JPS6087618A - Reverse phase relaying device - Google Patents

Reverse phase relaying device

Info

Publication number
JPS6087618A
JPS6087618A JP19402483A JP19402483A JPS6087618A JP S6087618 A JPS6087618 A JP S6087618A JP 19402483 A JP19402483 A JP 19402483A JP 19402483 A JP19402483 A JP 19402483A JP S6087618 A JPS6087618 A JP S6087618A
Authority
JP
Japan
Prior art keywords
phase
current
circuit
negative
electricity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19402483A
Other languages
Japanese (ja)
Inventor
稲村 国康
益雄 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP19402483A priority Critical patent/JPS6087618A/en
Publication of JPS6087618A publication Critical patent/JPS6087618A/en
Pending legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は電力系統の保護を行う保護継電装置、特に逆相
電流に応動する保護継電装置に関りる。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a protective relay device that protects a power system, and particularly to a protective relay device that responds to negative sequence current.

[発明の技術的背景とその問題点1 第1図は従来の逆相過電流継電器の適用例を示すも1の
で、同図において、1は母線、2は変流器、3−1.3
−2は送電線である。4−1.4−2は各々送電1!1
3−1..3−2における電圧を降圧して配電線5を通
して負荷56に電力を供給する変圧器であり、逆相過電
流継電器7は、変流器2を介して送電13−2に接続さ
れている。一般には他の継電器もこの系統を保!するた
めに用いられているが、逆相過、電流、継電器の適用を
説明するのに必要ではないので、こ、こ、では図示しな
いものとする。
[Technical background of the invention and its problems 1 Figure 1 shows an example of application of a conventional negative phase overcurrent relay. In the figure, 1 is a bus bar, 2 is a current transformer, and 3-1.3
-2 is a power transmission line. 4-1.4-2 are respectively power transmission 1!1
3-1. .. The reverse phase overcurrent relay 7 is connected to the power transmission 13 - 2 via the current transformer 2 . Generally, other relays also maintain this system! However, since it is not necessary to explain the application of reverse phase faults, currents, and relays, it is not shown here.

このような系統において、変圧器4−2の2次側つまり
配電線5に事故が起きた場合を想定する。
In such a system, it is assumed that an accident occurs on the secondary side of the transformer 4-2, that is, on the distribution line 5.

変圧器4−2の2次側における事故の場合、その事故電
流は変圧器4−2を介して事故点に流れ込むため送電線
3−2における事故電流に比べ非常に小さな値となる。
In the case of a fault on the secondary side of the transformer 4-2, the fault current flows into the fault point via the transformer 4-2, and therefore has a much smaller value than the fault current in the power transmission line 3-2.

このため系統が正常時に送電線3−2を流れる負荷電流
と配電線5に事故Fが起きた場合の事故電流を含む負荷
電流とはその大きさにおいて大きな変化はない。このよ
うな事故の場合、第1図に示すような3相電流間の不平
衡により生り゛る逆相電流の大きさにより動作する逆相
過電流継電器7を用いるとこの種の事故を検出すること
が可能となる。つまり、この系統で言えば、逆相過電流
継電器7は変圧器4−2の2次−配電線5にお1ノる事
故検出を目的として設置されてい、る。 、前述したよ
うに逆相過電流継電器7は配電線5にお()る事故を検
出するものであるが、配電FA5における事故として検
出する必要のある最小の逆相電流は一例として挙げると
01A程度の場合があり、そのIこめに逆相過電流継電
器を畠感度検出とする事が必要である。また、逆相電流
の最大蛸は高々1△程度であり、これは各相電流では5
A程度の大きさとなる。
Therefore, there is no large difference in magnitude between the load current flowing through the power transmission line 3-2 when the system is normal and the load current including the fault current when the fault F occurs in the distribution line 5. In the case of such an accident, it is possible to detect this type of accident by using the negative sequence overcurrent relay 7, which operates based on the magnitude of the negative sequence current caused by the unbalance between the three phase currents, as shown in Figure 1. It becomes possible to do so. In other words, in this system, the negative phase overcurrent relay 7 is installed in the secondary distribution line 5 of the transformer 4-2 for the purpose of detecting an accident. As mentioned above, the negative sequence overcurrent relay 7 is for detecting a fault in the distribution line 5, but the minimum negative sequence current that needs to be detected as a fault in the distribution FA5 is, for example, 01A. In some cases, it is necessary to use reverse-phase overcurrent relays with Hatake sensitivity detection. In addition, the maximum value of the negative phase current is about 1△ at most, which is 5% for each phase current.
It will be about the size of A.

