156138A JP 15613890 A JP15613890 A JP 15613890A JP H03215115 A JPH03215115 A JP H03215115A
Authority
JP
Japan
Prior art keywords
amount
value
current
sum
suppression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2156138A
Other languages
Japanese (ja)
Other versions
JP2757230B2 (en
Inventor
Eijiro Iharaki
伊原木 永二朗
Isao Chihara
千原 勲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2156138A priority Critical patent/JP2757230B2/en
Publication of JPH03215115A publication Critical patent/JPH03215115A/en
Application granted granted Critical
Publication of JP2757230B2 publication Critical patent/JP2757230B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/26Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents
    • H02H3/28Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at two spaced portions of a single system, e.g. at opposite ends of one line, at input and output of apparatus
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/26Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents
    • H02H3/28Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at two spaced portions of a single system, e.g. at opposite ends of one line, at input and output of apparatus
    • H02H3/283Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at two spaced portions of a single system, e.g. at opposite ends of one line, at input and output of apparatus and taking into account saturation of current transformers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

PURPOSE:To set an optimal suppression amount and prevent malfunction by determining the amount of suppression in accordance with the maximum value of the sum of currents and the value of the amount of operation. CONSTITUTION:The values of current at respective points are read into a computer 9 through a plurality of sample hold circuits 5 and a multiplexer 6. The absolute value of vector sum of currents of respective phases of bus bars are determined as the amount of operation Id while larger one between the sum Ip of only the positive waves of an instantaneous value and the sum IN of negative waves only is determined as the maximum value IMA of the sum of currents. The product of a dicision coefficient K1 (0<K1<1) by the maximum value IMA is determined as a condition deciding value IC while the product of a first operating coefficient KR1 (0.4<KR1<0.5) by the maximum value IMA is determined as a first amount of suppression IR1 and the product of a second operating coefficient KR2 (0.8<KR2<1) by the amount of operation Id is determined as a second amount of suppression IR2. The amount of suppression IRE becomes equal to IR1 in a period T1 wherein Id<Ic while the amount of suppression IRE becomes equal to the second amount of suppression IR2 in a period T2 wherein Id>Ic.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、電力系統の環状母線の保護装置である母線
保護継電装置に関する. 〔従来の技術〕 第8図は環状母線とその一部の母線を保護するための母
線保護継電装置を設けた単線結線図である.この図にお
いて、遮断器21, 22. 23. 24で区分され
たそれぞれの母線が環状に接続された環状母線100を
構成しており、そのうちの遮断器2lと22との間の母
線を図示のようにA母線とし、このA母線を保護するた
めの母線保護継電器をA母線保護継電器4Aとする.A
母線からは端子32A.33^が接続されていて、これ
ら端子32A, 33Aにそれぞれ計器用変流器12A
. 13^が、遮断器21.22の近くにそれぞれ計器
用変流器11A, 14Aが設けられていて、これら4
つの計器用変流器l1^l2^. 13A, 14Aの
二次側電流がA母線保護継電器4Aに入力されている. 母線保護継電器4^とじては一般に比率差動継電器が用
いられている.A母線を例にとると、計器用変流H I
IA, 12A, 13^, 14^によって計測され
た4つの1t流1 . (K=1.2.3.4)のベク
トル和!−を動作量とし、同じくスカラ和Idに比例す
る値を抑制量とすることにより、流入する電流と流出電
流との比が1からある程度以上離れたときに動作するよ
うにしたものである.これを式で表せば次のようになる
. 1, −K. Ij I眞1>K●         
一 (1)ここで、 ■,;各端子のベクトル和電流 !,;各端子電流 K.4;比率係数 Σ■菖;各端子のスカラ和電流(−Is)K.   ;
0に近い正の値(理論的に0でよい)このようないわゆ
る比率抑制特性を持たせる理由は、母線外部の事故が生
じた場合、事故電流が1端子に集中して流出するために
、計器用変流器相互間に債務の著しい差が生じ、このた
め流出端の計器用変流器の誤差t流の増大により、動作
量が0でなくなってくるので、これによる誤動作を避け
るためであって、流入する電流の大きさに対応して比例
する抑制量を付加することによって得られる.外部事故
時の計器用変流器の誤差の点がらはなるべく比率の抑制
の大きいものほど誤動作に対して望ましいものとなる. 最近の継電器の多くはディジタル形であって、計器用変
流器から入力される電流値などはディジタル量に変換し
て内蔵コンピュータの記憶部に記憶され、必要に応して
cpυでの演算処理に利用され適宜出力装置でコンピュ
ータ外部に出力される.前述の(1)式もCPuに演算
処理されるものである.ところで、環状母線の場合に特
有の問題点として、母線内の内部事故の場合にも時には
電流が流出する端子が生ずることがあげられる.例えば
、第8図において、A母線内で地絡事故が発生した場合
、計器用変流器11Aから環状母線を循環して計器用変
流器14^を通ってA母線に戻ってきて地絡1t流とな
るような場合である.このようなとき、抑制の比率が大
きいと流出電流の値によっては抑制がききすぎて内部事
故であるにもかかわらず母線保護継電装置内の比率差動
継電器が動作しないという恐れも生ずる.したがって、
このような場合に対しては抑制比率は余り大きくない方
が望ましいこととなり、前記と相反するという問題があ
る. このような問題点を解決するために特公昭51−445
88号公報により捷案にされたものがある.この既提案
による技術の概要は次のとおりである.第9図はある母
I9101とこれに接続されている3つの端子31, 
32. 33からなる母線保護範囲110において、端
子33に設けられた計器用変流器13の反母線側で地絡
事故Xが発生した場合を示す要部単線結線図である.こ
の図において、端子3lに設けられた計器用変流器11
が計測した電流を11端子32に設けられた計器用変流
器l2が計測した電流をit、端子33に設けられた計
器用変流器l3が計測した電流をi,とし、この母線1
01の保護対象範囲110の外である端子33で地絡X
が生じたものとする. 第10図は第9図での計器用変流器13の二次電流であ
る電流i,の波形が鉄心の飽和によって変形した場合の
波形図である. 前述のように、計器用変流器!1, 12. 13のそ
れぞれの二次電流1+ 、Iよ、j3の総ベクトル和を
14、母線101への流入電流である電流(1+モ1.
)の瞬時値を++s、流出電流(ここでは単にi,)の
瞬時値を■。,とし、これらIR3とIR2Sの大きい
方を電流和最大値1 l.lAとする.Kcを0から1
の間の係数としこのKcとIREAの積を状態判定値I
dとすると、これらの波形は第lO図に示すようになる
.図の期間T,は計器用変流器l3の鉄心が飽和してい
ない期間で流入電流と流出電流とは等しくしたがって動
作電流■4は0になっているのでl.<ICが成立して
おり、この状態を第1の状態と称する.期間T8は計器
用変流器l3の鉄心が飽和したために動作電流Idは図
示のように0にならずId>Icが成立している状態で
あり、この状態を第2の状態と称する.前述の公報では
期間T1での抑制量として■,に第10図(A)の左下
がりの斜線の部分を加えた値を採用することにより、計
器用変流器の鉄心が飽和による誤動作を起こりに<<シ
ている.すなわち、抑制量として第10図(A)の左下
がり斜線部と左上がり斜線部のICとの和をとっている
.第11図は計器用変流器の鉄心が飽和したときの波形
を示す波形図である.この図の(a)は鉄心が飽和寸前
で電流和Idがまだ0のとき、(b)以降は順次下に下
がるにしたがって鉄心の飽和の割合が大きくなる場合を
表している.左側の図(a)〜(f)は電流I3、右側
の図(6)〜(1)は動作量■.のそれぞれ波形であり
、両側の波形を加えると、計器用変流器13の一次電流
と一致する. 〔発明が解決しようとする課題〕 第11図と第lO図の比較から明らかな′ように、飽和
の割合が増すと第lO図の期間T,での左下がりの部分
の面積が小さくなり、抑制がかかりにくくなるという問
題が生ずる. 第11図(a)〜(f)の斜線を施した最初の山と同図
(6)〜(1)の波形とのそれぞれの面積の和に対する
同図(a)〜(f)の最初の山の面積の比率を%表示し
て飽和率を定義すると、前述の方式では、飽和率が60
〜70%程度が限界になる.しかし、設備容量の増加、
保護能力の向上要求などから、飽和率80?程度まで有
効な方式が求められていて、前述の方式ではこの要求を
満足することができないという問題がある. この発明は、本来不動作となるべき外部事故において、
前述の飽和率80%程度まで誤動作することのない母線
保護継電装置を提供することを目的とする. 〔課題を解決するための手段〕 上記課題を解決するためにこの発明によれば、母線の各
端子に設けられた計器用変流器の二次電流を入力信号と
し、これら各端子電流のベクトル和の絶対値を動作量l
.とじ、動作量l.に対して継電器動作を抑制する抑制
量IREを前記各端子電流から演算により求める比率差
動保護継電器からなる母線保護継電装置において、各端
子電流の瞬時値の正波のみの和Idと負波のみの和18
との大きい方の埴を電流和最大値■■とし、値がOを越
え1未満の範囲内にある判定係数K1と前記電流和最大
値IMAとの積を状態判定4IREcとし、値が0.4
以上0.5未満の範囲内にある第1の演算?数Km,と
前記電流和最大値■。との積を第1の抑制量!,1、値
が0.8以上1未満の範囲内にある第2の演算係数Km
lと前記動作量Idとの積を第2の抑制量IR3として
、前記動作量r.が前記状態判定(I Icよりも小さ
いときを第1の状態とし、この第1の状態が満足されて
いる期間T.における抑制量■.を前記第1の抑制量I
REに等しくし、前記動作量Idが前記状態判定値1c
よりも大きいときを第2の状態とし、この第2の状態が
満足されている期間T2における抑制量■■を前記第2
の抑制量IR3に等しくするものとし、更に、母線の各
端子に設けられた計器用変流器の二次電流を入力信号と
し、これら各端子電流のベクトル和の絶対値を動作量I
dとし、動作量l.に対して継電器動作を抑制する抑制
量■■を前記各端子電流から演算により求める比率差動
保護継電器からなる母線保護継電装置において、各端子
電流の瞬時値の正波のみの和Itと負波のみの和I8と
の大きい方の値を電流和最大値■。とし、各端子電流の
瞬時値の正波のみの和IPと負波のみの和?.との小さ
い方の値をt流和最小値IM+とし、値が0を越え1未
満の範囲内にある判定係数Kと前記電流和最大値■HA
との積を状態判定値1cとし、値が0.4以上0.5未
満の範囲内にある第1の演算係数KR1と前記電流和最
大値IMAとの積を第1の抑制量1■、値が0.6以上
1未満の範囲内にある第2の演算係数KR1と前記電流
最大値+xaとの積を第2の抑制量■.2、第1の抑制
量IRRと動作I Im との和を第3の抑制量flu
とし、前記動作量I.が前記状態判定値■。よりも小さ
いときを第1の状態とし、この第1の状態が満足されて
いる期間T1における抑制量l.を前記第1の抑制II
REに等しくし、前記動作量!4が前記状態判定値Id
よりも大きいときを第2の状態とし、期間T,において
電流和最大値IMAの2分の1が前記電流和最小値IR
21に等しいか小さい状態が位相角にして90゜以上継
続するという条件が満足されたかどうかを判別条件とし
て、第1の状態から第2の状態へ変化した時点から、電
気角にして180゛から270゛の間は抑制量IREを
前記第1の?制51−1■に等しくし、その期間T8に
おける抑制量!■を第3の抑制量IR3とするものとし
、また、前記判別条件を満足する場合に、その時点での
第3の抑制量IR3と、その時点より複数の異なる所定
の位相角だけ前の時点から遅延された複数の遅延抑制量
IR3との中で、最大の抑制量を期間T,における抑制
量IREとするものとし、また、判別条件を、期間1に
おいて動作量■.が電流和最小{MIN+に等しいか小
さい状態が位相角にして90’以上継続するという条件
が満足されたかどうかとするものとし.また、判別条件
を満足した後の期間T!では継電装置を不動作状態にす
るものとする. 〔作用〕 この発明の構成において、計器用変流器の二次電流とし
ての各端子電流のうち、母線への流入電流の和■,、流
出電流の和IR3の2つの電流和のうちの大きい方の値
としての電流和最大値■。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] This invention relates to a busbar protection relay device that is a protection device for annular busbars in a power system. [Prior Art] Figure 8 is a single-line wiring diagram in which a busbar protection relay device is provided to protect a ring busbar and a portion of the busbar. In this figure, circuit breakers 21, 22. 23. Each of the busbars divided by 24 constitutes an annular busbar 100 that is connected in a ring, and the busbar between the circuit breakers 2l and 22 is designated as the A busbar as shown in the figure, and this A busbar is protected. The bus protection relay for this purpose is called the A bus protection relay 4A. A
From the bus bar is terminal 32A. 33^ is connected, and instrument current transformers 12A are connected to these terminals 32A and 33A, respectively.
.. 13^, instrument current transformers 11A and 14A are installed near the circuit breakers 21 and 22, respectively, and these 4
Two instrument current transformers l1^l2^. Secondary currents of 13A and 14A are input to the A bus protection relay 4A. Ratio differential relays are generally used as busbar protection relays. Taking the A bus as an example, the instrument current transformer H I
Four 1t flows 1. measured by IA, 12A, 13^, 14^. Vector sum of (K=1.2.3.4)! - is taken as the operating amount, and a value proportional to the scalar sum Id is taken as the suppression amount, so that the operation is made when the ratio of the inflow current to the outflow current deviates from 1 to a certain extent. This can be expressed as a formula as follows. 1, -K. Ij Ishin1>K●
(1) Here, ■, ; Vector sum current of each terminal! , ;Each terminal current K. 4; Ratio coefficient Σ■Iris; Scalar sum current (-Is) of each terminal K. ;
Positive value close to 0 (theoretically 0 is fine) The reason for having this so-called ratio suppression characteristic is that when a fault occurs outside the bus bar, the fault current concentrates on one terminal and flows out. There is a significant difference in the liability between the instrument current transformers, and as a result, the error t current of the instrument current transformer at the outflow end increases, and the operating amount is no longer 0. Therefore, in order to avoid malfunction due to this, It is obtained by adding a suppression amount proportional to the magnitude of the inflowing current. Regarding the error points of instrument current transformers during external faults, it is desirable to have a ratio that is suppressed as much as possible to prevent malfunctions. Most of the recent relays are digital type, and the current value input from the current transformer is converted into a digital quantity and stored in the memory of the built-in computer, and if necessary, it is processed by cpυ. It is used to output the data to the outside of the computer using an output device as appropriate. Equation (1) above is also processed by the CPU. By the way, a problem peculiar to the case of annular busbars is that even in the event of an internal fault within the busbar, terminals from which current flows may sometimes occur. For example, in Fig. 8, if a ground fault occurs in the A bus, it will circulate from the instrument current transformer 11A through the annular bus, pass through the instrument current transformer 14^, and return to the A bus, causing a ground fault. This is a case where the flow is 1t. In such cases, if the suppression ratio is large, there is a risk that the suppression may be too strong depending on the value of the outflow current, and the ratio differential relay in the bus protection relay device may not operate even though it is an internal fault. therefore,
