JP2011091910A - Disconnection protective relay system - Google Patents

Disconnection protective relay system Download PDF

Info

Publication number
JP2011091910A
JP2011091910A JP2009242305A JP2009242305A JP2011091910A JP 2011091910 A JP2011091910 A JP 2011091910A JP 2009242305 A JP2009242305 A JP 2009242305A JP 2009242305 A JP2009242305 A JP 2009242305A JP 2011091910 A JP2011091910 A JP 2011091910A
Authority
JP
Japan
Prior art keywords
phase
current
voltage
disconnection
transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009242305A
Other languages
Japanese (ja)
Inventor
Yoshiaki Date
義明 伊達
Masami Takenaka
正実 竹中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2009242305A priority Critical patent/JP2011091910A/en
Publication of JP2011091910A publication Critical patent/JP2011091910A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a disconnection protective relay system capable of reducing the number of transformers for gauge or current transformers and protecting a three-phase AC circuit from a disconnection failure without deteriorating detection sensitivity even if unbalance occurs between currents of each of phases. <P>SOLUTION: The relay system includes: a cross through current transformer 21 for detecting a composite current I<SB>Ry</SB>formed by compositing an R-phase current I<SB>R</SB>and an S-phase current I<SB>S</SB>; a transformer 2 for gauge for detecting a TR line voltage V<SB>TR</SB>; and a disconnection protective relay device 10 for determining the disconnection failure on the basis of the amount or rate of change of the composite current I<SB>Ry</SB>input from the cross through current transformer 21 and a phase change angle and the amount or rate of change of the TR line voltage V<SB>TR</SB>input from the transformer 2 for gauge and a phase change angle. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、断線保護継電システムに関し、特に、断線事故から三相交流回路を保護するのに好適な断線保護継電システムに関する。   The present invention relates to a disconnection protection relay system, and more particularly, to a disconnection protection relay system suitable for protecting a three-phase AC circuit from a disconnection accident.

従来、断線事故から3相の送配電線(三相交流回路の一つ)を保護するために、図14(a)に示すように、送配電線の受電端(以下、「B端」と称する。)側に不足電圧継電器111(電圧リレー)を設置するとともに、B端母線に設置された計器用変圧器2からR相、S相およびT相電圧VR,VS,VTを不足電圧継電器111に入力し、R相、S相およびT相電圧VR,VS,VTのうち1つまたは2つが電圧整定値以下になると、不足電圧継電器111が断線事故と判定して送配電線のR相、S相およびT相のB端側にそれぞれ設置された第1乃至第3の遮断器41〜43にトリップ信号STを出力することにより、第1乃至第3の遮断器41〜43を一括遮断するようにしている。 Conventionally, in order to protect a three-phase transmission / distribution line (one of three-phase AC circuits) from a disconnection accident, as shown in FIG. 14 (a), a power receiving end (hereinafter referred to as "B end") of the transmission / distribution line The undervoltage relay 111 (voltage relay) is installed on the side, and the R-phase, S-phase, and T-phase voltages V R , V S , and V T are insufficient from the instrument transformer 2 installed on the B-end bus. When input to the voltage relay 111 and one or two of the R-phase, S-phase and T-phase voltages V R , V S , V T are below the voltage set value, the undervoltage relay 111 determines that a disconnection accident has occurred and R-phase distribution line by outputting a trip signal S T to the first to third circuit breaker 41 to 3 of which are respectively installed on the B-end side of the S-phase and T-phase, the first to third The circuit breakers 4 1 to 4 3 are collectively shut off.

また、図14(b)に示すように、送配電線のB端側に電流継電器112(電流リレー)を設置するとともに、送配電線のR相、S相およびT相のB端側にそれぞれ設置された第1乃至第3の変流器31〜33(説明の簡単のため、変流比は1:1とする。)からR相、S相およびT相電流IR,IS,ITを電流継電器112に入力し、R相、S相およびT相電流IR,IS,ITのうち1つまたは2つが電流整定値以下になると、電流継電器112が断線事故と判定して第1乃至第3の遮断器41〜43にトリップ信号STを出力することにより、第1乃至第3の遮断器41〜43を一括遮断するようにしている。 In addition, as shown in FIG. 14 (b), a current relay 112 (current relay) is installed on the B-end side of the transmission / distribution line, and at the B-end side of the R-phase, S-phase, and T-phase of the transmission / distribution line, respectively. From the first to third current transformers 3 1 to 3 3 installed (for the sake of simplicity, the current transformation ratio is 1: 1), the R-phase, S-phase, and T-phase currents I R and I S , I T are input to the current relay 112, and when one or two of the R-phase, S-phase, and T-phase currents I R , I S , I T become less than the current set value, the current relay 112 is determined to be a disconnection accident. by outputting a trip signal S T to the first to third circuit breaker 41 to 3 and, and the first to third circuit breaker 41 to 3 to collectively cut off.

さらに、断線事故時に発生する逆相電流I2(または、零相電流I0)を検出して、以下の3つの判定条件a1〜a3がすべて満たされた場合に断線事故と判定している。
[判定条件a1]逆相電流I2が正相電流I1のk倍(k(逆相電流検出感度)=10〜20%)以上であること(逆相電流の発生)。
なお、正相電流I1および逆相電流I2は、(1)式および(2)式により算出される。
1=(IR+aIS+a2T)/3 (1)
2=(IR+a2S+aIT)/3 (2)
ここで、a(ベクトルオペレータ)=−1/2+j×31/2/2
[判定条件a2]3相のうち1相または2相の負荷電流が最小負荷電流Imin未満になったこと(事故相における負荷電流の喪失)。
[判定条件a3]3相のうち残りの2相または1相の負荷電流が最小負荷電流Imin以上であること(健全相の存在)。
Further, the reverse phase current I 2 (or zero phase current I 0 ) generated at the time of the disconnection accident is detected, and it is determined that the disconnection accident occurs when all of the following three determination conditions a 1 to a 3 are satisfied. Yes.
[Determination condition a 1 ] The reverse phase current I 2 is k times or more (k (reverse phase current detection sensitivity) = 10 to 20%) of the positive phase current I 1 (generation of the reverse phase current).
The positive phase current I 1 and the negative phase current I 2 are calculated by the equations (1) and (2).
I 1 = (I R + aI S + a 2 I T ) / 3 (1)
I 2 = (I R + a 2 I S + aI T ) / 3 (2)
Here, a (vector operator) = − 1/2 + j × 3 1/2 / 2
[Judgment condition a 2 ] The load current of one or two phases out of the three phases is less than the minimum load current I min (loss of load current in the accident phase).
[Judgment condition a 3 ] The remaining two-phase or one-phase load current of the three phases is equal to or greater than the minimum load current I min (presence of a healthy phase).

なお、下記の特許文献1には、ディジタル保護継電装置において負荷電流の変動や変流器の違いに関係なく1相断線を確実に判定するために、電力系統の3相電流を保護継電装置へ変流器を介して入力し、アナログ入力部を経てサンプリングしディジタル量化した3相電流を演算処理部に導き、零相電流I0,正相電流I1および逆相電流I2を算出して、次式がそれぞれ成立して所定時間継続する時に1相断線と判定する常時監視方式が開示されている。
3I0/(3T1+K0)>K11>K2
3T0/3I1>K3
ここで、K1,K3=零相/正相設定値。
0=アナログ入力部誤差に相当した正相分オフセット量。
2=アナログ入力部における誤差を含めた正相電流設定値。
In Patent Document 1 below, the three-phase current of the power system is protected and relayed in order to reliably determine a one-phase disconnection regardless of load current fluctuations or current transformer differences in the digital protection relay device. The three-phase current input to the device via a current transformer, sampled through the analog input section, and digitized into a digital processing quantity is led to the arithmetic processing section to calculate the zero-phase current I 0 , the positive-phase current I 1 and the negative-phase current I 2 Thus, there is disclosed a constant monitoring method in which the following formulas are satisfied and a one-phase disconnection is determined for a predetermined time.
3I 0 / (3T 1 + K 0 )> K 1 I 1 > K 2
3T 0 / 3I 1 > K 3
Here, K 1 and K 3 = zero phase / positive phase set value.
K 0 = positive phase offset amount corresponding to the analog input section error.
K 2 = Positive phase current setting value including error in the analog input section.

特開平7−107653号公報JP-A-7-107653

しかしながら、従来の電圧リレーまたは電流リレーを用いる断線保護方式では、計器用変圧器および電圧リレー(計器用変圧器2および不足電圧継電器111)または変流器および電流リレー(第1乃至第3の変流器31〜33および電流継電器112)が3相分必要であるという問題があった。
また、断線事故時に発生する逆相電流I2(零相電流I0)を用いる断線保護方式では、変流器が3相分必要であるという問題のほかに、送配電線の各相電流が平衡である場合には逆相電流検出感度kを大きくしても特に問題ないが、送配電線の各相電流に不平衡がある場合には正常時に発生する逆相電流I2によって誤動作する可能性があるので、逆相電流検出感度kを大きくすることができないという問題もあった。
However, in the disconnection protection method using the conventional voltage relay or current relay, the instrument transformer and voltage relay (instrument transformer 2 and undervoltage relay 111) or the current transformer and current relay (first to third transformers). There was a problem that the flow currents 3 1 to 3 3 and the current relay 112) were required for three phases.
In addition, in the disconnection protection method using the reverse phase current I 2 (zero phase current I 0 ) generated in the event of a disconnection accident, in addition to the problem that three phases are required for the current transformer, In the case of equilibrium, there is no particular problem even if the negative phase current detection sensitivity k is increased. However, if there is an unbalance in each phase current of the transmission / distribution line, malfunction may occur due to the negative phase current I 2 generated during normal operation. Therefore, there is a problem in that the reverse phase current detection sensitivity k cannot be increased.

本発明の目的は、計器用変圧器および変流器の数を減らすことができるとともに、各相電流に不平衡があっても検出感度を低下させることなく断線事故から三相交流回路を保護することができる断線保護継電システムを提供することにある。   An object of the present invention is to reduce the number of instrument transformers and current transformers, and to protect a three-phase AC circuit from a disconnection accident without degrading detection sensitivity even if each phase current is unbalanced. An object of the present invention is to provide a disconnection protection relay system that can perform this.