一方、送電線事故を検出する過電流継電器は10A程痕
に整定されている。まIζ、逆相過電流継電器の誤差は
変流器2の誤差を含め入力電流の増加とともに増加する
。従って前述の過電流継電器との協調を考え、さらにマ
ージンを含めると、12A程度までの広い直線性が必要
となる。
On the other hand, overcurrent relays for detecting transmission line faults are set at about 10A. Also, the error of the negative phase overcurrent relay, including the error of the current transformer 2, increases as the input current increases. Therefore, considering coordination with the above-mentioned overcurrent relay and including a margin, a wide linearity of up to about 12 A is required.

このように広い直線性領域を確保し、前述の高感度検出
を実現することは非常に困難である。そ□れは、12゛
″A程度までの直線性を得ようとすると、検出感度で鼠
る01Aに対重る継電器内部の電圧が微小となるので、
ノイズの影響を受りヤ)りくなり、必然的に安定した動
作を期待できないからである。
It is extremely difficult to secure such a wide linearity region and realize the high-sensitivity detection described above. The reason is that when trying to obtain linearity up to about 12"A, the voltage inside the relay becomes very small compared to 01A, which increases in detection sensitivity.
This is because it is affected by noise, and stable operation cannot be expected.

さらにまた、ノイズに対し強いハード構成とりるために
直線性領域を5A程度と覆ると、以下に詳述するように
演算増幅器の飽和により前述の誤差が急激に増加し、7
〜8A程瓜で逆相過電流継電器が誤動作し、過電流継電
器との協調に問題が生じるという不具合がある。
Furthermore, if the linearity region is increased to about 5A in order to have a hardware configuration that is resistant to noise, the above-mentioned error will increase rapidly due to the saturation of the operational amplifier, as detailed below.
There is a problem in that the negative phase overcurrent relay malfunctions at ~8A, causing problems in coordination with the overcurrent relay.

そこで、前述の誤差の急激な増加による誤動作について
その理由を以下に説明−りる。
Therefore, the reason for the malfunction due to the sudden increase in error mentioned above will be explained below.

逆相過電流継電器では、3相入力にJ、り逆相成分を抽
出りる必要があり、このlcめにm−に演算増幅器が使
用されている。この演算増幅器の出力電圧は電源電圧の
70%程度−が飽和する事が知られている。
In the negative-phase overcurrent relay, it is necessary to extract the negative-phase component J to the three-phase input, and an operational amplifier is used for this lcth m-. It is known that the output voltage of this operational amplifier is saturated at about 70% of the power supply voltage.

この様な演算増幅器を用いlこ逆相゛過電流継電器に3
相平衡電流を入力した場臀の入力電流と逆相過電流継電
器が合成する逆相電気量との関係をグラフ化すると第2
図に示すとおりになる。ここで11は逆相電気量、12
パは□逆相□過′−流継?lf器の動作限界レベルを示
づ。 □ ′I2図に承りように、入力電流が平胎状態にあっても
、各相の電流値が人1きく:□なると演算増幅器が飽和
し逆相電気Wが急激に増加し見′が6月逆相過電流継電
器の動作限界レベルが低下し誤Uノ作をするという不只
合がある。
Using such an operational amplifier, 3
When a phase balance current is input, the relationship between the input current of the buttock and the negative phase electrical quantity synthesized by the negative phase overcurrent relay is graphed as follows.
The result will be as shown in the figure. Here, 11 is the negative phase electrical quantity, 12
Is Pa □ reverse phase □ passing′-flowing? Indicates the operating limit level of the lf device. □ As shown in Figure I2, even if the input current is in the flat state, the current value of each phase increases by 1. When the operational amplifier becomes saturated, the negative phase electricity W increases rapidly, and the current value becomes 6. There is a disadvantage that the operating limit level of the reverse-phase overcurrent relay decreases, causing erroneous U operation.