In such cases, it is desirable that the suppression ratio is not too large, which is a problem that conflicts with the above. In order to solve these problems, the
Some changes were made in Publication No. 88. An overview of this previously proposed technology is as follows. Figure 9 shows a certain mother I9101 and the three terminals 31 connected to it,
32. 33 is a main part single line diagram showing a case where a ground fault X occurs on the side opposite to the busbar of the instrument current transformer 13 provided at the terminal 33 in the busbar protection range 110 consisting of the busbar protection range 110 consisting of the terminal 33. In this figure, an instrument current transformer 11 provided at the terminal 3l
11, the current measured by the instrument current transformer l2 provided at the terminal 32 is designated as it, the current measured by the instrument current transformer l3 provided at the terminal 33 is designated as i, and this bus 1
Ground fault X at terminal 33, which is outside the protection range 110 of 01
Assume that this has occurred. FIG. 10 is a waveform diagram when the waveform of the current i, which is the secondary current of the instrument current transformer 13 in FIG. 9, is deformed due to saturation of the iron core. As mentioned above, instrument current transformers! 1, 12. The total vector sum of 13 secondary currents 1+, I, j3 is 14, and the current flowing into the bus 101 (1+Mo1.
) is the instantaneous value of ++s, and the instantaneous value of the outflow current (here simply i,) is ■. , and the larger of these IR3 and IR2S is the maximum current sum value 1 l. Let it be lA. Kc from 0 to 1
The product of Kc and IREA is the coefficient between
d, these waveforms will be as shown in Figure lO. The period T in the figure is a period in which the iron core of the instrument current transformer l3 is not saturated, and the inflow and outflow currents are equal, so the operating current ■4 is 0, so l. <IC is established, and this state is called the first state. During the period T8, the iron core of the instrument current transformer l3 is saturated, so that the operating current Id does not become 0 as shown in the figure, but Id>Ic, and this state is referred to as a second state. In the above-mentioned publication, by adopting the value obtained by adding the diagonal lined area downward to the left in Figure 10 (A) to the amount of suppression during period T1, it is possible to prevent malfunctions due to saturation of the core of the current transformer. I'm in the middle of the day. That is, the amount of suppression is the sum of the ICs in the downward-left diagonal line and the upward-left diagonal shaded area in FIG. 10(A). Figure 11 is a waveform diagram showing the waveform when the iron core of the instrument current transformer is saturated. In this figure, (a) shows the case when the iron core is on the verge of saturation and the current sum Id is still 0, and from (b) onwards, the saturation rate of the iron core increases as it goes down. The diagrams (a) to (f) on the left are the current I3, and the diagrams (6) to (1) on the right are the operating amount ■. When the waveforms on both sides are added, they match the primary current of the instrument current transformer 13. [Problem to be Solved by the Invention] As is clear from the comparison between FIG. 11 and FIG. The problem arises that suppression becomes difficult to apply. The first peak in Figure 11 (a) to (f) for the sum of the respective areas of the first peak with diagonal lines in Figure 11 (a) to (f) and the waveforms in Figure 11 (6) to (1) If we define the saturation rate by expressing the ratio of the area of the mountain as a percentage, the saturation rate is 60% using the above method.
The limit is around 70%. However, the increase in installed capacity,
The saturation rate is 80 due to demands for improved protection ability, etc. There is a need for a method that is effective to a certain extent, and the problem is that the above-mentioned methods cannot satisfy this requirement. This invention can be used in the event of an external accident that should normally result in inoperation.
The purpose of this invention is to provide a bus protection relay device that does not malfunction up to the aforementioned saturation rate of about 80%. [Means for Solving the Problems] In order to solve the above problems, according to the present invention, the secondary current of the instrument current transformer provided at each terminal of the bus bar is used as an input signal, and the vector of the current at each of these terminals is The absolute value of the sum is the motion amount l
.. Binding, operation amount l. In a busbar protection relay device consisting of a ratio differential protection relay, the suppression amount IRE for suppressing relay operation is calculated from each terminal current, and the sum Id of only the positive wave of the instantaneous value of each terminal current and the negative wave. sum of only 18
The larger value of the sum of currents is defined as the maximum current value ■■, and the product of the determination coefficient K1 whose value is within the range of more than O and less than 1 and the maximum value of the current sum IMA is defined as the state determination 4IREc, and the value is 0. 4
Is the first operation in the range greater than or equal to 0.5? Several km, and the maximum value of the current sum ■. The product is the first suppression amount! , 1, the second calculation coefficient Km whose value is within the range of 0.8 or more and less than 1
The product of the operation amount Id and the operation amount Id is set as the second suppression amount IR3, and the operation amount r. is smaller than the state determination (IIc) as the first state, and the suppression amount ■. in the period T. during which this first state is satisfied is the first suppression amount I
equal to RE, and the operation amount Id is the state determination value 1c.
is defined as a second state, and the suppression amount in period T2 in which this second state is satisfied is defined as the second state.
Furthermore, the input signal is the secondary current of the instrument current transformer provided at each terminal of the bus, and the absolute value of the vector sum of these terminal currents is the operating amount I.
d, and the motion amount l. In a busbar protection relay device consisting of a ratio differential protection relay, the suppression amount ■■ for suppressing relay operation is calculated from the above-mentioned terminal currents. The larger value of the sum of waves only I8 is the maximum value of the current sum■. Then, the sum IP of only positive waves and the sum of only negative waves of the instantaneous value of each terminal current? .. The smaller value of t is the minimum value of current sum IM+, and the judgment coefficient K whose value is within the range of more than 0 and less than 1 and the maximum value of current sum ■HA
The product of the first calculation coefficient KR1 whose value is within the range of 0.4 or more and less than 0.5 and the maximum current sum value IMA is the first suppression amount 1■, The product of the second calculation coefficient KR1 whose value is within the range of 0.6 or more and less than 1 and the maximum current value +xa is determined as the second suppression amount (2). 2. The sum of the first suppression amount IRR and the motion I Im is the third suppression amount flu
and the amount of operation I. is the state judgment value ■. A first state is when the amount of suppression is smaller than l. The first suppression II
equal to RE and the amount of operation ! 4 is the state determination value Id
A second state is when the current sum is larger than 1, and half of the current sum maximum value IMA is the current sum minimum value IR during the period T.
The determination condition is whether the condition that a state equal to or smaller than 21 continues at a phase angle of 90° or more is satisfied, and from the time when the first state changes to the second state, from 180° in terms of electrical angle. During the period of 270°, the suppression amount IRE is set to the first value. equal to 51-1■, and the amount of suppression in that period T8! (2) shall be the third suppression amount IR3, and if the above-mentioned discrimination condition is satisfied, the third suppression amount IR3 at that point and a point in time a plurality of different predetermined phase angles before that point in time. Among the plurality of delay suppression amounts IR3 delayed from the delay suppression amount IR3, the maximum suppression amount is the suppression amount IRE in the period T, and the discrimination condition is set as the operation amount IRE in the period 1. It is assumed that the condition that the state where the current sum is equal to or smaller than the minimum current {MIN+ continues for 90' or more in terms of phase angle is satisfied. Also, the period T after satisfying the discrimination condition! Now let's assume that the relay device is inactive. [Function] In the configuration of the present invention, among the terminal currents as the secondary current of the instrument current transformer, the larger of the two current sums, the sum of the inflow current to the bus bar, and the sum of the outflow current IR3. The maximum value of the current sum as the value for both ■.