本発明の断線保護継電システムは、断線事故から三相交流回路を保護するための断線保護継電システムであって、前記三相交流回路の第1乃至第3の相をそれぞれ流れる第1乃至第3の相電流(IR,IS,IT)のうちの該第1および第2の相電流を合成した合成電流(IRy)を検出するための合成電流検出手段(31,32;21;22;23)と、前記三相交流回路の1つの線間電圧を検出するための計器用変圧器(2)または前記三相交流回路の3つの相電圧の合成電圧を検出するための電圧合成変圧器(51;52)と、前記合成電流検出手段から入力される前記合成電流と前記計器用変圧器から入力される前記1つの線間電圧または前記電圧合成変圧器から入力される前記合成電圧とに基づいて断線事故を判定する断線保護継電装置(10)とを具備することを特徴とする。
ここで、前記断線保護継電装置が、前記合成電流の変化量または変化率および位相変化角と前記線間電圧または前記合成電圧の変化量または変化率および位相変化角とに基づいて断線事故を判定してもよい。
前記合成電流検出手段が、前記三相交流回路の前記第1の相が極性方向に貫通されているとともに該三相交流回路の前記第2の相が反極性方向に貫通されているクロス貫通変流器(21)、または、前記三相交流回路の前記第1および第2の相に設置されたかつ差接続された変流器(31,32)、または、前記三相交流回路の前記第1および第2の相が極性方向に貫通されているストレート貫通変流器(22)、または、前記三相交流回路の前記第1および第2の相に設置されたかつ和接続された変流器(31,32)、または、前記三相交流回路の前記第2の相が前記第1の相と同じ向きに異なる回数だけ貫通されている二相貫通変流器(23)であってもよい。
前記電圧合成変圧器が、前記三相交流回路の前記第1の相の相電圧を極性方向で、該三相交流回路の前記第2の相の相電圧を反極性方向で、該三相交流回路の前記第3の相の相電圧を極性方向で2倍して合成するように2次側が結線された電圧合成変圧器(51)、または、前記三相交流回路の前記第1の相の相電圧を極性方向で、該三相交流回路の前記第2の相の相電圧を反極性方向で、該三相交流回路の前記第3の相の相電圧を反極性方向で2倍して合成するように2次側が結線された電圧合成変圧器(52)であってもよい。
The disconnection protection relay system of the present invention is a disconnection protection relay system for protecting a three-phase AC circuit from a disconnection accident, wherein the first to third phases of the three-phase AC circuit respectively flow through the first to third phases. Combined current detection means (3 1 , 3) for detecting a combined current (I Ry ) obtained by combining the first and second phase currents of the third phase currents (I R , I S , I T ). 2 ; 21; 22; 23) and a voltage transformer (2) for detecting one line voltage of the three-phase AC circuit or a composite voltage of the three phase voltages of the three-phase AC circuit Voltage synthesis transformer (51; 52), and the synthesized current inputted from the synthesized current detecting means and the one line voltage inputted from the instrument transformer or the voltage synthesized transformer. Disconnection protection relay to determine disconnection accident based on the combined voltage And a device (10).
Here, the disconnection protection relay device performs a disconnection accident based on the change amount or change rate and phase change angle of the combined current and the change amount or change rate and phase change angle of the line voltage or the combined voltage. You may judge.
The combined current detecting means includes a cross-penetration variable in which the first phase of the three-phase AC circuit is penetrated in the polarity direction and the second phase of the three-phase AC circuit is penetrated in the opposite polarity direction. A current transformer (21), or a current transformer (3 1 , 3 2 ) installed in the first and second phases of the three-phase AC circuit and connected in a differential manner, or of the three-phase AC circuit A straight through current transformer (22) in which the first and second phases are penetrated in the polar direction, or a sum-connected and installed in the first and second phases of the three-phase AC circuit Current transformer (3 1 , 3 2 ) or two-phase through current transformer (23) in which the second phase of the three-phase AC circuit is penetrated a different number of times in the same direction as the first phase It may be.
The voltage synthesis transformer is configured such that the phase voltage of the first phase of the three-phase AC circuit is in the polarity direction, and the phase voltage of the second phase of the three-phase AC circuit is in the opposite polarity direction, the three-phase AC A voltage synthesis transformer (51) whose secondary side is connected so as to synthesize the phase voltage of the third phase of the circuit by doubling in the polarity direction, or the first phase of the three-phase AC circuit Double the phase voltage in the polarity direction, the phase voltage in the second phase of the three-phase AC circuit in the opposite polarity direction, and the phase voltage in the third phase of the three-phase AC circuit in the opposite polarity direction. It may be a voltage synthesis transformer (52) whose secondary side is connected so as to be synthesized.

本発明の断線保護継電システムは、合成電流検出手段から入力される合成電流と計器用変圧器から入力される1つの線間電圧または電圧合成変圧器から入力される合成電圧とに基づいて断線事故を判定するため、以下に示す効果を奏する。
(1)計器用変圧器および変流器の数を減らすことができる。
(2)各相の不平衡電流の影響を受けない合成電流の変化量または変化率に基づいて断線事故を判定するので、各相電流に不平衡があっても検出感度を低下させることなく断線事故から三相交流回路を保護することができる。
The disconnection protection relay system of the present invention is disconnected based on the combined current input from the combined current detecting means and the one line voltage input from the instrument transformer or the combined voltage input from the voltage combining transformer. In order to determine an accident, the following effects are exhibited.
(1) The number of instrument transformers and current transformers can be reduced.
(2) Since a disconnection fault is determined based on the amount or rate of change of the combined current that is not affected by the unbalanced current of each phase, the disconnection can occur without degrading the detection sensitivity even if each phase current is unbalanced. The three-phase AC circuit can be protected from accidents.

本発明の第1の実施例による断線保護継電システムの構成を示す図である。It is a figure which shows the structure of the disconnection protection relay system by 1st Example of this invention. 図1に示したクロス貫通変流器21から出力される正常時の合成電流IRy’と図1に示した計器用変圧器2から出力される正常時のTR線間電圧VTR’について説明するためのベクトル図である。The normal combined current I Ry ′ output from the cross-through current transformer 21 shown in FIG. 1 and the normal TR line voltage V TR ′ output from the instrument transformer 2 shown in FIG. It is a vector diagram for doing. 図1に示した断線保護継電装置10の具体的構成例を示すブロック図である。It is a block diagram which shows the specific structural example of the disconnection protection relay apparatus 10 shown in FIG. 図1に示したクロス貫通変流器21から出力される合成電流IRyと図1に示した計器用変圧器2から出力されるTR線間電圧VTRについて説明するためのベクトル図であり、(a)はR相断線時のベクトル図であり、(b)はS相断線時のベクトル図であり、(c)はT相断線時のベクトル図である。FIG. 2 is a vector diagram for explaining a combined current I Ry output from a cross-through current transformer 21 shown in FIG. 1 and a TR line voltage V TR output from an instrument transformer 2 shown in FIG. (A) is a vector diagram at the time of R phase disconnection, (b) is a vector diagram at the time of S phase disconnection, (c) is a vector diagram at the time of T phase disconnection. 図1に示した計器用変圧器2の代わりに用いられる電圧合成変圧器の構成を示す図であり、(a)は電圧合成変圧器51の構成を示す図であり、(b)は電圧合成変圧器52の構成を示す図である。It is a figure which shows the structure of the voltage synthetic | combination transformer used instead of the voltage transformer 2 shown in FIG. 1, (a) is a figure which shows the structure of the voltage synthetic | combination transformer 51, (b) is a voltage synthesis | combination. 3 is a diagram illustrating a configuration of a transformer 52. FIG. 図5(a)に示した電圧合成変圧器51から出力される合成電圧VR-S+2Tについて説明するためのベクトル図であり、(a)は正常時のベクトル図であり、(b)はR相断線時のベクトル図であり、(c)はS相断線時のベクトル図であり、(d)はT相断線時のベクトル図である。It is a vector diagram for demonstrating synthetic | combination voltage VR -S + 2T output from the voltage synthetic | combination transformer 51 shown to Fig.5 (a), (a) is a vector diagram at the time of normal, (b) Is a vector diagram at the time of R-phase disconnection, (c) is a vector diagram at the time of S-phase disconnection, and (d) is a vector diagram at the time of T-phase disconnection. 図5(b)に示した電圧合成変圧器52から出力される合成電圧VR-S-2Tについて説明するためのベクトル図であり、(a)は正常時のベクトル図であり、(b)はR相断線時のベクトル図であり、(c)はS相断線時のベクトル図であり、(d)はT相断線時のベクトル図である。FIG. 6 is a vector diagram for explaining the synthesized voltage V RS-2T output from the voltage synthesis transformer 52 shown in FIG. 5B, (a) is a vector diagram at normal time, and (b) is R It is a vector diagram at the time of phase disconnection, (c) is a vector diagram at the time of S phase disconnection, (d) is a vector diagram at the time of T phase disconnection. 本発明の第4の実施例による断線保護継電システムの構成を示す図である。It is a figure which shows the structure of the disconnection protection relay system by the 4th Example of this invention. 本発明の第5の実施例による断線保護継電システムの構成を示す図である。It is a figure which shows the structure of the disconnection protection relay system by the 5th Example of this invention. 図9に示したストレート貫通変流器22から出力される合成電流IRyについて説明するためのベクトル図であり、(a)は正常時のベクトル図であり、(b)はR相断線時のベクトル図であり、(c)はS相断線時のベクトル図であり、(d)はT相断線時のベクトル図である。It is a vector diagram for demonstrating synthetic | combination electric current IRy output from the straight through current transformer 22 shown in FIG. 9, (a) is a vector diagram at the time of normality, (b) is at the time of R phase disconnection It is a vector diagram, (c) is a vector diagram at the time of S phase disconnection, (d) is a vector diagram at the time of T phase disconnection. 本発明の第8の実施例による断線保護継電システムの構成を示す図である。It is a figure which shows the structure of the disconnection protection relay system by the 8th Example of this invention. 本発明の第9の実施例による断線保護継電システムの構成を示す図である。It is a figure which shows the structure of the disconnection protection relay system by the 9th Example of this invention. 図12に示した二相貫通変流器23から出力される合成電流IRyについて説明するためのベクトル図であり、(a)は正常時のベクトル図であり、(b)はR相断線時のベクトル図であり、(c)はS相断線時のベクトル図であり、(d)はT相断線時のベクトル図である。It is a vector diagram for demonstrating synthetic | combination electric current IRy output from the two-phase through current transformer 23 shown in FIG. 12, (a) is a vector diagram at the time of normal, (b) is at the time of R phase disconnection (C) is a vector diagram at the time of S-phase disconnection, and (d) is a vector diagram at the time of T-phase disconnection. 従来の断線保護方式について説明するための図であり、(a)は電圧リレー用いる断線保護方式について説明するための図であり、(b)は電流リレーを用いる断線保護方式について説明するための図である。It is a figure for demonstrating the conventional disconnection protection system, (a) is a figure for demonstrating the disconnection protection system using a voltage relay, (b) is a figure for demonstrating the disconnection protection system using a current relay. It is.

上記の目的を、第1乃至第3の相電流のうちの第1および第2の相電流を合成した合成電流の変化量または変化率および位相変化角と第2および第3の相間の線間電圧または第3および第1の相間の線間電圧または3つの相電圧の合成電圧の変化量または変化率および位相変化角とに基づいて断線事故を判定することにより実現した。   For the above purpose, the amount or rate of change of the combined current and the phase change angle obtained by synthesizing the first and second phase currents of the first to third phase currents and the line spacing between the second and third phases This is realized by determining the disconnection accident based on the voltage, the line voltage between the third and first phases, or the change amount or rate of change of the combined voltage of the three phase voltages and the phase change angle.