し発明の目的] 本発明は′前記事情に鑑みてなされlこもので、イ1 の目的は保護領域の保護を確実に行□いかつ誤動□作、
誤不動作のない逆相過電流継電装置を提供するにある。
[Object of the Invention] The present invention has been made in view of the above-mentioned circumstances, and the purpose of (1) is to securely protect the protected area and prevent malfunctions.
An object of the present invention is to provide a negative sequence overcurrent relay device that does not malfunction.

[発明の概要] 本発明は、上記目的を達成Jるために、電力系統の3相
電流に含まれる逆相分又は逆相分に関係する電気、量を
検出、する逆相継電器において、前記3相電流から得ら
れる他の電気量が所定舶以上になった場合、逆相継電器
、の動作をロックする逆相継電装置6に関するものであ
る。そして、他の電気量どしては、正相電流、3相入力
電流の最大1([または平均値あるいはこれらに関係し
た電気量を使用するものである。
[Summary of the Invention] In order to achieve the above object, the present invention provides an anti-phase relay that detects an anti-phase component or an amount of electricity related to an anti-phase component included in a three-phase current of an electric power system. This invention relates to a negative phase relay device 6 that locks the operation of a negative phase relay when the amount of other electricity obtained from the three-phase current exceeds a predetermined value. As for other electric quantities, the maximum value of the positive phase current and the three-phase input current (or the average value or the electric quantity related to these is used).

[発明の実施例] 以下図面を参照して本発明の一実施例を説明りる。第3
図は、本発明、による逆相過電流継電装置6の一実施例
の構成を示すブロック図である。
[Embodiment of the Invention] An embodiment of the present invention will be described below with reference to the drawings. Third
The figure is a block diagram showing the configuration of one embodiment of the negative phase overcurrent relay device 6 according to the present invention.

第3図に於いて、21.22及び23は各々3相電流1
.、I、及びI□を継電器内部に尋、入りる人力変換器
である。継電器内部に導入された前記3相電流1.、l
、及びITに各々比例した電気m IR,iy及びiは
逆相電流合成回路24により逆相電気■12及び正相電
流合成回路25により正相電気量すとなる。26−1.
26−2は全波整流回路、27−1.27−2は入力が
所定値以上となったとき出力を出すレベル検出回路、2
8〜1.28−2はレベル検出回路の出力を連続化Jる
連続回路。
In Fig. 3, 21, 22 and 23 are the three-phase current 1, respectively.
.. , I, and I□ are inserted into the relay. The three-phase current introduced into the relay 1. ,l
, and the electricity m IR, iy, and i, which are proportional to IT, are converted into positive phase electricity quantities by the negative phase current synthesis circuit 24 and the positive phase current synthesis circuit 25 and 12, respectively. 26-1.
26-2 is a full-wave rectifier circuit, 27-1.27-2 is a level detection circuit that outputs an output when the input exceeds a predetermined value, and 2
8 to 1.28-2 is a continuous circuit that serializes the output of the level detection circuit.

29はN07回路、30は論理積回路で(bる。。29 is the N07 circuit, and 30 is an AND circuit.

第4図に各々逆相電流合成回路24.7 if−相電流
合成回路25の一構成例を承り。
FIG. 4 shows an example of the configuration of the negative-phase current combining circuit 24, 7 and the if-phase current combining circuit 25, respectively.

電気IEI iR,ix及びiTは各々入力変換器21
,22及び23の出力であって、各相電流I、、l、及
び1−に仕例した電気1nL31は電気角で−120゜
、移相する回路、32は電気角で+ 120°移相する
回路、33は電気量i、及び移相回路31.32の出力
の和をめる加算回路である。
Electrical IEI iR, ix and iT each have an input converter 21
, 22 and 23, and the electricity 1nL31, which is divided into phase currents I, , l, and 1-, has a phase shift of -120 degrees in electrical angle, and 32 has a phase shift of +120 degrees in electrical angle. The circuit 33 is an adder circuit that sums the electric quantity i and the outputs of the phase shift circuits 31 and 32.