を求め、Oを越え1未満の範囲内にある値の判定係数K
,とこの電流和最大値Il4&との積を状態判定?r,
とし、動作量■.がこの状態判定値■。
Find the determination coefficient K for values that are greater than O and less than 1.
, and the maximum current sum value Il4& to determine the state? r,
And the amount of movement ■. is this status judgment value ■.

より大きい状態を第1の状態、小さい状態を第2の状態
とし、0.4以上0.5未満の範囲内にある値の第1の
演算係数K1と電流和最大値IMAとの積を第1の抑制
量1.1として前述の第1の状態における抑制jll■
とし、0超過0.8未満の範囲内にある値の第2の演算
係数K!と動作量■4との積を第2の抑制量IR3!と
して前述の第2の状態における抑制1 1 atとする
により、母線保護の範囲内で地絡事故が起こった内部事
故の場合、動作量l4は常に抑制量■■よりも大きな値
になって抑制量IREは過大にならず適性な値となり、
保護範囲外で地絡事故が起こった外部事故の場合、電流
が地絡事故を起こした1つの端子に集中しその端子の計
器用変流器の鉄心が飽和した状態になっても、鉄心が飽
和したことによる二次電流の欠損分によって動作1 1
mが増大してもこれを第2の状態と判定してこの状態が
満足される期間T2の抑制量IR1に前述の第2の抑制
量■■を採用して飽和度が大きくなるのに応じて抑制量
■16大きくする?とにより誤動作が生じにくくなる.
第1と第2の演算係数 K,,K.を前述の範囲に設定
して抑制量■■を演算することにより飽和度が80%以
下に対して正常な動作を行うことができる。なお、流入
電流■,として各二次電流の正波のみの和を、流出電流
■8として各二次電流の負波のみの和をとるのが実際的
な演算方法である. また、流入t流Idと流出電流I8との小さい方の値を
電流和最小値IN+とし、第1の抑制量IRRと動作量
Idとの和を第3の抑制量113とし、期間T.におい
て電流和最大値■。の2分の1が前記電流和最小値IR
1に等しいか小さい状態が位相角にして90”以上継続
するという条件が満足されたかどうかを判別条件として
、この判別条件を満足した後の期間T8における抑制量
1mtを第1の抑制量■.に等しくし、判別条件を満足
しない場合の後の期間T8における抑制量IREを第3
の抑制量IR3とすることによって、母線保護継電装置
の各計器用変流器の二次電流が通るローパスフィルタの
影響によって計器用変流器が飽和した場合?誤動作に至
る飽和率が80%以下になるのを改善することができる
とともに、流入電流■,と流出電流1.との位相差があ
って定常時でも動作量1■が零にならないような場合に
も誤動作することが回避できる. 更に、前述の判別条件を満足する場合に、第2の状態に
おける抑制量IREを、その時点での第3の抑制! +
 13に一致する抑制量■8,と、その時点より復数の
異なる位相角θ5だけ前の時点から遅延された第3の抑
制I1■である複数の遅延抑制量+111との中で最大
値の抑制量をその時点での抑制1 1 REとすること
によって、更に抑制量を増大させることができて確実に
誤動作を防止することができるとともに、動作すべき時
の動作遅延期間を余り大きくならないようにすることが
できる.また、判別条件として、第2の状態において動
作量14が電7五和最小埴1。1に等しいか小さい状態
が位相角にして90”以上継続するという条件が満足さ
れたかどうかとすることでも前述の判別条件と同し効果
が得られるので、他の要因を考慮した総合的な判断に基
づいて最適の判別条件を採用すればよい. 更に、抑制量IRRを増大させる代わりにその期間は継
電装置を不動作状態にすることでも同様の効果を上げる
ことができる. 〔実施例〕 以下この発明を実施例に基づいて説明する.第1図はデ
ィジタル形の母線保護継電器のデータ処理部の構成を示
すブロック図である.この図において、複数のサンプル
ホールド回路5、マルチプレクサ6、A−[1変換器7
によってn個の電流入力信号!.〜■.がデイジタル信
号に変換されて内蔵のコンピュータ9に入力されデータ
バス94を介して記憶部92に記憶される。サンプルホ
ールド回路5、マルチプレクサ6及びA−D変換器7は
制御回路8によって制御される.前述の従来技術におけ
る動作量や抑制量の演算は記憶部92に記憶された電流
値データを基にMPU 91で演算されその結果に基づ
いた動作信号を出力部93からコンピュータ9の外部に
出力する.この後の増幅器や動作接点などの継電器に当
然備えられている構成の図示は省略してある.この発明
もMPtl 91で演算される技術内容であるので、以
下にその内容について説明する. 第2図はこの発明の第1の実施例を説明するための母線
保護範囲内で地絡事故が起こった場合の流出t2itに
対する諸量の変化を示す線図である.この図において、
横軸は流出電流の和■8、縦軸は流入電流の絶対値の和
■,であり、第9図において、地絡事故がX点ではなく
、母線保護範囲110で生じ計器用変流器11, 12
. 13いずれも鉄心は飽和していない場合について図
示したものである.このときには適性な抑制量のもとに
地絡を正しく検出する必要がある. 3つの電流+1、Ig、’3が大きさlで全て流入電流
のときが流出電流0、流入電流3であり、この条件は縦
軸上を表しており、電流l,が流入電流であるときが流
出電流1、流入′gi流2となり、その中間を表すのが
直線Aである。3つの電流の和の絶対値である勅作量I
1は流出電流和1.が?のときは3、流出電流和1.が
1のときは1となり、その中間は直線Bで表される. 計器用変流器の鉄心の飽和率が80%程度でも正常な動
作が可能な母線保護継電装置とするために、次のように
抑制量を設定することとする.■各端子電流の瞬時値の
正波だけの和としての流入電流和■,を求める。
The larger state is defined as the first state, and the smaller state is defined as the second state, and the product of the first calculation coefficient K1, which has a value within the range of 0.4 or more and less than 0.5, and the maximum current sum value IMA is calculated as the second state. The suppression amount in the first state described above is set to 1.1 and the suppression amount is 1.1.
The second calculation coefficient K! has a value within the range of more than 0 and less than 0.8. The product of the operation amount ■4 is the second suppression amount IR3! By setting the above-mentioned suppression in the second state as 1 1 at, in the case of an internal accident where a ground fault occurs within the range of busbar protection, the operating amount l4 will always be a larger value than the suppression amount ■■ and will be suppressed. The amount IRE will not be excessive and will be an appropriate value.
In the case of an external accident where a ground fault occurs outside the protection range, the current concentrates on one terminal where the ground fault occurred, and even if the core of the current transformer at that terminal becomes saturated, the core remains Operates due to loss of secondary current due to saturation 1 1
Even if m increases, this is determined to be the second state, and the above-mentioned second suppression amount ■■ is adopted as the suppression amount IR1 for the period T2 in which this state is satisfied, and as the degree of saturation increases. Increase the suppression amount ■16? This makes malfunctions less likely to occur.
First and second calculation coefficients K,,K. By setting the amount of suppression ■■ within the above-mentioned range and calculating the suppression amount ■■, normal operation can be performed when the degree of saturation is 80% or less. Note that a practical calculation method is to take the sum of only the positive waves of each secondary current as the inflow current (2), and the sum of only the negative waves of each secondary current as the outflow current (8). Further, the smaller value of the inflow t current Id and the outflow current I8 is set as the minimum current sum value IN+, the sum of the first suppression amount IRR and the operation amount Id is set as the third suppression amount 113, and the period T. Maximum current sum at ■. One-half of the current sum minimum value IR
The determination condition is whether or not the condition that the phase angle is equal to or smaller than 1 continues for 90'' or more is satisfied, and the suppression amount 1mt in the period T8 after satisfying this determination condition is the first suppression amount ■. , and the suppression amount IRE in the subsequent period T8 when the discrimination condition is not satisfied is set as the third
By setting the suppression amount to IR3, what if the instrument current transformers are saturated due to the influence of the low-pass filter through which the secondary current of each instrument current transformer of the bus protection relay device passes? It is possible to prevent the saturation rate from becoming 80% or less, which would lead to malfunction, and to reduce the inflow current (■) and the outflow current (1). Malfunctions can be avoided even when there is a phase difference between the two and the operating amount 1■ does not become zero even in steady state. Furthermore, when the above-mentioned discrimination condition is satisfied, the suppression amount IRE in the second state is changed to the third suppression amount at that point! +
13, and a plurality of delayed suppression amounts +111, which is the third suppression I1, which is delayed from a point in time by a multiple number of phase angles θ5 before that point. By setting the suppression amount to 1 1 RE at that point, it is possible to further increase the suppression amount, reliably preventing malfunctions, and also to prevent the operation delay period when it should operate from becoming too large. It can be done. In addition, as a determination condition, the condition that the operation amount 14 is equal to or smaller than 1.1 in the second state continues to be 90" or more in terms of phase angle is satisfied. Since the same effect as the above-mentioned discrimination condition can be obtained, the optimum discrimination condition can be adopted based on a comprehensive judgment that takes into account other factors.Furthermore, instead of increasing the suppression amount IRR, the period can be continued. A similar effect can be achieved by placing the electric device in an inoperable state. [Example] The present invention will be explained below based on an example. Figure 1 shows the data processing section of a digital bus protection relay. It is a block diagram showing the configuration. In this figure, a plurality of sample and hold circuits 5, a multiplexer 6, an A-[1 converter 7
n current input signals by! .. ~■. is converted into a digital signal, input to the built-in computer 9, and stored in the storage section 92 via the data bus 94. The sample hold circuit 5, multiplexer 6 and A/D converter 7 are controlled by a control circuit 8. The operation amount and suppression amount in the above-mentioned conventional technology are calculated by the MPU 91 based on the current value data stored in the storage section 92, and an operation signal based on the result is outputted from the output section 93 to the outside of the computer 9. .. The illustrations of the components that are naturally included in the relay, such as the amplifier and operating contacts, are omitted. Since this invention is also a technical content that is calculated using MPtl 91, the content will be explained below. FIG. 2 is a diagram showing changes in various quantities with respect to outflow t2it when a ground fault occurs within the bus bar protection range to explain the first embodiment of the present invention. In this diagram,
The horizontal axis is the sum of the outflow current 8, and the vertical axis is the sum of the absolute value of the inflow current.In Fig. 9, the ground fault occurred not at point 11, 12
.. 13 All illustrations are for the case where the iron core is not saturated. In this case, it is necessary to accurately detect ground faults with an appropriate amount of suppression. When the three currents +1, Ig, '3 have magnitude l and are all inflow currents, the outflow current is 0 and the inflow current is 3. This condition is expressed on the vertical axis, and when the current l, is the inflow current. is the outflow current 1 and the inflow 'gi current 2, and the straight line A represents the middle thereof. The amount of power I, which is the absolute value of the sum of three currents
1 is the sum of outflow current 1. but? When , it is 3, and the sum of outflow current is 1. When is 1, it becomes 1, and the middle is represented by straight line B. In order to create a bus protection relay device that can operate normally even when the saturation rate of the iron core of the instrument current transformer is around 80%, we will set the amount of suppression as follows. ■Determine the sum of inflow currents as the sum of only positive waves of the instantaneous values of the currents at each terminal.