以下、本発明の断線保護継電システムの実施例について図面を参照して説明する。
なお、以下の説明では、
(1)正常時のR相、S相およびT相電流IR’,IS’,IT’の大きさを基準(=1)とし、正常時のR相電流IR’の位相θR’を基準(=0°)とする。また、正常時のR相、S相およびT相電圧VR’,VS’,VT’の大きさを基準(=1)とし、正常時のR相電圧VR’の位相を基準(=0°)とする。
(2)合成電流IRyの正常時の合成電流IRy’に対する変化率を電流変化率KRyと称し、合成電流IRyの位相θRyの正常時の合成電流IRy’の位相θRy’に対する変化量(位相変化角)を電流位相変化角ΔθRyと称する。また、TR線間電圧VTRの正常時のTR線間電圧VTR’に対する変化率を電圧変化率KTRと称し、TR線間電圧VTRの位相θTRの正常時のTR線間電圧VTR’の位相θTR’に対する変化量(位相変化角)を電圧位相変化角ΔθTRと称し、合成電圧VR-S+2Tの正常時の合成電圧VR-S+2T’に対する変化率を電圧変化率KR-S+2Tと称し、合成電圧VR-S+2Tの位相θR-S+2Tの正常時の合成電圧VR-S+2T’の位相θR-S+2T’に対する変化角を電圧位相変化角ΔθR-S+2Tと称し、合成電圧VR-S-2Tの正常時の合成電圧VR-S-2T’に対する変化率を電圧変化率KR-S-2Tと称し、合成電圧VR-S-2Tの位相θR-S-2Tの正常時の合成電圧VR-S-2T’の位相θR-S-2T’に対する変化角を電圧位相変化角ΔθR-S-2Tと称する。
Embodiments of the disconnection protection relay system of the present invention will be described below with reference to the drawings.
In the following explanation,
(1) The phase θ R of the normal R-phase current I R ′ with the magnitudes of the normal R-phase, S-phase, and T-phase currents I R ′, I S ′, I T ′ as the reference (= 1) 'Is the reference (= 0 °). In addition, the magnitudes of the R-phase, S-phase, and T-phase voltages V R ′, V S ′, V T ′ at normal time are set as a reference (= 1), and the phase of the R-phase voltage V R ′ at normal time is set as a reference ( = 0 °).
(2) Synthesis current 'refers to the rate of change and the current change rate K Ry for the resultant current I Ry phase theta combined current I Ry during normal Ry' combined current I Ry during normal I Ry phase theta Ry ' A change amount (phase change angle) with respect to is referred to as a current phase change angle Δθ Ry . Further, called voltage change rate K TR rate of change with respect to voltage V TR 'between normal state TR line TR line voltages V TR, TR line voltage V TR of the phase θ between normal state TR line TR the voltage V variation for 'phase theta TR of' TR referred to (phase shift angle) between the voltage phase change angle [Delta] [theta] TR, the change rate for the composite voltage V R-S + 2T 'during normal composite voltage V R-S + 2T Voltage change rate K R-S + 2T , phase of composite voltage V R-S + 2T , phase θ R-S + 2T , phase of normal composite voltage V R-S + 2T ', phase θ R-S + 2T ' with respect to the change angle referred to the voltage phase change angle [Delta] [theta] RS + 2T, and referred to the rate of change with respect to the composite voltage V RS-2T 'during normal composite voltage V RS-2T and the voltage change rate K RS-2T, the composite voltage the change angle to 'phase theta RS-2T of' V RS-2T phase theta combined voltage during normal RS-2T V RS-2T is referred to as a voltage phase change angle [Delta] [theta] RS-2T.

本発明の断線保護継電システムは、電流要素として三相交流回路の2つの相電流の合成電流を用いるとともに、電圧要素として三相交流回路の1つの線間電圧または3つの相電圧の合成電圧を用いることを特徴とする。
また、本発明の断線保護継電システムは、断線事故時における健全相を流れる相電流の大きさおよび位相の対称的変化(健全相の事故時/正常時の電流変化量と電流位相変化角の絶対値とが同じになる変化)と断線事故時における健全相の相電圧の大きさおよび位相の対称的変化(健全相の事故時/正常時の電圧変化量と電圧位相変化角の絶対値とが同じになる変化)に着目して断線事故と判定することを特徴とする。
The disconnection protection relay system of the present invention uses a combined current of two phase currents of a three-phase AC circuit as a current element, and a combined voltage of one line voltage or three phase voltages of a three-phase AC circuit as a voltage element. It is characterized by using.
In addition, the disconnection protection relay system of the present invention has a symmetric change in the magnitude and phase of the phase current flowing through the healthy phase at the time of the disconnection accident (the current change amount and the current phase change angle during the fault / normal phase of the healthy phase). The change of the absolute value is the same) and the magnitude of the phase voltage of the healthy phase and the symmetrical change of the phase in the event of a disconnection accident (the absolute value of the voltage change amount and voltage phase change angle at the time of normal phase accident / normal) It is characterized in that it is determined as a disconnection accident by paying attention to a change in which the two are the same.

三相交流回路が3相の送配電線である場合には、本発明の第1の実施例による断線保護継電システムでは、図1に示すように、断線保護継電装置10は送配電線のB端側に設置される。   When the three-phase AC circuit is a three-phase power transmission / distribution line, in the disconnection protection relay system according to the first embodiment of the present invention, as shown in FIG. Installed on the B-end side.

断線保護継電装置10は、送配電線のB端側に設置されたクロス貫通変流器21から入力される合成電流IRyに基づいて動作する。 The disconnection protection relay device 10 operates based on the combined current I Ry input from the cross through current transformer 21 installed on the B end side of the transmission and distribution line.

ここで、クロス貫通変流器21は、2次コイルを巻装した環状鉄心に送配電線のR相およびS相を逆向きにかつ任意の角度でクロスさせて貫通させた貫通形変流器である。
すなわち、送配電線のR相はクロス貫通変流器21の極性方向(環状鉄心の第1の開口面側から環状鉄心の第2の開口面への方向)に貫通されているが、送配電線のS相はクロス貫通変流器21の反極性方向(環状鉄心の第2の開口面から環状鉄心の第1の開口面への方向)に貫通されている。
Here, the cross-through current transformer 21 is a through-type current transformer in which an R-phase and an S-phase of a transmission / distribution wire are crossed in an opposite direction and at an arbitrary angle through an annular core around which a secondary coil is wound. It is.
That is, the R phase of the transmission and distribution line is penetrated in the polarity direction of the cross through current transformer 21 (the direction from the first opening surface side of the annular core to the second opening surface of the annular core). The S phase of the electric wire is penetrated in the opposite polarity direction of the cross through current transformer 21 (direction from the second opening surface of the annular core to the first opening surface of the annular core).

したがって、正常時のR相電流IR’と正常時のS相電流IS’とは図2(a)に示すように120°の位相差でクロス貫通変流器21の環状鉄心を逆向きに貫通して流れる(すなわち、正常時のR相電流IR’はクロス貫通変流器21を極性方向に貫通して流れ、正常時のS相電流IS’はクロス貫通変流器21を反極性方向に貫通して流れる)ため、クロス貫通変流器21から断線保護継電装置10に入力される正常時の合成電流IRy’は正常時のR相電流IR’と正常時のS相電流IS’とのベクトル差となり、正常時の合成電流IRy’の大きさおよび位相は31/2および330°となる。
|IRy’|=|IR’−IS’|=31/2×|IR’|=31/2
θRy’=330°
Therefore, the normal R-phase current I R ′ and the normal S-phase current I S ′ are opposite in direction to the annular core of the cross-through current transformer 21 with a phase difference of 120 ° as shown in FIG. (That is, the normal R-phase current I R 'flows through the cross-through current transformer 21 in the polarity direction, and the normal S-phase current I S ' flows through the cross-through current transformer 21). Therefore, the normal combined current I Ry ′ input from the cross-through current transformer 21 to the disconnection protection relay device 10 is the normal R phase current I R ′ and the normal R phase current I R ′. The vector difference from the S-phase current I S ′ is obtained, and the magnitude and phase of the combined current I Ry ′ at normal time are 3 1/2 and 330 °.
| I Ry '| = | I R ' −I S '| = 3 1/2 × | I R ' | = 3 1/2
θ Ry '= 330 °

また、計器用変圧器2から断線保護継電装置10に入力される正常時のTR相線間電圧VTR’ の大きさおよび位相は31/2および210°となる(図2(b)参照)。
|VTR’|=|VT’−VR’|=31/2×|VR’|=31/2
θTR’=210°
Further, the magnitude and phase of the normal TR phase line voltage V TR ′ input to the disconnection protection relay device 10 from the instrument transformer 2 are 3 1/2 and 210 ° (FIG. 2B). reference).
| V TR '| = | V T ' −V R '| = 3 1/2 × | V R ' | = 3 1/2
θ TR '= 210 °

断線保護継電装置10は、図2に示すように、入力変換器11と、アナログ入力部12と、メモリ13と、電流変化率・電流位相変化角算出部14と、電圧変化率・電圧位相変化角算出部15と、リレー演算処理部16と、整定・表示部17と、入出力部18と、外部機器インターフェース部(外部機器I/F部)19とを具備する。   As shown in FIG. 2, the disconnection protection relay device 10 includes an input converter 11, an analog input unit 12, a memory 13, a current change rate / current phase change angle calculation unit 14, and a voltage change rate / voltage phase. A change angle calculation unit 15, a relay calculation processing unit 16, a settling / display unit 17, an input / output unit 18, and an external device interface unit (external device I / F unit) 19 are provided.

入力変換器11は、クロス貫通変流器21から入力される合成電流IRyおよび計器用変圧器2から入力されるTR線間電圧VTRのレベルをアナログ入力部12の処理に適したレベルに変換する。なお、説明の簡単のために、クロス貫通変流器21の変流比および計器用変圧器2の変圧比は共に1:1とする。
アナログ入力部12は、バンドパスフィルタとサンプリングホールド回路とマルチプレクサ回路とアナログ/ディジタル変換器とを備え、入力変換器11から入力されるアナログの合成電流IRyおよびTR線間電圧VTRをディジタルの合成電流IRyおよびTR線間電圧VTRに変換する。
メモリ13は、アナログ入力部12によってディジタルデータに変換された合成電流IRyおよびTR線間電圧VTRを格納するためのものである。
The input converter 11 sets the level of the combined current I Ry input from the cross-through current transformer 21 and the TR line voltage V TR input from the instrument transformer 2 to a level suitable for processing of the analog input unit 12. Convert. For simplicity of explanation, the current transformation ratio of the cross-through current transformer 21 and the voltage transformation ratio of the instrument transformer 2 are both 1: 1.
The analog input unit 12 includes a band-pass filter, a sampling hold circuit, a multiplexer circuit, and an analog / digital converter, and the analog combined current I Ry and the TR line voltage V TR input from the input converter 11 are digitally converted. Conversion into the combined current I Ry and the TR line voltage V TR .
The memory 13 is for storing the combined current I Ry and the TR line voltage V TR converted into digital data by the analog input unit 12.

電流変化率・電流位相変化角算出部14は、アナログ入力部12から入力される合成電流IRyの大きさをメモリ13に格納されている1サイクル前の合成電流IRyの大きさで割ることにより、合成電流IRyの変化率を算出する。
また、電流変化率・電流位相変化角算出部14は、アナログ入力部12から入力される合成電流IRyの位相θRyからメモリ13に格納されている1サイクル前の合成電流IRyの位相θRyを引くことにより、合成電流IRyの位相変化角を算出する。
Current change rate and current phase change angle calculation unit 14, dividing it by the magnitude of the resultant current I Ry of one cycle before which is stored the magnitude of the resultant current I Ry inputted from the analog input unit 12 to the memory 13 Thus, the change rate of the combined current I Ry is calculated.
Further, the current change rate / current phase change angle calculation unit 14 calculates the phase θ of the combined current I Ry one cycle before stored in the memory 13 from the phase θ Ry of the combined current I Ry input from the analog input unit 12. by pulling the Ry, it calculates the phase change angle of the combined current I Ry.