したがって逆相電流合成回路24の出力は124−1.
l:L20+1TH−20°となり、この値は対称座標
法により用らかなように逆相電気量に比例した1ぽ1と
なる。また正相電流合成回路25の出力はi、−1−i
、] 20 + i、d 20°となり、この値は正相
電気量に比例した値となる。
Therefore, the output of the negative phase current combining circuit 24 is 124-1.
1:L20+1TH-20°, and this value becomes 1po1, which is proportional to the negative phase electric quantity, so that it can be easily used by the symmetrical coordinate method. Also, the output of the positive sequence current combining circuit 25 is i, -1-i
, ] 20 + i,d 20°, and this value is proportional to the positive-sequence electricity quantity.

次に、前記のように構成した本発明の逆相過電流継電装
置の作用を説明する。
Next, the operation of the negative phase overcurrent relay device of the present invention configured as described above will be explained.

第5図において、41.42は前)小の如き構成の逆相
電流合成回路24及び正相重大合成回路25に3相平衡
電流が入力された場合づ”なりらiF富1k11の各々
の回路の出力である逆相電気量及び正相電気量を示す。
In FIG. 5, 41 and 42 indicate the respective circuits of the iF 1k11 when three-phase balanced currents are input to the negative-phase current combining circuit 24 and the positive-phase critical combining circuit 25, which are configured as shown in FIG. shows the negative-sequence electrical quantity and positive-sequence electrical quantity that are the output of

43.44はそれぞれ逆相電気量41及び正相電気量4
2に対応するレベル検出回路27−1.27−2の検出
レベルを示づ。この図に示すように、3相入力電流が平
衡状態にあっても各相の電流値が大きくなると、逆相成
分を抽出、するために使用される演算増幅器出力の飽和
が原因、で逆相電気量41は急激に増加づることにイす
る。一方、正相電気量42は各相の電流(IC1が大き
くなると、これに比例して増加しやがて飽和状態の一定
レベルとなる。従って第3図に示しIごレベル検出回路
27−2の検出レベルを第5図図示の検出レベル44に
設定すれば入力電流のY点において、レベル検出回路2
7−2.連続化回路28−2.NOT回路29.及び論
理積回路30により逆相電気量側の出力を阻止した状態
と(<る。
43 and 44 are the negative sequence electricity quantity 41 and the positive sequence electricity quantity 4, respectively.
The detection levels of the level detection circuits 27-1 and 27-2 corresponding to 2 are shown. As shown in this figure, even if the three-phase input current is in a balanced state, when the current value of each phase increases, the saturation of the output of the operational amplifier used to extract the negative phase component causes the phase to be negative. The amount of electricity 41 increases rapidly. On the other hand, as the current of each phase (IC1) increases, the positive-sequence electricity quantity 42 increases in proportion to this, and eventually reaches a constant level in the saturated state.Therefore, as shown in FIG. If the level is set to the detection level 44 shown in FIG. 5, the level detection circuit 2
7-2. Continuation circuit 28-2. NOT circuit 29. and a state in which the output of the negative phase electric quantity side is blocked by the AND circuit 30 (<).

このように動作阻止とした場合の逆相過電流継電器の特
性を第6図の線45に示す。っまり線45は逆相過電流
継電器の特性の限界を承り線である。図中点線は従来の
特性である。また、線46は過電流継電器の整定値を示
す゛。
The characteristic of the negative phase overcurrent relay when the operation is blocked in this way is shown by the line 45 in FIG. The straight line 45 is a line that accepts the limits of the characteristics of the negative phase overcurrent relay. The dotted line in the figure is the conventional characteristic. Further, line 46 indicates the setting value of the overcurrent relay.

この第6図からもわかるように従来必要であった広い直
線性領域が本特性では不要となり、また保護領域内の事
故は確実に検出可能とし!、bのである。
As can be seen from Fig. 6, this characteristic eliminates the need for a wide linearity region that was conventionally necessary, and also makes it possible to reliably detect accidents within the protected region! , b.