■各端子電流の瞬時値の負波だけの和としての流出!?
X和I8を求める. ■Idと■8のうちの大きい方を電流和最大値IH&と
する. ■0を越え1未満の範囲にある値の判定係数をK,とし
、電流和最大値IMAのK,倍を状態判定{直IPとす
る. ■電流和最大値■。の第1の演算係数KR11倍を第1
の抑制量IREとする. ■0.8を越え1未満の範囲にある値の第2の演算係数
をK1!とし、動作量IdのK,t倍を第2の抑制量■
1とする. ■動作量Idが状態判定値!。より小さい状態を?1の
状態、この状態が継続する期間を期間T1とし、この期
間T1での抑制量I II!に第2の抑制量を採用する
. ■動作量Idが状態判定値Idより大きいときの状態を
第2の状態、この状態が継続する期間を期間T!とじ、
この期間T8の抑制量IR1に第2の抑制I I..を
採用する. ■前項で求められた動作量■4を1サイクルの整数倍の
期間積分して動作量積分M Iasを求める.[相]前
項で求められた抑制量1.7を1サイクルの整数倍の期
間積分して抑制量積分値■■を求める.■I as  
T as > K eのとき継電器を動作させる.(K
O !−i>0) 第2の演算係数K ItO値は、内部事故で50%流出
電流がある場合、これを50%流出と称しこの場合に継
電器が確実に動作するという条件から決定される.すな
わち、K +u−0. 5のときは50%流出で限界と
なり、ハードウエア誤差±2.5%を考慮すると、KR
2の値は次のようにして求められる.Id (1土0.
025)  Kmt・I.+.(1±0.025)>0
        ・− (2)?、50%流出の内部事
故では!.一l、I HA = 2であるから、これを
(2)式に代入してKR2を求めると次のようになる. Kit< ( (1±0.025)/ (1±0.02
5)/2 ) .i. =0.975/2.05=0.
476したがって、余裕をみてK m+ <  0.4
5程度が妥当な値と考えられる.しかし、以下のとおり
KR1の値は大きい方が外部事故時の計器用変流器の鉄
心飽和に対しては抑制効果が大きい.最近の計器用変流
器の鉄心の飽和率に対する要求は80%程度であり、こ
の値を満足させる為には、Kゎ= 0.45ではKR1
≧0.875 、KR1−0.4ではKR1≧0.9と
なる. なお、判定係数KCは外部事故時に計器用変流器の鉄心
の飽和期間と非飽和期間との区別に使用する係数であり
、典型的な波形での判定係数K,は0と1の範囲内の値
でよいが、一般には0.3〜0.9の範囲程度の債が妥
当である. 3つの係数をそれぞれ、Kc −0.9 、Km,一〇
.9 、K a. = 0.45として第2図にそれぞ
れの量を措いてある.期間T,と期間T1との境界は動
作? r a と状態判定量■。との交点の位置になる
.第2図は母線保護範囲内の地絡を想定した場合の一例
であるが、一般的に前述の方法に基づいて採用された抑
制量IlFは常に動作量■.よりも小さい適正な値にな
ることが分かっている.第3図は母線保護の範囲外で地
絡事故が起こったときの飽和率に対する変化を示す線図
である.この回において、横軸は飽和率、縦軸は流入電
流和r,であり、第2図と同じく比率だけが問題なので
最大の値を1としてある.飽和率がO%のときは流出電
流和1.は流入電流和■,と同じなので、これらの差で
もある動作電流l,は0である.飽和率が 100%の
ときは流出電流INは0になるので動作電流1dは流入
電流和IPと一致し、これらの中間の飽和率での動作電
流■.は一点鎖線の直線に示すグラフになる. この図の左下がりの実線と鎖線の2本の直線は抑制ii
IREを表しており、第2の演算係数K Ig =0.
45として鎖線はKR1一0.9、実線はK ml =
 0.8の場合である.動作電流■4の一点鎖線の直線
と?制量IR3!の直線との交点が許容される飽和率に
なるが、図示のように、KR1−0.9の鎖線では約8
2%の飽和率となり、K .. = 0.8の実線では
約70%の飽和率となる.したがって、飽和率80%ま
で誤動作が生じないよにするためには、Kmz=0.4
5に対してKR1=0.9が妥当な値となる.ちなみに
KR1−0.95の場合は図示していないが、飽和率の
許容値は約90%となる. ところで、第1図でサンプルホールト回路5の前には図
示してい低域通過フィルタ(一般にローバスフィルタと
称されている)が挿入されている.その目的は電流信号
!1〜 ■、に含まれる高周波数成分を除去又は低減す
るためであり、具体的には、■外来ノイズの侵入を防止
する、■系統電流の高調波歪の影響を低減する、■サン
プリング定理による折り返し誤差を除去する、などをま
とめて行うためである.このローバスフィルタが挿入さ
れる回路はアナログ回路であるからローパスフィルタも
アナログフィルタである.前述のような計器用変流器の
飽和率80%まで誤動作が生じないような条件が設定さ
れても実際にはローバスフィルタの挿入によって抑制量
が低下し、その結果飽和率80%以下で誤動作が発生す
るという現象が生ずる.系統構成、容量、主計器用変流
器の容量などの使用条件から、前述の実施例の方式でも
適用可能な系統は多く存在するが、より過酷な系統条件
でも使用可能な方式に対しては、更に誤動作の発生しに
くい改善された方式の採用が必要になる. 第4図はローバスフィルタが挿入されている場合とされ
ていない場合との比較を示す動作電流■4の波形図であ
る.この図において、ローバスフィルタが挿入されてい
ないとしたときのコンピュータ9に人力される電流から
演算される動作電流を141としてその波形を点線で、
ローパスフィルタを挿入してある場合の動作電流■,の
波形を寞線で示してある.ローパスフィルタは一種の積
分器なので、出力信号は入力信号に対して時間的に遅れ
た波形の信号になる.したがって、複数の1i流信号1
r(j・1,2,・..n)のベクトル和の絶対値?し
ての動作電流■4もローバスフィルタがあるために、な
い場合に比べてこの図のように時間的に後れた波形とな
る.その結果、(a)状態判定値IPとIdとが一致す
る時点 1.がローバスフィルタが無いとしたとの時点
t1に比べて後れた位置になるために第1の条件が継続
する期間である期間T1が長くなり、第2の条件が継続
する期間である期間T8が短くなるとともに、(b)動
作量l4が減少する、ことになる.期間T1の方が期間
 Ttよりも抑制量IREが小さいから結果的に抑制量
■■が減衰し、また、Φ)の動作量■4の減少との相乗
効果もあって誤動作し易くなるという問題が生ずる. このような問題を改善するために、この発明の第2の実
施例として次のような方式で抑制量を決めることにする
.ただし、内部事故時の流出電流がある場合でも誤動作
しないという条件を満足する必要がある.この流出電流
の和は流入電流和の50%を越えることはないので、流
出電流和が流入電流和の50%のときでも誤動作しない
ようにすることで達成することができる. 今、動作量Idが状態判定値Icよりも大きい第2の状
態において、単に抑制量を増加させると誤不動作になっ
てしまうごときがある.このため、単にその時の状態の
判別だけでなく計器用変流器の飽和の発生する時間的経
過と時間的前後の状態注1)計器用変流器のこと 注2)Co;50%より小さい一定値 注3)第1の状態(!tlI間T.) 注4)第2の状!I(期間Tg) 事故の種類の計器用変流器の飽和の有無によって第1の
状態か第2の状態かの区別は前表の通りになる. 第5図は外部事故発生し計器用変流器が飽和した場合の
流入電流Idと流出電流■8とを数サイクルにわたって
示した波形図である.この図において、時間軸の原点は
外部事故発生時点である.最初の期間T1は計器用変流
器が飽和していないために流入電流Idと流出電流!、
との代数和(ヘクトル和と呼んでいる)は零である.期
間T8では外部事故が発生した系統の計器用変流器が飽
和して流出電流!。は計測されず零になり、動作電流I
dが流入電流1,に等しくなる結果、第2の状態となり
、この期間は期間T2となる.図に明らかなようにサイ
クルごとにこられら期間T.と期間T,とが交互に繰り
返されることになる.このとき、■サイクルに1回は非
飽和期間としての期間T,が存在し、その期間は位相角
にして90°以上になる.その理由は、母線保護装置で
の主計器用変流器は位相角90゜間は必ず飽和しないよ
う仕様上定められているからである.したがって、飽和
期間、すなわち期間T,は位相角270°よりも長くな
ることはない.したがって、?間 T,が位相角で90
゜の間持続した後、期間T2に移行したときには、この
期間T8は外部事故によって発生したものであるとの判
断ができ、その間の抑制量夏■として前述の実施例と同
じ第1の抑制量■■を採用することによって、常に動作
量■4は抑制量IR3より小さくなるために常に不動作
となり誤動作の可能をなくすることができる. この方式における内部事故時の応動状況は次のようにな
る.流出電流I8が小さい(一定値00以下)内部事故
では、無事故状態での第1の状態から第2の状態に変化
し、以降事故継続中は第2の状態を持続する.したがっ
て、内部事故発生と同時に抑制l1■は一旦増加して不
動作となるが、抑制Wkl−iが増加している期間は最
大でも270@であるためその後は動作状態になる.ま
た、流出電流がC0以上(但し50%以下)となる内部
事故では、第1の状態のまま動作量Idが増加し、抑制
量11も増大しないため瞬時に動作状態になる。
■ Outflow as the sum of only the negative wave of the instantaneous value of each terminal current! ?
Find the sum of X and I8. The larger of ■Id and ■8 is the maximum current sum value IH&. ■Let K be the determination coefficient for values in the range of more than 0 and less than 1, and let K times the maximum current sum value IMA be the state determination {direct IP. ■Maximum current sum value■. The first calculation coefficient KR11 times the first
Let the suppression amount IRE be. ■K1 the second calculation coefficient for values in the range of more than 0.8 and less than 1! Then, K,t times the operation amount Id is the second suppression amount ■
Set it to 1. ■The operation amount Id is the state judgment value! . A smaller state? 1 state, and the period during which this state continues is defined as a period T1, and the amount of suppression during this period T1 is I II! The second suppression amount is adopted for . ■The state when the operation amount Id is larger than the state determination value Id is the second state, and the period during which this state continues is the period T! Binding,
The second suppression I.I. is added to the suppression amount IR1 during this period T8. .. Adopt. ■ Integrate the motion amount ■4 determined in the previous section for a period that is an integral multiple of one cycle to find the motion amount integral M Ias. [Phase] Integrate the suppression amount 1.7 obtained in the previous section over a period that is an integral multiple of one cycle to obtain the suppression amount integral value ■■. ■I as
Activate the relay when Tas > Ke. (K
O! -i>0) The second calculation coefficient K ItO value is determined from the condition that if there is a 50% outflow current due to an internal fault, this is called a 50% outflow and the relay operates reliably in this case. That is, K +u-0. 5, the limit is reached at 50% leakage, and considering the hardware error ±2.5%, KR
The value of 2 can be found as follows. Id (1 Sat 0.
025) Kmt.I. +. (1±0.025)>0
・- (2)? , due to an internal accident that resulted in a 50% leak! .. Since IHA = 2, substituting this into equation (2) to find KR2 yields the following. Kit< ((1±0.025)/(1±0.02
5)/2). i. =0.975/2.05=0.
476 Therefore, considering the margin, K m+ < 0.4
A value of about 5 is considered to be a reasonable value. However, as shown below, the larger the value of KR1, the more effective it is in suppressing the core saturation of the instrument current transformer in the event of an external fault. The requirement for the saturation rate of the iron core of current instrument current transformers is approximately 80%, and in order to satisfy this value, KR1 is required at K = 0.45.
≧0.875, and KR1≧0.9 for KR1-0.4. Note that the judgment coefficient KC is a coefficient used to distinguish between the saturated period and the non-saturation period of the core of the instrument current transformer in the event of an external accident, and the judgment coefficient K, with a typical waveform, is within the range of 0 and 1. However, in general, a bond in the range of 0.3 to 0.9 is appropriate. The three coefficients are Kc -0.9, Km, 10. 9, Ka. = 0.45, and the respective quantities are shown in Figure 2. Is the boundary between period T and period T1 an operation? r a and the state judgment amount ■. This will be the location of the intersection with . FIG. 2 is an example assuming a ground fault within the busbar protection range, but generally the suppression amount IIF adopted based on the above-mentioned method is always the operating amount ■. It is known that the appropriate value is smaller than . Figure 3 is a diagram showing the change in saturation rate when a ground fault occurs outside the bus bar protection range. In this article, the horizontal axis is the saturation rate, and the vertical axis is the sum of inflow currents r, and as in Figure 2, only the ratio matters, so the maximum value is set to 1. When the saturation rate is 0%, the sum of outflow currents is 1. is the same as the sum of inflow currents ■, so the operating current l, which is also the difference between them, is 0. When the saturation rate is 100%, the outflow current IN becomes 0, so the operating current 1d matches the sum of inflow currents IP, and the operating current 1d at a saturation rate between these two. The graph is shown by the dashed-dotted line. In this figure, the two straight lines, the solid line and the dashed line downward to the left, are the suppression ii