電圧変化率・電圧位相変化角算出部15は、アナログ入力部12から入力されるTR線間電圧VTRの大きさをメモリ13に格納されている1サイクル前のTR線間電圧VTRの大きさで割ることにより、TR線間電圧VTRの変化率を算出する。
また、電圧変化率・電圧位相変化角算出部15は、アナログ入力部12から入力されるTR線間電圧VTRの位相θTRからメモリ13に格納されている1サイクル前のTR線間電圧VTRの位相θTRを引くことにより、TR線間電圧VTRの位相変化角を算出する。
The voltage change rate / voltage phase change angle calculation unit 15 determines the magnitude of the TR line voltage V TR input from the analog input unit 12 as the magnitude of the TR line voltage V TR one cycle before stored in the memory 13. By dividing by this, the rate of change of the TR line voltage V TR is calculated.
Further, the voltage change rate / voltage phase change angle calculation unit 15 calculates the TR line voltage V one cycle before stored in the memory 13 from the phase θ TR of the TR line voltage V TR input from the analog input unit 12. by subtracting the phase theta TR of TR, it calculates the phase change angle TR line voltage V TR.

リレー演算処理部16は、電流変化率・電流位相変化角算出部14によって算出された合成電流IRyの変化率および位相変化角と電圧変化率・電圧位相変化角算出部15によって算出されたTR線間電圧VTRの変化率および位相変化角とに基づいて後述する断線事故判定処理を行うことにより断線事故を判定し、送配電線のB端側に設置された第1乃至第3の遮断器41〜43を一括遮断するためのトリップ信号STを生成し、生成したトリップ信号STを入出力部18および外部機器インターフェース部19を介して第1乃至第3の遮断器41〜43に送信する。 The relay arithmetic processing unit 16 has a rate of change and a phase change angle of the combined current I Ry calculated by the current rate of change / current phase change angle calculator 14 and a TR calculated by the voltage rate of change / voltage phase change angle calculator 15. Based on the rate of change of the line voltage V TR and the phase change angle, a disconnection accident is determined by performing a disconnection accident determination process, which will be described later, and first to third interruptions installed on the B-end side of the transmission and distribution line vessel 41 to 3 to the production of the trip signal S T for collectively blocking the generated trip signal first to third circuit breaker via the output unit 18 and an external device interface unit 19 S T 4 1 to send to to 4 3.

整定・表示部17は、リレー整定処理を行うとともに、整定値などを外部に表示する。   The settling / display unit 17 performs relay settling processing and displays the settling value and the like to the outside.

次に、送配電線において断線事故が発生したときの電流変化率KRy、電流位相変化角ΔθRy、電圧変化率KTRおよび電圧位相変化角ΔθTRについて、図4を参照して説明する。 Next, the current change rate K Ry , the current phase change angle Δθ Ry , the voltage change rate K TR and the voltage phase change angle Δθ TR when a disconnection accident occurs in the transmission and distribution line will be described with reference to FIG.

(1)R相断線時
送配電線のR相に断線事故が発生すると、図4(a−1)に示すように、R相電流IRは0となり、健全相を流れるS相およびT相電流IS,ITの大きさおよび位相は対称的に変化する。
その結果、合成電流IRyの大きさおよび位相は(1−1)式および(1−2)式でそれぞれ表される。
|IRy|=|IR−IS|=|0−IS|=|IT|=31/2/2 (1−1)
θRy=270° (1−2)
したがって、電流変化率KRyおよび電流位相変化角ΔθRyは(1−3)式および(1−4)式でそれぞれ表される。
Ry=|IRy|/|IRy’|=(31/2/2)/31/2=0.5 (1−3)
ΔθRy=θRy−θRy’=270°−330°=−60° (1−4)
また、送配電線のR相に断線事故が発生すると、図4(a−2)に示すように、R相電圧VRは0となり、健全相のS相およびT相電圧VS,VTの大きさおよび位相は対称的に変化する。
その結果、TR相線間電圧VTRの大きさおよび位相は(1−5)式および(1−6)式でそれぞれ表される。
|VTR|=|VT−VR|=|VT−0|=|VT|=31/2/2 (1−5)
θTR=270° (1−6)
したがって、電圧変化率KTRおよび電圧位相変化角ΔθTRは(1−7)式および(1−8)式でそれぞれ表される。
TR=|VTR|/|VTR’|=(31/2/2)/31/2=0.5 (1−7)
ΔθTR=θTR−θTR’=270°−210°=60° (1−8)
(1) R-phase disconnection When a disconnection accident occurs in the R-phase of the transmission and distribution line, the R-phase current I R becomes 0 as shown in FIG. 4 (a-1), and the S-phase and T-phase flowing through the healthy phase The magnitudes and phases of the currents I S and I T change symmetrically.
As a result, the magnitude and phase of the combined current I Ry are expressed by the equations (1-1) and (1-2), respectively.
| I Ry | = | I R −I S | = | 0−I S | = | I T | = 3 1/2 / 2 (1-1)
θ Ry = 270 ° (1-2)
Therefore, the current change rate K Ry and the current phase change angle Δθ Ry are expressed by the equations (1-3) and (1-4), respectively.
K Ry = | I Ry | / | I Ry '| = (3 1/2 / 2) / 3 1/2 = 0.5 (1-3)
Δθ Ry = θ Ry −θ Ry '= 270 ° −330 ° = −60 ° (1-4)
When a disconnection accident occurs in the R phase of the transmission and distribution line, the R phase voltage V R becomes 0 as shown in FIG. 4 (a-2), and the S phase and T phase voltages V S and V T of the healthy phase are obtained. The magnitude and phase of the change symmetrically.
As a result, the magnitude and phase of the TR phase line voltage V TR are expressed by the equations (1-5) and (1-6), respectively.
| V TR | = | V T −V R | = | V T −0 | = | V T | = 3 1/2 / 2 (1-5)
θ TR = 270 ° (1-6)
Therefore, the voltage change rate K TR and the voltage phase change angle Δθ TR are expressed by the equations (1-7) and (1-8), respectively.
K TR = | V TR | / | V TR '| = (3 1/2 / 2) / 3 1/2 = 0.5 (1-7)
Δθ TR = θ TR −θ TR ′ = 270 ° −210 ° = 60 ° (1-8)

(2)S相断線時
送配電線のS相に断線事故が発生すると、図4(b−1)に示すように、S相電流ISは0となり、健全相を流れるR相およびT相電流IR,ITの大きさおよび位相は対称的に変化する。
その結果、合成電流IRyの大きさおよび位相は(2−1)式および(2−2)式でそれぞれ表される。
|IRy|=|IR−IS|=|IR−0|=|IR|=31/2/2 (2−1)
θRy1=30° (2−2)
したがって、電流変化率KRyおよび電流位相変化角ΔθRyは(2−3)式および(2−4)式でそれぞれ表される。
Ry=|IRy|/|IRy’|=(31/2/2)/31/2=0.5 (2−3)
ΔθRy=θRy−θRy’=30°−330°=−300°=60° (2−4)
また、送配電線のS相に断線事故が発生すると、図4(b−2)に示すように、S相電圧VSは0となり、健全相のR相およびT相電圧VR,VTの大きさおよび位相は対称的に変化する。
その結果、TR相線間電圧VTRの大きさおよび位相は(2−5)式および(2−6)式でそれぞれ表される。
|VTR|=|VT−VR|=2×|VT|=2×31/2/2=31/2 (2−5)
θTR=210° (2−6)
したがって、電圧変化率KTRおよび電圧位相変化角ΔθTRは(2−7)式および(2−8)式でそれぞれ表される。
TR=|VTR|/|VTR’|=31/2/31/2=1 (2−7)
ΔθTR=θTR−θTR’=210°−210°=0° (2−8)
(2) When a disconnection accident S phase of S-phase disconnection during transmission and distribution lines are generated, as shown in FIG. 4 (b-1), S phase current I S is zero, R-phase and T-phase flowing healthy phase The magnitudes and phases of the currents I R and I T change symmetrically.
As a result, the magnitude and phase of the combined current I Ry are expressed by the equations (2-1) and (2-2), respectively.
| I Ry | = | I R −I S | = | I R −0 | = | I R | = 3 1/2 / 2 (2-1)
θ Ry1 = 30 ° (2-2)
Therefore, the current change rate K Ry and the current phase change angle Δθ Ry are expressed by the equations (2-3) and (2-4), respectively.
K Ry = | I Ry | / | I Ry '| = (3 1/2 / 2) / 3 1/2 = 0.5 (2-3)
Δθ Ry = θ Ry −θ Ry '= 30 ° −330 ° = −300 ° = 60 ° (2-4)
Further, when a disconnection accident occurs in the S phase of the transmission / distribution line, as shown in FIG. 4B-2, the S phase voltage V S becomes 0, and the R phase and T phase voltages V R , V T of the healthy phase. The magnitude and phase of the change symmetrically.
As a result, the magnitude and phase of the TR phase line voltage V TR are expressed by the equations (2-5) and (2-6), respectively.
| V TR | = | V T −V R | = 2 × | V T | = 2 × 3 1/2 / 2 = 3 1/2 (2-5)
θ TR = 210 ° (2-6)
Therefore, the voltage change rate K TR and the voltage phase change angle Δθ TR are expressed by the equations (2-7) and (2-8), respectively.
K TR = | V TR | / | V TR '| = 3 1/2 / 3 1/2 = 1 (2-7)
Δθ TR = θ TR −θ TR '= 210 ° −210 ° = 0 ° (2-8)

(3)T相断線時
送配電線のT相に断線事故が発生すると、図4(c−1)に示すように、T相電流ITは0となり、健全相を流れるR相およびS相電流IR,ISの大きさおよび位相は対称的に変化する。
その結果、合成電流IRyの大きさおよび位相は(3−1)式および(3−2)式でそれぞれ表される。
|IRy|=|IR−IS|=2×|IR|=2×31/2/2=31/2 (3−1)
θRy=330° (3−2)
したがって、電流変化率KRyおよび電流位相変化角ΔθRyは(3−3)式および(3−4)式でそれぞれ表される。
Ry=|IRy|/|IRy’|=31/2/31/2=1 (3−3)
ΔθRy=θRy−θRy’=330°−330°=0° (3−4)
また、送配電線のT相に断線事故が発生すると、図4(c−2)に示すように、T相電圧VTは0となり、健全相のR相およびS相電圧VR,VSの大きさおよび位相は対称的に変化する。
その結果、TR相線間電圧VTRの大きさおよび位相は(3−5)式および(3−6)式でそれぞれ表される。
|VTR|=|VT−VR|=|0−VR|=|VS|=31/2/2 (3−5)
θTR=150° (3−6)
したがって、電圧変化率KTRおよび電圧位相変化角ΔθTRは(3−7)式および(3−8)式でそれぞれ表される。
TR=|VTR|/|VTR’|=(31/2/2)/31/2=0.5 (3−7)
ΔθTR=θTR−θTR’=150°−210°=−60° (3−8)
(3) When T phase disconnection accident T-phase disconnection during transmission and distribution lines are generated, as shown in FIG. 4 (c-1), T-phase current I T is 0, R-phase and S phase flowing healthy phase The magnitudes and phases of the currents I R and I S change symmetrically.
As a result, the magnitude and phase of the combined current I Ry are expressed by the equations (3-1) and (3-2), respectively.
| I Ry | = | I R −I S | = 2 × | I R | = 2 × 3 1/2 / 2 = 3 1/2 (3-1)
θ Ry = 330 ° (3-2)
Therefore, the current change rate K Ry and the current phase change angle Δθ Ry are expressed by the equations (3-3) and (3-4), respectively.
K Ry = | I Ry | / | I Ry '| = 3 1/2 / 3 1/2 = 1 (3-3)
Δθ Ry = θ Ry −θ Ry '= 330 ° −330 ° = 0 ° (3-4)
When a disconnection accident occurs in the T phase of the transmission / distribution line, as shown in FIG. 4C-2, the T phase voltage V T becomes 0, and the R phase and S phase voltages V R , V S of the healthy phase. The magnitude and phase of the change symmetrically.
As a result, the magnitude and phase of the TR phase line voltage V TR are expressed by the equations (3-5) and (3-6), respectively.
| V TR | = | V T −V R | = | 0−V R | = | V S | = 3 1/2 / 2 (3-5)
θ TR = 150 ° (3-6)
Therefore, the voltage change rate K TR and the voltage phase change angle Δθ TR are expressed by equations (3-7) and (3-8), respectively.
K TR = | V TR | / | V TR '| = (3 1/2 / 2) / 3 1/2 = 0.5 (3-7)
Δθ TR = θ TR −θ TR ′ = 150 ° −210 ° = −60 ° (3-8)

次に、断線保護継電装置10のリレー演算処理部16における断線事故判定処理方法について説明する。   Next, the disconnection accident determination processing method in the relay calculation processing unit 16 of the disconnection protection relay device 10 will be described.