なお、40は事故時の逆相電気量であり、図示しない事
故時の正相電気量とのアンド条1′1が成立覆るので、
逆相継電器は正常の動作を(iい問題はない。
Note that 40 is the negative phase electricity quantity at the time of the accident, and the AND line 1'1 with the positive sequence electricity quantity at the time of the accident (not shown) is established, so
The reverse phase relay operates normally (there are no problems).

以上説明したように本実施例によれば、他の継電器と協
調を取る必要がなくなり、かつ^感度な逆相過電流継電
装置を容易に実現でさる、。
As explained above, according to this embodiment, there is no need to coordinate with other relays, and a sensitive reverse phase overcurrent relay device can be easily realized.

第7図は本発明の他の実施例のブロック図を示1゜これ
は正相電流による抑制イ」逆相過′t11流II電装置
の構成例である。第7図において、第3図と同一の箇所
には同一の符号をj14シてその説明は省略するものと
する。
FIG. 7 shows a block diagram of another embodiment of the present invention. This is an example of the construction of an electric device for suppressing negative phase current and negative phase current. In FIG. 7, the same parts as in FIG. 3 are denoted by the same reference numerals and their explanations will be omitted.

34は全波整流回路26−2により全波整流された正相
電気量を平滑する平滑化回路、、35は5V滑化回路3
4の出力を所定の大きさとづる整定回路、36は全波整
流回路26−1の出力ぐある逆相電気量と整定回路35
の出ツノである正相電気量の差が一定値ものとき送出す
る判定回路である。
34 is a smoothing circuit for smoothing the positive-sequence electricity quantity that has been full-wave rectified by the full-wave rectifier circuit 26-2, and 35 is a 5V smoothing circuit 3.
4 is a setting circuit that sets the output to a predetermined magnitude, and 36 is a setting circuit 35 that sets the output of the full-wave rectifier circuit 26-1 to the negative phase electric quantity.
This is a determination circuit that sends out a signal when the difference in positive-sequence electrical quantity, which is the output point of the signal, is a constant value.

このような構成とした逆相過電流継電器;19の動作特
性は、入力電流の増加、により正相電気量も増加するた
め第8図のαに示すように整定回路35の整定値で決ま
る一定の傾きをもつIこ直線となる。
The operating characteristics of the negative phase overcurrent relay 19 configured as described above are constant, determined by the setting value of the setting circuit 35, as shown by α in FIG. It becomes a straight line with a slope of .

このような特性をもつ逆相過電流継電装置にJjいても
第5図に示すように入力電流が増加Jると、動作量であ
る逆相電気量は急激に増加覆るにもかかわらす、抑制量
である正相電気Wは一定であるため先の実施例と同様に
協調又はノイズの影響が問題であった。しかしながら、
第7図の様にレベル検出回路27−2.連続化回路28
−2.NO■回路29.論11!積回路30により正相
電気量が所定の大きさ以上となると前述のようにN O
T回路29の出力は“O”となり動作限11〜となる/
jめ、この点における特性が第8図βに示す゛ものとな
り前述の問題を解決できる。
Even in a reverse-sequence overcurrent relay device with such characteristics, as shown in Figure 5, when the input current increases, the amount of reverse-sequence electricity, which is the operating amount, increases rapidly. Since the positive phase electricity W, which is the amount of suppression, is constant, the influence of coordination or noise is a problem as in the previous embodiment. however,
As shown in FIG. 7, the level detection circuit 27-2. Continuation circuit 28
-2. NO■Circuit 29. Theory 11! When the positive sequence electricity amount exceeds a predetermined value due to the product circuit 30, as mentioned above, NO
The output of the T circuit 29 becomes "O" and the operation limit becomes 11~/
Therefore, the characteristic at this point becomes as shown in FIG. 8 β, and the above-mentioned problem can be solved.

逆相電流の抑制のために平滑化回路3/1.整定回路3
5及び判定回路36を設けているのは逆相継電器の検出
積置を高めるためである。
Smoothing circuit 3/1 for suppressing negative sequence current. Setting circuit 3
5 and the determination circuit 36 are provided in order to improve the detection accuracy of the reverse phase relay.