IRE, and the second calculation coefficient K Ig =0.
45, the chain line is KR1-0.9, and the solid line is Kml =
This is the case of 0.8. Operating current ■ 4 Dot-dash line straight line? Controlled IR3! The intersection with the straight line becomes the permissible saturation rate, but as shown in the figure, the dashed line of KR1-0.9 is about 8
The saturation rate is 2%, and K. .. The solid line with = 0.8 has a saturation rate of approximately 70%. Therefore, in order to prevent malfunctions up to a saturation rate of 80%, Kmz=0.4
5, KR1=0.9 is a reasonable value. Incidentally, in the case of KR1-0.95, although not shown, the permissible saturation rate is approximately 90%. Incidentally, in FIG. 1, a low-pass filter (generally referred to as a low-pass filter) (not shown) is inserted in front of the sample hold circuit 5. Its purpose is a current signal! The purpose is to remove or reduce the high frequency components contained in 1 to ■, and specifically, ■prevent the intrusion of external noise, ■reduce the effects of harmonic distortion of the grid current, and ■based on the sampling theorem. This is to remove aliasing errors, etc. all at once. The circuit into which this low-pass filter is inserted is an analog circuit, so the low-pass filter is also an analog filter. Even if conditions are set such that malfunction does not occur until the saturation rate of the instrument current transformer reaches 80%, as described above, the amount of suppression actually decreases due to the insertion of a low-pass filter, and as a result, the amount of suppression will decrease when the saturation rate is below 80%. A phenomenon occurs in which a malfunction occurs. There are many systems to which the method of the above embodiment can be applied, depending on the usage conditions such as system configuration, capacity, and capacity of the main instrument current transformer, but for systems that can be used even under harsher system conditions, Furthermore, it is necessary to adopt an improved method that is less prone to malfunctions. Figure 4 is a waveform diagram of the operating current ■4 showing a comparison between the case where a low-pass filter is inserted and the case where it is not inserted. In this figure, the operating current calculated from the current manually input to the computer 9 when no low-pass filter is inserted is assumed to be 141, and its waveform is indicated by a dotted line.
The waveform of the operating current ■, when a low-pass filter is inserted, is shown by a dotted line. Since a low-pass filter is a type of integrator, the output signal is a waveform signal that is delayed in time with respect to the input signal. Therefore, multiple 1i current signals 1
Absolute value of vector sum of r(j・1,2,...n)? Since the operating current (4) also has a low-pass filter, it has a waveform that is delayed in time as shown in this figure, compared to when there is no low-pass filter. As a result, (a) the point in time when the state determination value IP and Id match; 1. is at a later position than time t1 when there is no low-pass filter, so period T1, which is the period during which the first condition continues, becomes longer, and period T1, which is the period during which the second condition continues. As T8 becomes shorter, (b) the amount of operation l4 decreases. Since the suppression amount IRE is smaller in period T1 than in period Tt, the suppression amount ■■ is attenuated as a result, and there is also a synergistic effect with the decrease in the operation amount ■4 of Φ), making malfunctions more likely. occurs. In order to improve this problem, the amount of suppression is determined by the following method as a second embodiment of the present invention. However, it is necessary to satisfy the condition that malfunction does not occur even if there is a leakage current in the event of an internal fault. Since the sum of this outflow current does not exceed 50% of the sum of inflow currents, this can be achieved by preventing malfunction even when the sum of outflow currents is 50% of the sum of inflow currents. Now, in the second state where the operation amount Id is larger than the state determination value Ic, simply increasing the suppression amount may result in erroneous non-operation. For this reason, it is not only possible to simply determine the state at that time, but also to determine the time lapse of saturation of the instrument current transformer and the state before and after the saturation of the instrument current transformer Note 1) Instrument current transformer Note 2) Co: less than 50% Constant value Note 3) First state (!tlI interval T.) Note 4) Second state! I (Period Tg) The distinction between the first state and the second state is as shown in the table above, depending on the presence or absence of saturation of the instrument current transformer of the type of accident. Figure 5 is a waveform diagram showing the inflow current Id and outflow current ■8 over several cycles when an external fault occurs and the instrument current transformer is saturated. In this figure, the origin of the time axis is the point at which the external accident occurred. During the first period T1, since the instrument current transformer is not saturated, the inflow current Id and the outflow current! ,
The algebraic sum (called the hectoral sum) of is zero. During period T8, the instrument current transformer in the system where the external fault occurred was saturated and the current flowed out! . is not measured and becomes zero, and the operating current I
d becomes equal to the inflow current 1, resulting in a second state, and this period becomes period T2. As is clear from the figure, these periods T. and period T, are repeated alternately. At this time, there is a period T, which is a non-saturation period, once in a cycle, and the period has a phase angle of 90° or more. The reason for this is that the specifications for the main instrument current transformer in the bus protection device ensure that it does not saturate within a phase angle of 90°. Therefore, the saturation period, ie period T, is never longer than the phase angle of 270°. therefore,? The phase angle T, is 90
After continuing for ゜, when transitioning to period T2, it can be determined that this period T8 occurred due to an external accident, and the first suppression amount as in the above-mentioned example is set as the suppression amount summer ■ during that period. By adopting ■■, the operation amount ■4 is always smaller than the suppression amount IR3, so that it is always inactive and the possibility of malfunction can be eliminated. The response situation in the event of an internal accident using this method is as follows. In the case of an internal fault in which the outflow current I8 is small (below a certain value 00), the first state in the no-fault state changes to the second state, and the second state is maintained thereafter while the fault continues. Therefore, at the same time as an internal accident occurs, the suppression l1■ increases once and becomes inactive, but since the period during which the suppression Wkl-i increases is at most 270@, it becomes operational after that. Furthermore, in the case of an internal accident in which the outflow current exceeds C0 (however, below 50%), the operating amount Id increases while remaining in the first state, and the suppression amount 11 does not increase either, so the operating state is instantaneously achieved.