リレー演算処理部16は、電流変化率KRyおよび電圧変化率KTRについては±10%の裕度α(=0.9〜1.1)を持たせ、電流位相変化角ΔθRyおよび電圧位相変化角ΔθTRについては±10°の裕度β(=−10°〜10°)を持たせて、以下のように断線回線を判定する。
(1)0.45≦KRy≦0.55、−70°≦ΔθRy≦−50°、0.45≦KTR≦0.55、50°≦ΔθTR≦70°の場合には、送配電線のR相で断線事故が発生したと判定する。
(2)0.45≦KRy≦0.55、50°≦ΔθRy≦70°、0.9≦KTR≦1.1、−10°≦ΔθTR≦10°の場合には、送配電線のS相で断線事故が発生したと判定する。
(3)0.9≦KRy≦1.1、−10°≦ΔθRy≦10°、0.45≦KTR≦0.55、−70°≦ΔθTR≦−50°の場合には、送配電線のT相で断線事故が発生したと判定する。
The relay arithmetic processing unit 16 gives a tolerance α (= 0.9 to 1.1) of ± 10% for the current change rate K Ry and the voltage change rate K TR , and the current phase change angle Δθ Ry and the voltage phase. The change angle Δθ TR is given a tolerance β (= −10 ° to 10 °) of ± 10 °, and a broken line is determined as follows.
(1) When 0.45 ≦ K Ry ≦ 0.55, −70 ° ≦ Δθ Ry ≦ −50 °, 0.45 ≦ K TR ≦ 0.55, 50 ° ≦ Δθ TR ≦ 70 ° It is determined that a disconnection accident has occurred in the R phase of the distribution line.
(2) Delivery when 0.45 ≦ K Ry ≦ 0.55, 50 ° ≦ Δθ Ry ≦ 70 °, 0.9 ≦ K TR ≦ 1.1, −10 ° ≦ Δθ TR ≦ 10 ° It is determined that a disconnection accident has occurred in the S phase of the wire.
(3) When 0.9 ≦ K Ry ≦ 1.1, −10 ° ≦ Δθ Ry ≦ 10 °, 0.45 ≦ K TR ≦ 0.55, −70 ° ≦ Δθ TR ≦ −50 °, It is determined that a disconnection accident has occurred in the T phase of the transmission and distribution line.

次に、本発明の第2の実施例による断線保護継電システムについて、図5(a)および図6を参照して説明する。
本実施例による断線保護継電システムは、図1に示した計器用変圧器2の代わりに図5(a)に示す電圧合成変圧器51を用いる点で、上述した第1の実施例による断線保護継電システムと異なる。
Next, a disconnection protection relay system according to a second embodiment of the present invention will be described with reference to FIG. 5 (a) and FIG.
The disconnection protection relay system according to the present embodiment uses the voltage synthesis transformer 51 shown in FIG. 5A in place of the instrument transformer 2 shown in FIG. Different from protective relay system.

ここで、電圧合成変圧器51の2次側は、R相電圧VRを極性方向で、S相電圧VSを反極性方向で、T相電圧VTを極性方向で2倍して合成するように結線されている。 Here, the secondary side of the voltage synthesis transformer 51 synthesizes the R phase voltage V R by doubling the S phase voltage V S in the polarity direction, the S phase voltage V S in the opposite polarity direction, and the T phase voltage V T in the polarity direction. It is wired like this.

したがって、電圧合成変圧器51から断線保護継電装置10に入力される正常時の合成電圧VR-S+2T’は正常時のR相電圧VR’と極性が負の正常時のS相電圧VS’(=−VS’)と正常時のT相電圧VT’を2倍した電圧(=2VT’)とのベクトル和となるが、正常時のR相、S相およびT相電圧VR’,VS’,VT’は図6(a)に示すように位相が120°間隔でずれているため、正常時の合成電圧VR-S+2T’の大きさおよび位相は71/2および289.1°となる。
|VR-S+2T’|=|VR’−VS’+2VT’|=71/2
θR-S+2T’=289.1°
Therefore, the normal composite voltage V R-S + 2T ′ input from the voltage composite transformer 51 to the disconnection protection relay device 10 is the normal R phase voltage V R ′ and the negative S phase when the polarity is normal. The vector sum of the voltage V S ′ (= −V S ′) and the voltage (= 2V T ′) obtained by doubling the T-phase voltage V T ′ at normal time, but the normal R-phase, S-phase, and T Since the phase voltages V R ′, V S ′, and V T ′ are out of phase at 120 ° intervals as shown in FIG. 6A , the magnitude of the normal combined voltage V R−S + 2T ′ and The phases are 7 1/2 and 289.1 °.
| V R−S + 2T ′ | = | V R ′ −V S ′ + 2V T ′ | = 7 1/2
θ R-S + 2T '= 289.1 °

次に、送配電線において断線事故が発生したときの電圧変化率KR-S+2Tおよび電圧位相変化角ΔθR-S+2Tについて、図6(b)〜(d)を参照して説明する。 Next, the voltage change rate K R−S + 2T and the voltage phase change angle Δθ R−S + 2T when a disconnection accident occurs in the transmission / distribution line will be described with reference to FIGS. 6 (b) to 6 (d). To do.

(1)R相断線時
送配電線のR相に断線事故が発生すると、クロス貫通変流器21から断線保護継電装置10に入力される合成電流IRyの大きさおよび位相は上記(1−1)式および上記(1−2)式でそれぞれ表され、電流変化率KRyおよび電流位相変化角ΔθRyは上記(1−3)式および上記(1−4)式でそれぞれ表される。
また、送配電線のR相に断線事故が発生すると、図6(b)に示すように、R相電圧VRは0となり、健全相のS相およびT相電圧VS,VTの大きさおよび位相は対称的に変化する。
その結果、合成電圧VR-S+2Tの大きさおよび位相は(4−1)式および(4−2)式でそれぞれ表される。
|VR-S+2T|=|VR−VS+2VT|=|0−VS+2VT|=|−VS+2VT|=3×|VT|=3×31/2/2 (4−1)
θR-S+2T=270° (4−2)
したがって、電圧変化率KR-S+2Tおよび電圧位相変化角ΔθR-S+2Tは(4−3)式および(4−4)式でそれぞれ表される。
R-S+2T=|VR-S+2T|/|VR-S+2T’|=(3×31/2/2)/71/2(≒0.98) (4−3)
ΔθR-S+2T=θR-S+2T−θR-S+2T’=270°−289.1°=−19.1° (4−4)
(1) During R-phase disconnection When a disconnection accident occurs in the R-phase of the transmission and distribution line, the magnitude and phase of the combined current I Ry input from the cross-through current transformer 21 to the disconnection protection relay device 10 are as described above (1 -1) and the above formula (1-2), respectively, and the current change rate K Ry and the current phase change angle Δθ Ry are expressed by the above formula (1-3) and the above formula (1-4), respectively. .
When a disconnection accident occurs in the R phase of the transmission / distribution line, the R phase voltage V R becomes 0 as shown in FIG. 6B, and the S phase and T phase voltages V S and V T of the healthy phase are large. The thickness and phase change symmetrically.
As a result, the magnitude and phase of the combined voltage V R-S + 2T are expressed by the equations (4-1) and (4-2), respectively.
| V R-S + 2T | = | V R −V S + 2V T | = | 0−V S + 2V T | = | −V S + 2V T | = 3 × | V T | = 3 × 3 1/2 / 2 (4-1)
θ R-S + 2T = 270 ° (4-2)
Therefore, the voltage change rate K R−S + 2T and the voltage phase change angle Δθ R−S + 2T are expressed by the equations (4-3) and (4-4), respectively.
K R-S + 2T = | V R-S + 2T | / | V R-S + 2T '| = (3 × 3 1/2 / 2) / 7 1/2 (≈0.98) (4- 3)
Δθ R−S + 2T = θ R−S + 2T −θ R−S + 2T ′ = 270 ° −289.1 ° = −19.1 ° (4-4)

(2)S相断線時
送配電線のS相に断線事故が発生すると、合成電流IRyの大きさおよび位相は上記(2−1)式および上記(2−2)式でそれぞれ表され、電流変化率KRyおよび電流位相変化角ΔθRyは上記(2−3)式および上記(2−4)式でそれぞれ表される。
また、送配電線のS相に断線事故が発生すると、図6(c)に示すように、S相電圧VSは0となり、健全相のR相およびT相電圧VR,VTの大きさおよび位相は対称的に変化する。
その結果、合成電圧VR-S+2Tの大きさおよび位相は(5−1)式および(5−2)式でそれぞれ表される。
|VR-S+2T|=|VR−VS+2VT|=|VR−0+2VT|=|VR+2VT|=|VT|=31/2/2 (5−1)
θR-S+2T=210° (5−2)
したがって、電圧変化率KR-S+2Tおよび電圧位相変化角ΔθR-S+2Tは(5−3)式および(5−4)式でそれぞれ表される。
R-S+2T=|VR-S+2T|/|VR-S+2T’|=(31/2/2)/71/2(≒0.33) (5−3)
ΔθR-S+2T=θR-S+2T−θR-S+2T’=210°−289.1°=−79.1° (5−4)
(2) During S-phase disconnection When a disconnection accident occurs in the S-phase of the transmission and distribution line, the magnitude and phase of the combined current I Ry are expressed by the above formula (2-1) and the above formula (2-2), respectively. The current change rate K Ry and the current phase change angle Δθ Ry are expressed by the above formula (2-3) and the above formula (2-4), respectively.
When a disconnection accident occurs in the S phase of the transmission / distribution line, as shown in FIG. 6C, the S phase voltage V S becomes 0, and the healthy phase R phase and the T phase voltages V R and V T are large. The thickness and phase change symmetrically.
As a result, the magnitude and phase of the combined voltage V R-S + 2T are expressed by the equations (5-1) and (5-2), respectively.
| V R−S + 2T | = | V R −V S + 2V T | = | V R −0 + 2V T | = | V R + 2V T | = | V T | = 3 1/2 / 2 (5-1)
θ R-S + 2T = 210 ° (5-2)
Therefore, the voltage change rate K R−S + 2T and the voltage phase change angle Δθ R−S + 2T are expressed by the equations (5-3) and (5-4), respectively.
K R-S + 2T = | V R-S + 2T | / | V R-S + 2T '| = (3 1/2 / 2) / 7 1/2 (≈0.33) (5-3)
Δθ R−S + 2T = θ R−S + 2T −θ R−S + 2T ′ = 210 ° −289.1 ° = −79.1 ° (5-4)