また、以上の説明では動作阻止とりる1、:めに正相電
気量を用いて説明したが本発明は正相電気量に限定され
るものではなく、たとえば3相入力電流の最大値あるい
は平均値等であっても各々の検出レベルを第5図44に
示づように定め1Lば伺等問題はない。
In addition, in the above explanation, the positive-sequence electric quantity was used to prevent the operation, but the present invention is not limited to the positive-sequence electric quantity; for example, the maximum value or the average value of the three-phase input current. Even if the detection level is 1L, there is no problem as long as each detection level is determined as shown in FIG. 544.

[発明の効果] 以上説明したように本発明によれば、系統の負荷電流の
大きさに応じた電気量を検出し、この大きさが所定の値
以上となったとき継電器動作を阻止Jるように構成した
ので、他の継電器と協調を取ることが不要となり高感度
な逆相継電装置が実現できる。
[Effects of the Invention] As explained above, according to the present invention, the amount of electricity corresponding to the magnitude of the load current in the grid is detected, and when this magnitude exceeds a predetermined value, the operation of the relay is blocked. With this configuration, it is not necessary to coordinate with other relays, and a highly sensitive reverse phase relay device can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は逆相過電流継電器の適用例を説明するための系
統図、第2図は従来技術の問題点を説明するための図、
第3図は本発明の−*施例のブロック構成図、第4図は
第3図の逆相電流合成回路及び正相電流合成回路のブロ
ック図、第5図は本発明の詳細な説明するための図、第
6図は第3図に示す動作特性図、第7図は本発明の他の
実施例のブロック構成図、第8図は第7図に示1本発明
の他の実施例の動作特性図である。 1・・・母線 2・・・変流器 3・・・送電線 4・・・変圧器 5・・・配電線 6・・・1ru3 7・・・逆相過電流継電器 11・・・逆相電気量 12・・・動作限界レベル 21 .22 .23・・・入力変換器24・・・逆相
電流合成回路 25・・・正相電流合成回路 26・・・全波整流回路 27・・・レベル検出回路 28・・・連続化回路 29・・・N0I−回路 30・・・論l!l!積I!
j1路31.32・・・移相回路 33・・・加締回路 34・・・平滑化回路35・・・
整定回路 36・・・判定回路41・・・逆相電気量 
42・・・正相電気量43、/14・・・検出レベル 45・・・逆相過電流継電器の動作特性46・・・過w
i流[f器の動作特性
Fig. 1 is a system diagram for explaining an application example of a negative phase overcurrent relay, Fig. 2 is a diagram for explaining problems of the conventional technology,
FIG. 3 is a block diagram of the -* embodiment of the present invention, FIG. 4 is a block diagram of the negative-sequence current combining circuit and positive-sequence current combining circuit of FIG. 3, and FIG. 5 is a detailed explanation of the present invention. 6 is an operational characteristic diagram shown in FIG. 3, FIG. 7 is a block diagram of another embodiment of the present invention, and FIG. 8 is a diagram of another embodiment of the present invention shown in FIG. 7. FIG. 1...Bus bar 2...Current transformer 3...Transmission line 4...Transformer 5...Distribution line 6...1ru3 7...Reverse phase overcurrent relay 11...Reverse phase Electricity amount 12...Operating limit level 21. 22. 23... Input converter 24... Negative sequence current synthesis circuit 25... Positive sequence current synthesis circuit 26... Full wave rectifier circuit 27... Level detection circuit 28... Continuation circuit 29...・N0I-Circuit 30... Theory l! l! Product I!
J1 path 31.32...Phase shift circuit 33...Tightening circuit 34...Smoothing circuit 35...
Setting circuit 36... Judgment circuit 41... Negative phase electricity amount
42... Positive sequence electricity amount 43, /14... Detection level 45... Operating characteristics of negative phase overcurrent relay 46... Excess w
I flow [F device operating characteristics

Claims (4)