以−トは流入電流Idと流出電ftI N とが同相の
?合であるが、系統によっては多電源系統がらなってい
て、それらの位相が異なる場合がある.この場合、抑制
量■■は各端子電流のスカラ和であるため、定常状態で
も流入電流の絶対値の和と流出電流の絶対値の和とは等
しくないという不平衡状態が生じており、したがって無
事故であるにもかかわらず動作電流■4は零でないこと
になる.この不平衡は最大でも「50%流出」までと考
えられ、これ以上は内部事故であるから無事故の場合に
継電器が動作しないようにする必要がある.第6図は外
部事故発生以降の電流和に関する偵の波形を示す波形図
であり、上段の(a)は電流和最大値IMAとその2分
の1の電流の波形を示し、下段の(b)は流入電流■,
と流出電流IR3のそれぞれの絶対値の小さい方である
電流和最小値IH+の波形を示してある.前述の無事故
の場合に継電器が動作しないよう状態判別に次の論理を
追加する.すなわち、第1の状態で、かつ、電流和綴大
値■。の2分の1が電流和最小値+111に等しいか小
さい状態が位相角で90゜継続したという条?を満足す
るかどうかを判別条件として、この判別条件が満足され
た場合に、この後の第2の状態における抑制量■■とし
て第3の抑制量I.,を採用する.この第3の抑制量1
13は第1の抑制量r■に動作量Idを加えた値とする
. このような論理を追加した場合、第6図に示すように、
外部事故で計器用変流器が飽和が発生した場合でも、第
1の状態から第2の状態への変化に伴って抑制量が増加
する条件に支障を来すものではない.一方、内部事故発
生時には、流出電流[Hが50%以下であれば判別条件
は満足されないので、内部事故と無事故(定常状態)と
を判別することができる. この第2の実施例の演算の手順は次の通りである. ■各端子の電流を加算し絶対値を算出して動作量!4を
求める. ■端子の同一極性の電流郡を求め、これらの各々の絶対
値を加算することにより、流入電流Id、流出電流■。
Does this mean that the inflow current Id and the outflow current ftIN are in phase? However, some systems consist of multiple power supply systems, and their phases may differ. In this case, the amount of suppression ■■ is the scalar sum of the currents at each terminal, so even in a steady state an unbalanced state occurs in which the sum of the absolute values of the inflow current and the sum of the absolute values of the outflow current are not equal. Even though there were no accidents, the operating current ■4 was not zero. This unbalance is considered to be a maximum of 50% leakage, and anything beyond this is an internal accident, so it is necessary to prevent the relay from operating even in the absence of an accident. FIG. 6 is a waveform diagram showing the waveforms related to the current sum after the occurrence of an external accident, where (a) in the upper row shows the waveform of the maximum current sum IMA and a half of it, and (b) in the lower row. ) is the inflow current ■,
The waveform of the minimum current sum IH+, which is the smaller of the absolute values of the outflow current IR3 and the outflow current IR3, is shown. Add the following logic to state determination so that the relay does not operate in the case of no accident as described above. That is, in the first state, the current sum is a large value ■. 1/2 is equal to or smaller than the minimum current sum + 111 for a phase angle of 90°. If the determination condition is satisfied, the third suppression amount I. , is adopted. This third suppression amount 1
13 is the value obtained by adding the operation amount Id to the first suppression amount r■. When such logic is added, as shown in Figure 6,
Even if saturation occurs in the instrument current transformer due to an external accident, this does not interfere with the condition that the amount of suppression increases as the first state changes to the second state. On the other hand, when an internal accident occurs, if the outflow current [H is less than 50%, the discrimination condition is not satisfied, so it is possible to distinguish between an internal accident and a no-fault condition (steady state). The calculation procedure for this second embodiment is as follows. ■Add the current of each terminal and calculate the absolute value to calculate the amount of operation! Find 4. ■ Find the current groups of the same polarity at the terminals and add the absolute values of these to determine the inflow current Id and outflow current ■.