(3)T相断線時
送配電線のT相に断線事故が発生すると、合成電流IRyの大きさおよび位相は上記(3−1)式および上記(3−2)式でそれぞれ表され、電流変化率KRyおよび電流位相変化角ΔθRyは上記(3−3)式および上記(3−4)式でそれぞれ表される。
また、送配電線のT相に断線事故が発生すると、図6(d)に示すように、T相電圧VTは0となり、健全相のR相およびS相電圧VR,VSの大きさおよび位相は対称的に変化する。
その結果、合成電圧VR-S+2Tの大きさおよび位相は(6−1)式および(6−2)式でそれぞれ表される。
|VR-S+2T|=|VR−VS+2VT|=|VR−VS+0|=|VR−VS|=2×|VR|=2×31/2/2=31/2 (5−1)
θR-S+2T=330° (6−2)
したがって、電圧変化率KR-S+2Tおよび電圧位相変化角ΔθR-S+2Tは(6−3)式および(6−4)式でそれぞれ表される。
R-S+2T=|VR-S+2T|/|VR-S+2T’|=31/2/71/2(≒0.65) (6−3)
ΔθR-S+2T=θR-S+2T−θR-S+2T’=330°−289.1°=40.9° (6−4)
(3) At the time of T-phase disconnection When a disconnection accident occurs in the T-phase of the transmission and distribution line, the magnitude and phase of the combined current I Ry are expressed by the above formula (3-1) and the above formula (3-2), respectively. The current change rate K Ry and the current phase change angle Δθ Ry are expressed by the above formula (3-3) and the above formula (3-4), respectively.
When a disconnection accident occurs in the T phase of the transmission / distribution line, as shown in FIG. 6D, the T phase voltage V T becomes 0, and the healthy phase R phase and the S phase voltages V R and V S are large. The thickness and phase change symmetrically.
As a result, the magnitude and phase of the combined voltage V R-S + 2T are expressed by the equations (6-1) and (6-2), respectively.
| V R−S + 2T | = | V R −V S + 2V T | = | V R −V S +0 | = | V R −V S | = 2 × | V R | = 2 × 3 1/2 / 2 = 3 1/2 (5-1)
θ R-S + 2T = 330 ° (6-2)
Therefore, the voltage change rate K R−S + 2T and the voltage phase change angle Δθ R−S + 2T are expressed by the equations (6-3) and (6-4), respectively.
K R-S + 2T = | V R-S + 2T | / | V R-S + 2T '| = 3 1/2 / 7 1/2 (≈0.65) (6-3)
Δθ R−S + 2T = θ R−S + 2T −θ R−S + 2T ′ = 330 ° −289.1 ° = 40.9 ° (6-4)

次に、断線保護継電装置10のリレー演算処理部16における断線事故判定処理方法について説明する。   Next, the disconnection accident determination processing method in the relay calculation processing unit 16 of the disconnection protection relay device 10 will be described.

リレー演算処理部16は、電流変化率KRyおよび電圧変化率KR-S+2Tについては±10%の裕度α(=0.9〜1.1)を持たせ、電流位相変化角ΔθRyおよび電圧位相変化角ΔθR-S+2Tについては±10°の裕度β(=−10°〜10°)を持たせて、以下のように断線回線を判定する。
(1)0.45≦KRy≦0.55、−70°≦ΔθRy≦−50°、0.88≦KR-S+2T≦1.1、−29.1°≦ΔθR-S+2T≦−9.1°の場合には、送配電線のR相で断線事故が発生したと判定する。
(2)0.45≦KRy≦0.55、50°≦ΔθRy≦70°、0.30≦KR-S+2T≦0.36、−89.1°≦ΔθR-S+2T≦−69.1°の場合には、送配電線のS相で断線事故が発生したと判定する。
(3)0.9≦KRy≦1.1、−10°≦ΔθRy≦10°、0.59≦KR-S+2T≦0.72、30.9°≦ΔθR-S+2T≦50.9°の場合には、送配電線のT相で断線事故が発生したと判定する。
The relay arithmetic processing unit 16 gives a tolerance α (= 0.9 to 1.1) of ± 10% for the current change rate K Ry and the voltage change rate K R-S + 2T , and the current phase change angle Δθ. With respect to Ry and voltage phase change angle Δθ R−S + 2T , a tolerance β of ± 10 ° (= −10 ° to 10 °) is given, and a broken line is determined as follows.
(1) 0.45 ≦ K Ry ≦ 0.55, −70 ° ≦ Δθ Ry ≦ −50 °, 0.88 ≦ K R-S + 2T ≦ 1.1, −29.1 ° ≦ Δθ R-S When + 2T ≦ −9.1 °, it is determined that a disconnection accident has occurred in the R phase of the transmission and distribution line.
(2) 0.45 ≦ K Ry ≦ 0.55, 50 ° ≦ Δθ Ry ≦ 70 °, 0.30 ≦ K R−S + 2T ≦ 0.36, −89.1 ° ≦ Δθ R−S + 2T In the case of ≦ −69.1 °, it is determined that a disconnection accident has occurred in the S phase of the transmission and distribution line.
(3) 0.9 ≦ K Ry ≦ 1.1, −10 ° ≦ Δθ Ry ≦ 10 °, 0.59 ≦ K R-S + 2T ≦ 0.72, 30.9 ° ≦ Δθ R-S + 2T In the case of ≦ 50.9 °, it is determined that a disconnection accident has occurred in the T phase of the transmission and distribution line.

次に、本発明の第3の実施例による断線保護継電システムについて、図5(b)および図7を参照して説明する。
本実施例による断線保護継電システムは、図1に示した計器用変圧器2の代わりに図5(b)に示す電圧合成変圧器52を用いる点で、上述した第1の実施例による断線保護継電システムと異なる。
Next, a disconnection protection relay system according to a third embodiment of the present invention will be described with reference to FIG. 5B and FIG.
The disconnection protection relay system according to this embodiment uses the voltage synthesis transformer 52 shown in FIG. 5B in place of the instrument transformer 2 shown in FIG. Different from protective relay system.

ここで、電圧合成変圧器52の2次側は、R相電圧VRを極性方向で、S相電圧VSを反極性方向で、T相電圧VTを反極性方向で2倍して合成するように結線されている。 Here, the secondary side of the voltage synthesis transformer 52 synthesizes the R-phase voltage V R by doubling the S-phase voltage V S in the polarity direction, the S-phase voltage V S in the opposite polarity direction, and the T-phase voltage V T in the opposite polarity direction. Wired to do so.

したがって、電圧合成変圧器52から断線保護継電装置10に入力される正常時の合成電圧VR-S-2T’は正常時のR相電圧VR’と極性が負の正常時のS相電圧VS’(=−VS’)と極性が負の正常時のT相電圧VT’を2倍した電圧(=−2VT’)とのベクトル和となるが、正常時のR相、S相およびT相電圧VR’,VS’,VT’は図7(a)に示すように位相が120°間隔でずれているため、正常時の合成電圧VR-S-2T’の大きさおよび位相は71/2および19.1°となる。
|VR-S-2T’|=|VR’−VS’−2VT’|=71/2
θR-S-2T’=19.1°
Therefore, the normal composite voltage V RS-2T ′ input from the voltage composite transformer 52 to the disconnection protection relay device 10 is the normal R phase voltage V R ′ and the negative S phase voltage V normal. It becomes the vector sum of S ′ (= −V S ′) and a voltage (= −2V T ′) that is twice the normal T phase voltage V T ′ having a negative polarity. the size of the phase and T-phase voltage V R ', V S', V T 'is 7 since the phase as shown in (a) are shifted at intervals of 120 °, the composite voltage V RS-2T in the normal' And the phase is 7 1/2 and 19.1 °.
| V RS-2T '| = | V R ' −V S '-2V T ' | == 7 1/2
θ RS-2T '= 19.1 °

次に、送配電線において断線事故が発生したときの電圧変化率KR-S-2Tおよび電圧位相変化角ΔθR-S-2Tについて、図7(b)〜(d)を参照して説明する。 Next, the voltage change rate K RS-2T and the voltage phase change angle Δθ RS-2T when a disconnection accident occurs in the transmission and distribution line will be described with reference to FIGS.

(1)R相断線時
送配電線のR相に断線事故が発生すると、クロス貫通変流器21から断線保護継電装置10に入力される合成電流IRyの大きさおよび位相は上記(1−1)式および上記(1−2)式でそれぞれ表され、電流変化率KRyおよび電流位相変化角ΔθRyは上記(1−3)式および上記(1−4)式でそれぞれ表される。
また、送配電線のR相に断線事故が発生すると、図7(b)に示すように、R相電圧VRは0となり、健全相のS相およびT相電圧VS,VTの大きさおよび位相は対称的に変化する。
その結果、合成電圧VR-S-2Tの大きさおよび位相は(7−1)式および(7−2)式でそれぞれ表される。
|VR-S-2T|=|VR−VS−2VT|=|0−VS−2VT|=|−VS−2VT|=|VS|=31/2/2 (7−1)
θR-S-2T=90° (7−2)
したがって、電圧変化率KR-S-2Tおよび電圧位相変化角ΔθR-S-2Tは(7−3)式および(7−4)式でそれぞれ表される。
R-S-2T=|VR-S-2T|/|VR-S-2T’|=(31/2/2)/71/2(≒0.33) (7−3)
ΔθR-S-2T=θR-S-2T−θR-S-2T’=90°−19.1°=70.9° (7−4)
(1) During R-phase disconnection When a disconnection accident occurs in the R-phase of the transmission and distribution line, the magnitude and phase of the combined current I Ry input from the cross-through current transformer 21 to the disconnection protection relay device 10 are as described above (1 -1) and the above formula (1-2), respectively, and the current change rate K Ry and the current phase change angle Δθ Ry are expressed by the above formula (1-3) and the above formula (1-4), respectively. .
When a disconnection accident occurs in the R phase of the transmission / distribution line, as shown in FIG. 7 (b), the R phase voltage V R becomes 0, and the S phase and T phase voltages V S and V T of the healthy phase are large. The thickness and phase change symmetrically.
As a result, the magnitude and phase of the combined voltage V RS-2T are expressed by the equations (7-1) and (7-2), respectively.
| V RS-2T | = | V R −V S −2V T | = | 0−V S −2V T | = | −V S −2V T | = | V S | = 3 1/2 / 2 (7 -1)
θ RS-2T = 90 ° (7-2)
Therefore, the voltage change rate K RS-2T and the voltage phase change angle Δθ RS-2T are expressed by the equations (7-3) and (7-4), respectively.
K RS-2T = | V RS-2T | / | V RS-2T '| = (3 1/2 / 2) / 7 1/2 (≈0.33) (7-3)
Δθ RS-2T = θ RS-2T −θ RS-2T '= 90 ° −19.1 ° = 70.9 ° (7-4)