【特許請求の範囲】[Claims] (1)電力系統の3相雷流に含まれる逆相弁又は逆相弁
に関係−4る電気口を検出する逆相継電器において、前
記3相電流から得られる逆相分又番よ逆相弁に関係する
他の一気量が所定値以上になったとき動作出力を生じる
手段と□、この手段の出力により逆相継電器の動作を阻
止する回路を値−え!こことを特徴とする逆相継電装置
(1) In a reverse-phase relay that detects a reverse-phase valve included in a three-phase lightning current in a power system or an electrical outlet related to a reverse-phase valve, the reverse phase component obtained from the three-phase current or the reverse phase A means for producing an operating output when the other voluminous volume related to the valve exceeds a predetermined value, and a circuit for blocking the operation of the reverse phase relay by the output of this means. A reverse phase relay device characterized by the following.
(2)3相電流から得られる他の電気量は、正相電流に
関係しIC電気量である特許請求の範囲第1項記載の逆
相継電装置。
(2) The negative phase relay device according to claim 1, wherein the other quantity of electricity obtained from the three-phase current is related to the positive-sequence current and is an IC quantity of electricity.
(3)3相電流から得られる他の電気量は、3相電流の
中の最大給に関係した電気量である特許請求の範囲&!
1項記載の逆相継電装置。
(3) The other quantity of electricity obtained from the three-phase current is the quantity of electricity related to the maximum supply among the three-phase currents.Claims &!
The negative phase relay device according to item 1.
(4)3相電流から得られる他の電気量は、3相電流の
平均値に関係した電気量である特1”1lJk求の範囲
第1項記載の逆相継電装置。
(4) The negative phase relay device according to item 1, wherein the other quantity of electricity obtained from the three-phase current is a quantity of electricity related to the average value of the three-phase current.
JP19402483A 1983-10-19 1983-10-19 Reverse phase relaying device Pending JPS6087618A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19402483A JPS6087618A (en) 1983-10-19 1983-10-19 Reverse phase relaying device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19402483A JPS6087618A (en) 1983-10-19 1983-10-19 Reverse phase relaying device

Publications (1)

Publication Number Publication Date
JPS6087618A true JPS6087618A (en) 1985-05-17

Family

ID=16317671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19402483A Pending JPS6087618A (en) 1983-10-19 1983-10-19 Reverse phase relaying device

Country Status (1)

Country Link
JP (1) JPS6087618A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016115100A (en) * 2014-12-15 2016-06-23 株式会社日立製作所 Detector receiving three-phase alternating current, power conversion device, detection method of receiving three-phase alternating current, and control method of power conversion device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016115100A (en) * 2014-12-15 2016-06-23 株式会社日立製作所 Detector receiving three-phase alternating current, power conversion device, detection method of receiving three-phase alternating current, and control method of power conversion device

Similar Documents

Publication Publication Date Title
US6442010B1 (en) Differential protective relay for electrical buses with improved immunity to saturation of current transformers
EP0316203B1 (en) Protective relay
US8395871B2 (en) Device and method for detecting faulted phases in a multi-phase electrical network
JPS6087618A (en) Reverse phase relaying device
JPH01190215A (en) Phase selector
JPS5843402Y2 (en) Hogokeiden Sochi
JPH04138384A (en) Detector for disconnection and open phase
JPH0514502B2 (en)
JPS6346647B2 (en)
SU1169072A1 (en) Device for short-circuit protection of three-phase reactor
JPS6264216A (en) Reverse phase current detector
JPS5855734B2 (en) Henkan Kairo Hogo Kayden Sochi
JPH023371B2 (en)
JPH01214220A (en) Harmonic suppression system for ratio differential relay
JPS605728A (en) Differential protecting relaying device
JPH01160313A (en) Protective relay
JPS61251419A (en) Zero current detection of variable frequency inverter
JPH0378426A (en) Line-to-ground fault detector
JPS62193511A (en) Svc overcurrent protective device
JPH03173312A (en) Ground distance relay
JPS5922450B2 (en) Inrush current judgment method
JPS6392220A (en) Failure detector for power system
JPS60156219A (en) Method of protecting and detecting ground fault of generator
JPS5992719A (en) Monitor of input unit for bus protecting relay
JPH0145295B2 (en)