を求める.なお、これら2つの値は?述のように大きい
方と小さい方とを求めるためのものであるから、双方が
入れ代わっても支障ない. ■流入電流IFと流出電流1.を比較し、大きい方を電
流和最大値IMA、小さい方を1電流和最大値rNlと
する. ■電流和最大値!■と判定係数Kcとの積を求めこれを
状態判定値■,とする. ■動作量■.と状態判定値IPとを比較し、動作量■,
が小さいとき第1の状態、そうでないとき第2の状態と
する. ■第1の状態のとき、1l流和最大便IMAの2分の1
が電流和最大値+111よりも小さいか等しいとき、無
事故状態であると判定する. ■無事故状態であると判定された状態が位相角で少なく
とも90゜持続するという条件を満足するか否かを判定
結果として、この判定結果が満足された後第2の状態に
以降した場合に外部事故と判断し、第1の抑制量に動作
量Idを加えた値を第3の抑制量IR3とし、この期間
の抑制量■■を抑制?IR3とする. 第7図はこの発明の第3の実施例を説明するための波形
図である.この図の一点鎖線で示す波形は第2の実施例
によって演算された抑制量の波形でありこの抑制量をI
ILとする.二点鎖線で示す波形はこの抑制量ratを
位相角で30゜ないし90゜の範囲内にある遅延角θ.
たけ後ろにずらした遅延抑制1 1 +u+の波形であ
る.点線で示す電流和最大値111Aは比較のために参
考として図示したものである.この図において、前述の
判別条件を満足した場合に、その時点の抑制量■■と遅
延抑制量IR3とを比較して大きい方を抑制量■Iとし
て採用することにする.このようにすることにより抑制
量が増加することになり誤動作をより確実に防止するこ
とができるとともに、内部事故時の動作遅延期間を最小
限に抑えることができる.なお、この実施例では抑制量
!■と比較する遅延抑制量をIREl+だけにしたが、
異なる複数の遅岨角θIに対応する複数の遅延抑制量I
REを用いて、抑制量+1tとこれら複数の遅延抑制量
IREから最大のも?をその時点での抑制量,とするこ
とによってより適切な抑制量と内部事故時の動作遅延期
間の設定が可能になる. 判別条件を満足する場合の第2の状態の抑制量IREと
して第3の抑制量■。や更に遅延抑制量■■を求めるな
どの方法によって抑制量■■を増大させる代わりに継電
装置を不動作状jl!(ロック)にしてしまうことでも
同じ目的を達成することができる.勿論、このときでも
抑制量+1Eを前述のように具体的な値に等しく設定す
ることにしておけば、不動作状態にするかどうかの違い
以外を共通に処理することができるので実際的である.
前述の判別条件の中での電流和最大値IXAの2分の1
と電流和最小値IH+とを比較する代わりに、動作量l
,と電流和最小値■■とを比較することでも同じ結果が
得られる.どちらを採用するかは、全体のアルゴリズム
を制作する際の他の要因も考慮した総合的な判断に基づ
いて決定される.[発明の効果〕 この発明は前述のように、計器用変流器の二次?流とし
ての各端子電流のうち、母線への流入電流の和It、流
出電流の和Iイの2つの電流和のうちの大きい方の値と
しての電流和最大値■。を求め、0を越え1未満の範囲
内にある値の判定係数K,とこの電流和最大(1+xa
との積を状態判定{lI[cとし、動作量■.がこの状
態判定値!,より大きい状態を第1の状態、小さい状態
を第2の状態とし、0.4以上0.5未満の範囲内にあ
る値の第1の演算係数K,とt流和最大値IMAとの積
を第1の抑制量■■として前述の第1の状態における抑
制量I1とし、0超過0.8未満の範囲内にある値の第
2の演算係数K,と動作量Idとの積を第2の抑制1 
1 asとして前述の第2の状態における抑制量IRE
とするにより、母線保護の範囲内で地絡事故が起こった
内部事故の場合、動作量Idは常に抑制量I.よりも大
きな債になって抑制董■.は過大にならず適正な値とな
り、保護範囲外で地絡事故が起こった外部事故の場合、
電流が地絡事故を起こした1つの端子に集中しその端子
の計器用変流器の鉄心が飽和した状態になっても、?心
が飽和したことによる二次電流の欠損分によって動作置
■1が増大してもこれを第2の状態と判定してこの状態
が満足される期間T!の抑制量IR3に前述の第2の抑
制量!。 を採用して飽和度が大きくなるのに応じて抑
制量■■も大きくすることにより誤動作が生じにくくな
る.第1と第2の演算係数K,,K.を前述の範囲に設
定して抑制量!■を演算することにより飽和度が80%
以下に対して正常な動作を行うことができる.なお、流
入電流Idとして各二次電流の正波のみの和を、流出電
流1.として各二次電流の負波のみの和をとるのが実際
的な演算方法である. また、流入電流1,と流出電流!、との小さい方の値を
電流和最小値■エ,とし、第1の抑制量!■と動作量I
Nとの和を第3の抑制量IR3とし、第1の状態が満足
する期間T1において電流和最大値■。の2分の1が前
記電流和最小値Idl.に等しいか小さい状態が位相角
にして90゜以上継続するという条件が満足されたかど
うかを判別条件として、この判別条件を満足した後の期
間T!にお?る抑制量IREを第1の抑制量IR1に等
しくし、判別条件を満足しない場合の後の期間T8にお
ける抑制量IREを第3の抑制量r+tsとすることに
よって、母線保護継電装置の各計器用変流器の二次電流
が通るローバスフィルタの影響によって計器用変流器が
飽和した場合の誤動作に至る飽和率が80%以下になる
のを改善することができるとともに、流入電流[,と流
出電流!、との位相差があって定常時でも動作量Idが
零にならないような場合にも誤動作することが回避でき
る.更に、前述の判別条件を満足する場合に、第2の状
態における抑制量IREを、その時点での第3の抑制1
 1 ++3に一致する抑制量IR3と、その時点より
?!数の異なる位相角θ.だけ前の時点から遅延された
第3の抑制量113である複数の遅延抑制量IREとの
中で最大値の抑制量をその時点での抑制IIREとする
ことによって、更に抑制量を増大させることができて確
実に誤動作を防止することができるとともに、動作すべ
きときの動作遅延期間を余り大きくならないようにする
ことができる.また、判別条件として、期間T1におい
て動作量!.が電流和最小値1111に等しいか小さい
状態が位相角にして90゜以上継続するという条件が満
足されたかどうかとすることでも前述の判別条件と同じ
効果が得られるので、他の要因を総合的に判断して最適
の判別条件を採用すればよい.更に、抑制量tutを増
大させる代わりにその期間は継電装置を不動作状態にす
ることでも同様の効果を上げることができる.
Find. What are the values of these two? As mentioned above, the purpose is to find the larger one and the smaller one, so there is no problem even if the two are interchanged. ■Inflow current IF and outflow current 1. The larger one is set as the maximum current sum value IMA, and the smaller one is set as the single current sum maximum value rNl. ■Maximum current sum value! Find the product of ■ and the determination coefficient Kc and use this as the state determination value ■. ■Amount of movement■. and the state judgment value IP, and the operation amount ■,
When is small, the first state is used; otherwise, the second state is used. ■In the first state, 1/2 of the 1l flow maximum IMA
is smaller than or equal to the maximum current sum + 111, it is determined that there is no accident. ■The judgment result is whether or not the condition determined to be an accident-free state lasts at least 90 degrees in phase angle. It is determined that it is an accident, and the value obtained by adding the operation amount Id to the first suppression amount is set as the third suppression amount IR3, and the suppression amount ■■ is suppressed during this period? Set it to IR3. FIG. 7 is a waveform diagram for explaining the third embodiment of the present invention. The waveform shown by the dashed line in this figure is the waveform of the suppression amount calculated by the second embodiment, and this suppression amount is
Let it be IL. The waveform shown by the two-dot chain line shows the suppression amount rat when the phase angle is set to a delay angle θ within the range of 30° to 90°.
This is the waveform of delay suppression 1 1 +u+ shifted backward. The maximum current sum value of 111A indicated by the dotted line is shown as a reference for comparison. In this figure, when the above-mentioned discrimination condition is satisfied, the suppression amount ■■ at that time and the delay suppression amount IR3 are compared and the larger one is adopted as the suppression amount ■I. By doing this, the amount of suppression increases, making it possible to more reliably prevent malfunctions and minimizing the operation delay period in the event of an internal accident. In addition, in this example, the amount of suppression! ■The amount of delay suppression compared to ■ was limited to IREl+, but
A plurality of delay suppression amounts I corresponding to a plurality of different delay angles θI
Using RE, calculate the maximum value from the suppression amount +1t and these multiple delay suppression amounts IRE? By taking the amount of suppression at that point in time, it becomes possible to set a more appropriate amount of suppression and operation delay period in the event of an internal accident. The third suppression amount ■ is the suppression amount IRE in the second state when the discrimination condition is satisfied. Instead of increasing the suppression amount ■■ by a method such as determining the delay suppression amount ■■, the relay device is put in an inoperable state jl! You can also achieve the same purpose by locking it. Of course, even in this case, if the suppression amount +1E is set equal to a specific value as described above, it is practical because it allows common processing other than the difference in whether or not to put it in the inactive state. ..
1/2 of the maximum current sum value IXA under the above-mentioned discrimination conditions
Instead of comparing the current sum minimum value IH+, the operation amount l
The same result can be obtained by comparing , and the minimum current sum value ■■. Which one to adopt is determined based on a comprehensive judgment that also takes into account other factors when creating the overall algorithm. [Effect of the invention] As mentioned above, this invention is a secondary current transformer for measuring instruments. Among the terminal currents as currents, the maximum value of the current sum (■) is the larger of the two current sums: the sum It of the inflow current to the bus bar, and the sum I of the outflow current A. Find the determination coefficient K for values in the range of more than 0 and less than 1, and the maximum current sum (1+xa
Let the product be the state judgment {lI[c, and the amount of movement ■. is this condition judgment value! , the larger state is the first state, the smaller state is the second state, and the first calculation coefficient K, which has a value within the range of 0.4 or more and less than 0.5, and the maximum t flow sum value IMA. Let the product be the first suppression amount ■■ and the suppression amount I1 in the first state described above, and the product of the second operation coefficient K, which has a value within the range of more than 0 and less than 0.8, and the operation amount Id. Second suppression 1
1 as the suppression amount IRE in the second state described above.
Therefore, in the case of an internal accident in which a ground fault occurs within the range of busbar protection, the operating amount Id is always equal to the suppression amount I. Suppress Dong ■. is an appropriate value without becoming excessive, and in the case of an external accident where a ground fault occurs outside the protection range,
Even if the current concentrates on one terminal where a ground fault occurred and the core of the current transformer at that terminal becomes saturated, what happens? Even if the operating position (1) increases due to the deficit in the secondary current due to saturation of the heart, this is determined to be the second state, and the period during which this state is satisfied is T! The above-mentioned second suppression amount is added to the suppression amount IR3! . By adopting this method and increasing the amount of suppression as the degree of saturation increases, malfunctions become less likely to occur. The first and second calculation coefficients K,,K. Set the above range to suppress the amount! By calculating ■, the saturation level is 80%.
The following operations can be performed normally. Note that the sum of only the positive waves of each secondary current is used as the inflow current Id, and the outflow current 1. A practical calculation method is to take the sum of only the negative waves of each secondary current. Also, the inflow current is 1, and the outflow current is 1! The smaller value of , and is the minimum current sum value ■d, and the first suppression amount! ■ and operation amount I
The sum with N is set as the third suppression amount IR3, and the current sum maximum value ■ during the period T1 in which the first state is satisfied. One-half of the current sum minimum value Idl. The determination condition is whether or not the condition that the phase angle continues to be equal to or smaller than 90° is satisfied, and the period T! after this determination condition is satisfied is satisfied. What? By setting the suppression amount IRE equal to the first suppression amount IR1 and setting the suppression amount IRE in the subsequent period T8 when the discrimination condition is not satisfied to the third suppression amount r+ts, each meter of the bus protection relay device It is possible to improve the saturation rate of 80% or less, which can lead to malfunction when the instrument current transformer is saturated due to the influence of the low-pass filter through which the secondary current of the instrument current transformer passes, and to reduce the inflow current [, And outflow current! , and the operating amount Id does not become zero even in steady state, malfunction can be avoided. Furthermore, when the above-mentioned discrimination condition is satisfied, the suppression amount IRE in the second state is changed to the third suppression 1 at that point.
Suppression amount IR3 corresponding to 1 ++3 and from that point? ! Different number of phase angles θ. The suppression amount is further increased by setting the maximum suppression amount among the plurality of delayed suppression amounts IRE, which is the third suppression amount 113 delayed from the previous point in time, as the suppression IIRE at that point in time. This makes it possible to reliably prevent malfunctions, and also to prevent the delay period for the operation from becoming too large. In addition, as a determination condition, the amount of movement in period T1! .. The same effect as the above-mentioned discrimination condition can be obtained by determining whether the condition that the current sum is equal to or smaller than the minimum current sum value 1111 continues for a phase angle of 90 degrees or more, so other factors can be comprehensively considered. It is only necessary to make a judgment and adopt the optimal discriminant condition. Furthermore, instead of increasing the suppression amount tut, the same effect can be achieved by making the relay device inoperable during that period.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は母線保護継電装置のデータ処理部の構成を示す
ブロック図、第2図はこの発明の第1の図は第2の実施
例におけるローバスフィルタの影響を示す動作電流の波
形図、第5図は同じく外部事故時の流入電流と流出電流
との波形の例を示す波形図、第6図は同じく外部事故時
の波形を示す波形図、第7図はこの発明の第3の実施例
を説明するための波形図、第8図は環状母線と母線保護
継電装置との単線結線図、第9図は母線保護の範囲外で
地絡事故が起こった場合を示す要部単線結線図、第10
図は第9図での計器用変流器の鉄心が飽和した場合の波
形図、第111は計器用変流器の鉄心が飽和したときの
電流波形を示す波形図である. l4^・・・計器用変 11,  12.  13.  14.  11^, 
 12A,  13A,流器、5・・・サンプルホール
ド回路、6・・・マルチプレクサ、7・・・^−D変換
器、8・・・制御回路、9・・・コンビエータ、9l・
・・MPU92・・・記憶部、93・・・出力部、94
・・・データパス、21, 22. 23. 24・・
・遮断器、31, 32. 33, 34, 32A,
 33A・・・端子、100・・・環状母線、lot・
・・母線、¥1図 第2口 牝幼牽(%) 第3図 拓5図 鳩6図 第δ図 括10図 峙関→ 詩閣→ 葛f/図
FIG. 1 is a block diagram showing the configuration of the data processing section of the bus protection relay device, and FIG. 2 is a waveform diagram of the operating current showing the influence of the low-pass filter in the second embodiment. , FIG. 5 is a waveform diagram showing an example of waveforms of an inflow current and an outflow current at the time of an external fault, FIG. 6 is a waveform chart showing a waveform at the time of an external fault, and FIG. A waveform diagram for explaining the embodiment, Fig. 8 is a single line connection diagram between the annular bus bar and the bus protection relay device, and Fig. 9 is a main single line diagram showing the case where a ground fault occurs outside the range of bus protection. Wiring diagram, No. 10
Figure 111 is a waveform diagram showing the current waveform when the core of the voltage transformer in Figure 9 is saturated, and Figure 111 is a waveform diagram showing the current waveform when the core of the voltage transformer is saturated. l4^...Instrument change 11, 12. 13. 14. 11^,
12A, 13A, flow device, 5... sample hold circuit, 6... multiplexer, 7...^-D converter, 8... control circuit, 9... combinator, 9l.
...MPU92...Storage section, 93...Output section, 94
...Data path, 21, 22. 23. 24...
- Breaker, 31, 32. 33, 34, 32A,
33A...Terminal, 100...Annular bus bar, lot.
... Bus line, ¥ 1 figure 2 mouth female young catch (%) figure 3 drawing 5 figure pigeon 6 figure δ bracket 10 figure seki → Shikaku → kudzu f / figure