(2)S相断線時
送配電線のS相に断線事故が発生すると、合成電流IRyの大きさおよび位相は上記(2−1)式および上記(2−2)式でそれぞれ表され、電流変化率KRyおよび電流位相変化角ΔθRyは上記(2−3)式および上記(2−4)式でそれぞれ表される。
また、送配電線のS相に断線事故が発生すると、図7(c)に示すように、S相電圧VSは0となり、健全相のR相およびT相電圧VR,VTの大きさおよび位相は対称的に変化する。
その結果、合成電圧VR-S-2Tの大きさおよび位相は(8−1)式および(8−2)式でそれぞれ表される。
|VR-S-2T|=|VR−VS−2VT|=|VR−0−2VT|=|VR−2VT|=3×|VR|=3×31/2/2 (8−1)
θR-S-2T=30° (8−2)
したがって、電圧変化率KR-S-2Tおよび電圧位相変化角ΔθR-S-2Tは(8−3)式および(8−4)式でそれぞれ表される。
R-S-2T=|VR-S-2T|/|VR-S-2T’|=(3×31/2/2)−71/2(≒0.98) (8−3)
ΔθR-S-2T=θR-S-2T−θR-S-2T’=30°−19.1°=10.9° (8−4)
(2) During S-phase disconnection When a disconnection accident occurs in the S-phase of the transmission and distribution line, the magnitude and phase of the combined current I Ry are expressed by the above formula (2-1) and the above formula (2-2), respectively. The current change rate K Ry and the current phase change angle Δθ Ry are expressed by the above formula (2-3) and the above formula (2-4), respectively.
Further, when a disconnection accident occurs in the S phase of the transmission / distribution line, as shown in FIG. 7C, the S phase voltage V S becomes 0, and the R phase and T phase voltages V R and V T of the healthy phase are large. The thickness and phase change symmetrically.
As a result, the magnitude and phase of the combined voltage V RS-2T are expressed by the equations (8-1) and (8-2), respectively.
| V RS-2T | = | V R −V S −2V T | = | V R −0−2V T | = | V R −2V T | = 3 × | V R | = 3 × 3 1/2 / 2 (8-1)
θ RS-2T = 30 ° (8-2)
Therefore, the voltage change rate K RS-2T and the voltage phase change angle Δθ RS-2T are expressed by equations (8-3) and (8-4), respectively.
K RS-2T = | V RS-2T | / | V RS-2T '| = (3 × 3 1/2 / 2) −7 1/2 (≈0.98) (8-3)
Δθ RS-2T = θ RS-2T −θ RS-2T '= 30 ° −19.1 ° = 10.9 ° (8-4)

(3)T相断線時
送配電線のT相に断線事故が発生すると、合成電流IRyの大きさおよび位相は上記(3−1)式および上記(3−2)式でそれぞれ表され、電流変化率KRyおよび電流位相変化角ΔθRyは上記(3−3)式および上記(3−4)式でそれぞれ表される。
また、送配電線のT相に断線事故が発生すると、図7(d)に示すように、T相電圧VTは0となり、健全相のR相およびS相電圧VR,VSの大きさおよび位相は対称的に変化する。
その結果、合成電圧VR-S-2Tの大きさおよび位相は(9−1)式および(9−2)式でそれぞれ表される。
|VR-S-2T|=|VR−VS−2VT|=|VR−VS−0|=|VR−VS|=2×|VR|=2×31/2/2=31/2 (9−1)
θR-S-2T=330° (9−2)
したがって、電圧変化率KR-S-2Tおよび電圧位相変化角ΔθR-S-2Tは(9−3)式および(9−4)式でそれぞれ表される。
R-S-2T=|VR-S-2T|/|VR-S-2T’|=31/2/71/2(≒0.65) (9−3)
ΔθR-S-2T=θR-S-2T−θR-S-2T’=330°−19.1°=310.9°=−49.1° (9−4)
(3) At the time of T-phase disconnection When a disconnection accident occurs in the T-phase of the transmission and distribution line, the magnitude and phase of the combined current I Ry are expressed by the above formula (3-1) and the above formula (3-2), respectively. The current change rate K Ry and the current phase change angle Δθ Ry are expressed by the above formula (3-3) and the above formula (3-4), respectively.
When a disconnection accident occurs in the T phase of the transmission / distribution line, as shown in FIG. 7D, the T phase voltage V T becomes 0, and the healthy phase R phase and the S phase voltages V R and V S are large. The thickness and phase change symmetrically.
As a result, the magnitude and phase of the combined voltage V RS-2T are expressed by the equations (9-1) and (9-2), respectively.
| V RS-2T | = | V R −V S −2V T | = | V R −V S −0 | = | V R −V S | = 2 × | V R | = 2 × 3 1/2 / 2 = 3 1/2 (9-1)
θ RS-2T = 330 ° (9-2)
Therefore, the voltage change rate K RS-2T and the voltage phase change angle Δθ RS-2T are expressed by the equations (9-3) and (9-4), respectively.
K RS-2T = | V RS-2T | / | V RS-2T '| == 3 1/2 / 7 1/2 (≈0.65) (9-3)
Δθ RS-2T = θ RS-2T −θ RS-2T '= 330 ° −19.1 ° = 310.9 ° = −49.1 ° (9-4)

次に、断線保護継電装置10のリレー演算処理部16における断線事故判定処理方法について説明する。   Next, the disconnection accident determination processing method in the relay calculation processing unit 16 of the disconnection protection relay device 10 will be described.

リレー演算処理部16は、電流変化率KRyおよび電圧変化率KR-S-2Tについては±10%の裕度α(=0.9〜1.1)を持たせ、電流位相変化角ΔθRyおよび電圧位相変化角ΔθR-S-2Tについては±10°の裕度β(=−10°〜10°)を持たせて、以下のように断線回線を判定する。
(1)0.45≦KRy≦0.55、−70°≦ΔθRy≦−50°、0.30≦KR-S-2T≦0.36、60.9°≦ΔθR-S-2T≦80.9°の場合には、送配電線のR相で断線事故が発生したと判定する。
(2)0.45≦KRy≦0.55、50°≦ΔθRy≦70°、0.88≦KR-S-2T≦1.1、0.9°≦ΔθR-S-2T≦20.9°の場合には、送配電線のS相で断線事故が発生したと判定する。
(3)0.9≦KRy≦1.1、−10°≦ΔθRy≦10°、0.59≦KR-S-2T≦0.72、−59.1°≦ΔθR-S-2T≦−39.1°の場合には、送配電線のT相で断線事故が発生したと判定する。
The relay arithmetic processing unit 16 gives a tolerance α (= 0.9 to 1.1) of ± 10% for the current change rate K Ry and the voltage change rate K RS-2T , and the current phase change angle Δθ Ry and The voltage phase change angle Δθ RS-2T is given a tolerance β (= −10 ° to 10 °) of ± 10 °, and a broken line is determined as follows.
(1) 0.45 ≦ K Ry ≦ 0.55, −70 ° ≦ Δθ Ry ≦ −50 °, 0.30 ≦ K RS-2T ≦ 0.36, 60.9 ° ≦ Δθ RS-2T ≦ 80. In the case of 9 °, it is determined that a disconnection accident has occurred in the R phase of the transmission and distribution line.
(2) 0.45 ≦ K Ry ≦ 0.55, 50 ° ≦ Δθ Ry ≦ 70 °, 0.88 ≦ K RS-2T ≦ 1.1, 0.9 ° ≦ Δθ RS-2T ≦ 20.9 ° In the case of, it is determined that a disconnection accident has occurred in the S phase of the transmission and distribution line.
(3) 0.9 ≦ K Ry ≦ 1.1, −10 ° ≦ Δθ Ry ≦ 10 °, 0.59 ≦ K RS-2T ≦ 0.72, −59.1 ° ≦ Δθ RS-2T ≦ −39 In the case of 1 °, it is determined that a disconnection accident has occurred in the T phase of the transmission and distribution line.

次に、本発明の第4の実施例による断線保護継電システムについて、図8を参照して説明する。
本実施例による断線保護継電システムは、図1に示したクロス貫通変流器21の代わりに図8に示すように差接続された第1および第2の変流器31,32を用いる点で、上述した第1の実施例による断線保護継電システムと異なる。
Next, a disconnection protection relay system according to a fourth embodiment of the present invention will be described with reference to FIG.
The disconnection protection relay system according to the present embodiment includes first and second current transformers 3 1 and 3 2 that are differentially connected as shown in FIG. 8 instead of the cross-through current transformer 21 shown in FIG. It differs from the disconnection protection relay system according to the first embodiment described above in that it is used.

ここで、第1および第2の変流器31,32は、送配電線のR相およびS相にそれぞれ設置されている。
したがって、差接続された第1および第2の変流器31,32から断線保護継電装置10に入力される合成電流IRyは、R相電流IRとS相電流ISとのベクトル差となり、図1に示したクロス貫通変流器21から断線保護継電装置10に入力される合成電流IRyと同じになる。
その結果、上述した第1の実施例による断線保護継電システムと同様の効果を得ることができる。
Here, the first and second current transformers 3 1 and 3 2 are respectively installed in the R phase and the S phase of the transmission and distribution line.
Therefore, the combined current I Ry input to the disconnection protection relay device 10 from the first and second current transformers 3 1 and 3 2 connected in a differential manner is the difference between the R phase current I R and the S phase current I S. The vector difference is the same as the combined current I Ry input from the cross through current transformer 21 shown in FIG.
As a result, the same effect as the disconnection protection relay system according to the first embodiment described above can be obtained.

なお、本実施例による断線保護継電システムにおいても、計器用変圧器2の代わりに図5(a),(b)に示した電圧合成変圧器51,52を用いてもよい。   In the disconnection protection relay system according to the present embodiment, the voltage synthesis transformers 51 and 52 shown in FIGS. 5A and 5B may be used instead of the instrument transformer 2.

次に、本発明の第5の実施例による断線保護継電システムについて、図9および図10を参照して説明する。
本実施例による断線保護継電システムは、図1に示したクロス貫通変流器21の代わりに図9に示すストレート貫通変流器22を用いる点で、上述した第1の実施例による断線保護継電システムと異なる。
Next, a disconnection protection relay system according to a fifth embodiment of the present invention will be described with reference to FIGS.
The disconnection protection relay system according to the present embodiment uses the straight through current transformer 22 shown in FIG. 9 in place of the cross through current transformer 21 shown in FIG. Different from the relay system.

ここで、ストレート貫通変流器22は、2次コイルを巻装した環状鉄心に送配電線のR相およびS相を同じ向きにストレートに貫通させた貫通形変流器である。
すなわち、送配電線のR相およびS相は共にストレート貫通変流器22の極性方向(環状鉄心の第1の開口面から環状鉄心の第2の開口面への方向)に貫通されている。
Here, the straight through current transformer 22 is a through current transformer in which the R phase and the S phase of the power transmission and distribution line are straightly penetrated in the same direction through an annular core around which a secondary coil is wound.
That is, both the R phase and the S phase of the power transmission and distribution line are penetrated in the polarity direction of the straight through current transformer 22 (the direction from the first opening surface of the annular core to the second opening surface of the annular core).

したがって、正常時のR相電流IR’と正常時のS相電流IS’とは図10(a)に示すように120°の位相差でストレート貫通変流器22の環状鉄心を極性方向に貫通して流れるため、ストレート貫通変流器22から断線保護継電装置10に入力される正常時の合成電流IRy’は正常時のR相電流IR’と正常時のS相電流IS’とのベクトル和となり、正常時の合成電流IRy1の大きさおよび位相は1および60°となる。
|IRy’|=|IR’+IS’|=1
θRy’=60°
Therefore, the normal R-phase current I R ′ and the normal S-phase current I S ′ have a phase difference of 120 ° as shown in FIG. Therefore, the normal combined current I Ry ′ input to the disconnection protection relay device 10 from the straight through current transformer 22 is the normal R phase current I R ′ and the normal S phase current I. It becomes a vector sum with S ′, and the magnitude and phase of the combined current I Ry1 in the normal state are 1 and 60 °.
| I Ry '| = | I R ' + I S '| = 1
θ Ry '= 60 °

次に、送配電線において断線事故が発生したときの電流変化率KRy、電流位相変化角ΔθRy、電圧変化率KTRおよび電圧位相変化角ΔθTRについて、図10(b)〜(d)を参照して説明する。 Next, with respect to the current change rate K Ry , current phase change angle Δθ Ry , voltage change rate K TR, and voltage phase change angle Δθ TR when a disconnection accident occurs in the transmission and distribution line, FIGS. 10 (b) to 10 (d). Will be described with reference to FIG.