Claims (1)

【特許請求の範囲】 1)母線の各端子に設けられた計器用変流器の二次電流
を入力信号とし、これら各端子電流のベクトル和の絶対
値を動作量I_dとし、動作量I_dに対して継電器動
作を抑制する抑制量I_R_Eを前記各端子電流から演
算により求める比率差動保護継電器からなる母線保護継
電装置において、 各端子電流の瞬時値の正波のみの和I_Pと負波のみの
和I_Nとの大きい方の値を電流和最大値I_M_Aと
し、値が0を越え1未満の範囲内にある判定係数K_1
と前記電流和最大値I_M_Aとの積を状態判定値I_
cとし、値が0.4以上0.5未満の範囲内にある第1
の演算係数K_R_1と前記電流和最大値I_M_Aと
の積を第1の抑制量I_R_1、値が0.8以上1未満
の範囲内にある第2の演算係数K_R_2と前記動作量
I_dとの積を第2の抑制量I_R_2として、前記動
作量I_dが前記状態判定値I_cよりも小さいときを
第1の状態とし、この第1の状態が満足されている期間
T_1における抑制量I_R_Eを前記第1の抑制量I
_R_1に等しくし、前記動作量I_dが前記状態判定
値I_cよりも大きいときを第2の状態とし、この第2
の状態が満足されている期間T_2における抑制量I_
R_Eを前記第2の抑制量I_R_2に等しくすること
を特徴とする母線保護継電装置。 2)母線の各端子に設けられた計器用変流器の二次電流
を入力信号とし、これら各端子電流のベクトル和の絶対
値を動作量I_dとし、動作量I_dに対して継電器動
作を抑制する抑制量I_R_Eを前記各端子電流から演
算により求める比率差動保護継電器からなる母線保護継
電装置において、 各端子電流の瞬時値の正波のみの和I_Pと負波のみの
和I_Nとの大きい方の値を電流和最大値I_M_Aと
し、各端子電流の瞬時値の正波のみの和I_Pと負波の
みの和I_Nとの小さい方の値を電流和最小値I_M_
1とし、値が0を越え1未満の範囲内にある判定係数K
_1と前記電流和最大値I_M_Aとの積を状態判定値
I_cとし、値が0.4以上0.5未満の範囲内にある
第1の演算係数K_R_1と前記電流和最大値I_M_
Aとの積を第1の抑制量I_R_1、値が0.6以上1
未満の範囲内にある第2の演算係数K_R_2と前記電
流最大値I_M_Aとの積を第2の抑制量I_R_2、
第1の抑制量I_R_1と動作量I_dとの和を第3の
抑制量I_R_3とし、前記動作量I_dが前記状態判
定値I_cよりも小さいときを第1の状態とし、この第
1の状態が満足されている期間T_1における抑制量I
_R_Eを前記第1の抑制量I_R_1に等しくし、前
記動作量I_dが前記状態判定値I_cよりも大きいと
きを第2の状態とし、期間T_1において電流和最大値
I_M_Aの2分の1が前記電流和最小値I_M_1に
等しいか小さい状態が位相角にして90°以上継続する
という条件が満足されたかどうかを判別条件として、第
1の状態から第2の状態へ変化した時点から、電気角に
して180°から270°の間は抑制量I_R_Eを前
記第1の抑制量I_R_1に等しくし、その期間T_2
における抑制量I_R_Eを第3の抑制量I_R_3と
することを特徴とする母線保護継電装置。 3)請求項2記載の母線保護継電装置において、前記判
別条件を満足する場合に、その時点での第3の抑制量I
_R_3と、その時点より複数の異なる所定の位相角だ
け前の時点から遅延された複数の遅延抑制量I_R_R
との中で、最大の抑制量を期間T_2における抑制量I
_R_Eとすることを特徴とする母線保護継電装置。 4)請求項2又は3記載の母線保護継電装置において、 判別条件を、期間1において動作量I_dが電流和最小
値I_M_1に等しいか小さい状態が位相角にして90
°以上継続するという条件が満足されたかどうかとする
ことを特徴とする母線保護継電装置。 5)請求項2ないし4の1つの項に記載の母線保護継電
装置において、 判別条件を満足した後の期間T_2では継電装置を不動
作状態にすることを特徴とする母線保護継電装置。
[Claims] 1) The secondary current of the instrument current transformer provided at each terminal of the bus bar is used as an input signal, the absolute value of the vector sum of these terminal currents is taken as the operating amount I_d, and the operating amount I_d is In contrast, in a busbar protection relay device consisting of a ratio differential protection relay, in which the suppression amount I_R_E for suppressing the relay operation is calculated from each terminal current, the sum I_P of only the positive wave of the instantaneous value of each terminal current and only the negative wave The larger value of the sum I_N is set as the maximum current sum value I_M_A, and the judgment coefficient K_1 whose value is within the range of more than 0 and less than 1
The product of the current sum maximum value I_M_A is the state determination value I_
c, and the first value is within the range of 0.4 or more and less than 0.5.
The product of the calculation coefficient K_R_1 and the maximum current sum value I_M_A is the first suppression amount I_R_1, and the product of the second calculation coefficient K_R_2 whose value is within the range of 0.8 or more and less than 1 and the operation amount I_d is As the second suppression amount I_R_2, the first state is when the operation amount I_d is smaller than the state determination value I_c, and the suppression amount I_R_E in the period T_1 in which this first state is satisfied is the first state. Suppression amount I
_R_1, and when the operation amount I_d is larger than the state determination value I_c, it is defined as a second state.
Suppression amount I_ in period T_2 when the condition is satisfied
A bus protection relay device characterized in that R_E is made equal to the second suppression amount I_R_2. 2) Use the secondary current of the instrument current transformer provided at each terminal of the bus as an input signal, set the absolute value of the vector sum of these terminal currents as the operating amount I_d, and suppress the relay operation with respect to the operating amount I_d. In a busbar protection relay device consisting of a ratio differential protection relay, in which the suppression amount I_R_E is calculated from each terminal current, the sum I_P of only positive waves and the sum I_N of only negative waves of the instantaneous values of each terminal current are large. This value is the maximum current sum value I_M_A, and the smaller value of the sum I_P of only positive waves and the sum I_N of only negative waves of the instantaneous values of each terminal current is the minimum current sum value I_M_
1, and the determination coefficient K whose value is within the range of more than 0 and less than 1
The product of _1 and the maximum current sum value I_M_A is defined as the state determination value I_c, and the first calculation coefficient K_R_1 whose value is within the range of 0.4 or more and less than 0.5 and the current sum maximum value I_M_
The product with A is the first suppression amount I_R_1, and the value is 0.6 or more 1
The product of the second calculation coefficient K_R_2 and the current maximum value I_M_A, which is within a range of less than , is the second suppression amount I_R_2,
The sum of the first suppression amount I_R_1 and the operation amount I_d is defined as a third suppression amount I_R_3, and the time when the operation amount I_d is smaller than the state determination value I_c is defined as a first state, and this first state is satisfied. Suppression amount I during period T_1
_R_E is set equal to the first suppression amount I_R_1, the operation amount I_d is larger than the state determination value I_c, the second state is set, and in period T_1, one half of the maximum current sum value I_M_A is the current The determination condition is whether the condition that a state equal to or smaller than the minimum sum value I_M_1 continues for 90 degrees or more in terms of phase angle is satisfied, and from the time when the first state changes to the second state, the electrical angle is Between 180° and 270°, the suppression amount I_R_E is made equal to the first suppression amount I_R_1, and the period T_2
A busbar protection relay device characterized in that a suppression amount I_R_E in is set as a third suppression amount I_R_3. 3) In the busbar protection relay device according to claim 2, when the discrimination condition is satisfied, the third suppression amount I at that time
_R_3 and a plurality of delay suppression amounts I_R_R delayed from a point in time by a plurality of different predetermined phase angles before that point in time.
, the maximum amount of suppression is the amount of suppression I in period T_2
A busbar protection relay device characterized by _R_E. 4) In the bus bar protection relay device according to claim 2 or 3, the determination condition is that the operating amount I_d is equal to or smaller than the minimum current sum value I_M_1 in period 1 at a phase angle of 90.
A busbar protection relay device characterized in that it determines whether or not a condition of continuing for more than ° is satisfied. 5) The busbar protection relay device according to one of claims 2 to 4, wherein the busbar protection relay device is characterized in that the relay device is brought into an inoperable state during a period T_2 after the determination condition is satisfied. .
JP2156138A 1989-10-19 1990-06-14 Bus protection relay Expired - Lifetime JP2757230B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2156138A JP2757230B2 (en) 1989-10-19 1990-06-14 Bus protection relay

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP27215589 1989-10-19
JP1-272155 1989-10-19
JP2156138A JP2757230B2 (en) 1989-10-19 1990-06-14 Bus protection relay

Publications (2)

Publication Number Publication Date
JPH03215115A true JPH03215115A (en) 1991-09-20
JP2757230B2 JP2757230B2 (en) 1998-05-25

Family

ID=26483964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2156138A Expired - Lifetime JP2757230B2 (en) 1989-10-19 1990-06-14 Bus protection relay

Country Status (1)

Country Link
JP (1) JP2757230B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4372937A1 (en) * 2022-11-15 2024-05-22 Hitachi Energy Ltd A fault discrimination and a current transformer saturation detection for a differential protection system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4372937A1 (en) * 2022-11-15 2024-05-22 Hitachi Energy Ltd A fault discrimination and a current transformer saturation detection for a differential protection system
WO2024105041A1 (en) * 2022-11-15 2024-05-23 Hitachi Energy Ltd A fault discrimination and a current transformer saturation detection for a differential protection system

Also Published As

Publication number Publication date
JP2757230B2 (en) 1998-05-25

Similar Documents

Publication Publication Date Title
US7196884B2 (en) Apparatus and method for detecting the loss of a current transformer connection coupling a current differential relay to an element of a power system
KR19980024669A (en) Sequence-based network protector with forward overcurrent protection and pumping protection
US8451574B2 (en) Method and system for through fault detection in electrical devices
US8395871B2 (en) Device and method for detecting faulted phases in a multi-phase electrical network
JPS62110168A (en) Digital trouble point locating apparatus
JPH03215115A (en) Bus protecting relay device
JPH01190215A (en) Phase selector
JP2019030073A (en) Zero-phase current differential relay
JP2957187B2 (en) Secondary circuit disconnection detector for instrument transformer
JP7408029B1 (en) Protection methods for zero-phase current differential relays and three-phase transformers
Kasztenny et al. Digital low-impedance bus differential protection with reduced requirements for CTs
JP7250230B1 (en) Transformer protection relay and transformer protection method
Kasztenny et al. A new algorithm for digital low-impedance protection of busbars
Kasztenny et al. Digital low-impedance bus differential protection–Review of principles and approaches
CN113659546A (en) Zero sequence direction element compensation method and system for double-circuit line power supply system
Kang et al. A busbar differential protection relay immune to the effects of CT saturation
JP2011078293A (en) Disconnection protective relay device
JPS6392220A (en) Failure detector for power system
JP2011091910A (en) Disconnection protective relay system
JPS6087618A (en) Reverse phase relaying device
JPS58172920A (en) Overload detector
JPH0514502B2 (en)
JPS59204418A (en) Trestle multichannel ground-fault protecting relay
JPS5886824A (en) Bus protecting relay unit
JPS62272818A (en) Bus-bar protective relay

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080313

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090313

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090313

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100313

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110313

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110313

Year of fee payment: 13