(1)R相断線時
送配電線のR相に断線事故が発生すると、図10(b)に示すように、R相電流IRは0となり、健全相を流れるS相およびT相電流IS,ITの大きさおよび位相は対称的に変化する。
その結果、合成電流IRyの大きさおよび位相は(10−1)式および(10−2)式でそれぞれ表される。
|IRy|=|IR+IS|=|0+IS|=|IS|=31/2/2 (10−1)
θRy=90° (10−2)
したがって、電流変化率KRyおよび電流位相変化角ΔθRyは(10−3)式および(10−4)式でそれぞれ表される。
Ry=|IRy|/|IRy’|=(31/2/2)/1=31/2/2(≒−0.87) (10−3)
ΔθRy=θRy−θRy’=60°−30°=30° (10−2)
また、送配電線のR相に断線事故が発生すると、計器用変圧器2から断線保護継電器10に入力されるTR線間電圧VTRの大きさおよび位相は上記(1−5)式および上記(1−6)式でそれぞれ表される。
したがって、電圧変化率KTRおよび電圧位相変化角ΔθTRは上記(1−7)式および上記(1−8)式でそれぞれ表される。
(1) During R-phase disconnection When a disconnection accident occurs in the R-phase of the transmission and distribution line, the R-phase current I R becomes 0 as shown in FIG. 10B, and the S-phase and T-phase currents I flowing through the healthy phase The magnitudes and phases of S and I T change symmetrically.
As a result, the magnitude and phase of the combined current I Ry are expressed by the equations (10-1) and (10-2), respectively.
| I Ry | = | I R + I S | = | 0 + I S | = | I S | = 3 1/2 / 2 (10-1)
θ Ry = 90 ° (10-2)
Therefore, the current change rate K Ry and the current phase change angle Δθ Ry are expressed by the equations (10-3) and (10-4), respectively.
K Ry = | I Ry | / | I Ry '| = (3 1/2 / 2) / 1 = 3 1/2 / 2 (≈−0.87) (10-3)
Δθ Ry = θ Ry −θ Ry '= 60 ° -30 ° = 30 ° (10-2)
Further, when a disconnection accident occurs in the R phase of the transmission and distribution line, the magnitude and phase of the TR line voltage V TR input from the instrument transformer 2 to the disconnection protection relay 10 are the above formula (1-5) and the above Each is represented by the formula (1-6).
Therefore, the voltage change rate K TR and the voltage phase change angle Δθ TR are expressed by the above equations (1-7) and (1-8), respectively.

(2)S相断線時
送配電線のS相に断線事故が発生すると、図10(c)に示すように、S相電流ISは0となり、健全相を流れるR相およびT相電流IR,ITの大きさおよび位相は対称的に変化する。
その結果、合成電流IRyの大きさおよび位相は(11−1)式および(11−2)式でそれぞれ表される。
|IRy|=|IR+IS|=|IR+0|=|IR|=31/2/2 (11−1)
θRy=30° (11−2)
したがって、電流変化率KRyおよび電流位相変化角ΔθRyは(11−3)式および(11−4)式でそれぞれ表される。
Ry=|IRy|/|IRy’|=(31/2/2)/1=31/2/2(≒0.87) (11−3)
ΔθRy=θRy−θRy’=30°−60°=−30° (11−4)
また、送配電線のS相に断線事故が発生すると、TR相線間電圧VTRの大きさおよび位相は上記(2−5)式および上記(2−6)式でそれぞれ表される。
したがって、電圧変化率KTRおよび電圧位相変化角ΔθTRは上記(2−7)式および上記(2−8)式でそれぞれ表される。
(2) When a disconnection accident S phase of S-phase disconnection during transmission and distribution lines are generated, as shown in FIG. 10 (c), S-phase current I S is zero, through a sound phase R phase and T-phase currents I The magnitudes and phases of R 1 and I T change symmetrically.
As a result, the magnitude and phase of the combined current I Ry are expressed by the equations (11-1) and (11-2), respectively.
| I Ry | = | I R + I S | = | I R +0 | = | I R | = 3 1/2 / 2 (11-1)
θ Ry = 30 ° (11-2)
Therefore, the current change rate K Ry and the current phase change angle Δθ Ry are expressed by the equations (11-3) and (11-4), respectively.
K Ry = | I Ry | / | I Ry '| = (3 1/2 / 2) / 1 = 3 1/2 / 2 (≈0.87) (11-3)
Δθ Ry = θ Ry −θ Ry '= 30 ° −60 ° = −30 ° (11-4)
When a disconnection accident occurs in the S phase of the transmission / distribution line, the magnitude and phase of the TR phase line voltage V TR are expressed by the above formulas (2-5) and (2-6), respectively.
Therefore, the voltage change rate K TR and the voltage phase change angle Δθ TR are expressed by the above equations (2-7) and (2-8), respectively.

(3)T相断線時
送配電線のT相に断線事故が発生すると、図10(d)に示すように、T相電流ITは0となり、健全相を流れるR相およびS相電流IR,ISの大きさおよび位相は対称的に変化する。
その結果、合成電流IRyの大きさおよび位相は(12−1)式および(12−2)式でそれぞれ表される。
|IRy|=|IR+IS|=0 (12−1)
θRy=60° (12−2)
したがって、電流変化率KRyおよび電流位相変化角ΔθRyは(12−3)式および(12−4)式でそれぞれ表される。
Ry=|IRy|/|IRy’|=0/1=0 (12−3)
ΔθRy=θRy−θRy’=60°−60°=0° (12−4)
また、送配電線のT相に断線事故が発生すると、TR相線間電圧VTRの大きさおよび位相は上記(3−5)式および上記(3−6)式でそれぞれ表される。
したがって、電圧変化率KTRおよび電圧位相変化角ΔθTRは上記(3−7)式および上記(3−8)式でそれぞれ表される。
(3) When T phase disconnection accident T-phase disconnection during transmission and distribution lines are generated, as shown in FIG. 10 (d), T-phase current I T is 0, through a sound phase R phase and S-phase currents I The magnitudes and phases of R 1 and I S change symmetrically.
As a result, the magnitude and phase of the combined current I Ry are expressed by the equations (12-1) and (12-2), respectively.
| I Ry | = | I R + I S | = 0 (12-1)
θ Ry = 60 ° (12-2)
Therefore, the current change rate K Ry and the current phase change angle Δθ Ry are expressed by the equations (12-3) and (12-4), respectively.
K Ry = | I Ry | / | I Ry '| = 0/1/1 (12-3)
Δθ Ry = θ Ry −θ Ry '= 60 ° -60 ° = 0 ° (12-4)
When a disconnection accident occurs in the T phase of the transmission / distribution line, the magnitude and phase of the TR phase line voltage V TR are expressed by the above formulas (3-5) and (3-6), respectively.
Therefore, the voltage change rate K TR and the voltage phase change angle Δθ TR are expressed by the above expressions (3-7) and (3-8), respectively.

次に、断線保護継電装置10のリレー演算処理部16における断線事故判定処理方法について説明する。   Next, the disconnection accident determination processing method in the relay calculation processing unit 16 of the disconnection protection relay device 10 will be described.

リレー演算処理部16は、電流変化率KRyおよび電圧変化率KTRについては±10%の裕度α(=0.9〜1.1)を持たせ、電流位相変化角ΔθRyおよび電圧位相変化角ΔθTRについては±10°の裕度β(=−10°〜10°)を持たせて、以下のように断線回線を判定する。
(1)0.78≦KRy≦0.95、20°≦ΔθRy≦40°、0.45≦KTR≦0.55、50°≦ΔθTR≦70°の場合には、送配電線のR相で断線事故が発生したと判定する。
(2)0.78≦KRy≦0.95、−40°≦ΔθRy≦−20°、0.9≦KTR≦1.1、−10°≦ΔθTR≦10°の場合には、送配電線のS相で断線事故が発生したと判定する。
(3)−0.1≦KRy≦0.1、−10°≦ΔθRy≦10°、0.45≦KTR≦0.55、−70°≦ΔθTR≦−50°の場合には、送配電線のT相で断線事故が発生したと判定する。
The relay arithmetic processing unit 16 gives a tolerance α (= 0.9 to 1.1) of ± 10% for the current change rate K Ry and the voltage change rate K TR , and the current phase change angle Δθ Ry and the voltage phase. The change angle Δθ TR is given a tolerance β (= −10 ° to 10 °) of ± 10 °, and a broken line is determined as follows.
(1) When 0.78 ≦ K Ry ≦ 0.95, 20 ° ≦ Δθ Ry ≦ 40 °, 0.45 ≦ K TR ≦ 0.55, 50 ° ≦ Δθ TR ≦ 70 ° It is determined that a disconnection accident has occurred in the R phase.
(2) When 0.78 ≦ K Ry ≦ 0.95, −40 ° ≦ Δθ Ry ≦ −20 °, 0.9 ≦ K TR ≦ 1.1, −10 ° ≦ Δθ TR ≦ 10 °, It is determined that a disconnection accident has occurred in the S phase of the transmission and distribution line.
(3) When −0.1 ≦ K Ry ≦ 0.1, −10 ° ≦ Δθ Ry ≦ 10 °, 0.45 ≦ K TR ≦ 0.55, −70 ° ≦ Δθ TR ≦ −50 ° It is determined that a disconnection accident has occurred in the T phase of the transmission and distribution line.

次に、本発明の第6の実施例による断線保護継電システムについて説明する。
本実施例による断線保護継電システムは、図9に示した計器用変圧器2の代わりに図5(a)に示した電圧合成変圧器51を用いる点で、上述した第5の実施例による断線保護継電システムと異なる。
Next, a disconnection protection relay system according to a sixth embodiment of the present invention will be described.
The disconnection protection relay system according to the present embodiment is based on the above-described fifth embodiment in that the voltage synthesis transformer 51 shown in FIG. 5A is used instead of the instrument transformer 2 shown in FIG. Different from disconnection protection relay system.

したがって、本実施例による断線保護継電システムでは、断線保護継電装置10のリレー演算処理部16は、電流変化率KRyおよび電圧変化率KR-S+2Tについては±10%の裕度α(=0.9〜1.1)を持たせ、電流位相変化角ΔθRyおよび電圧位相変化角ΔθR-S+2Tについては±10°の裕度β(=−10°〜10°)を持たせて、以下のように断線回線を判定する。
(1)0.78≦KRy≦0.95、20°≦ΔθRy≦40°、0.88≦KR-S+2T≦1.1、−29.1°≦ΔθR-S+2T≦−9.1°の場合には、送配電線のR相で断線事故が発生したと判定する。
(2)0.78≦KRy≦0.95、−40°≦ΔθRy≦−20°、0.30≦KR-S+2T≦0.36、−89.1°≦ΔθR-S+2T≦−69.1°の場合には、送配電線のS相で断線事故が発生したと判定する。
(3)−0.1≦KRy≦0.1、−10°≦ΔθRy≦10°、0.59≦KR-S+2T≦0.72、30.9°≦ΔθR-S+2T≦50.9°の場合には、送配電線のT相で断線事故が発生したと判定する。
Therefore, in the disconnection protection relay system according to the present embodiment, the relay calculation processing unit 16 of the disconnection protection relay device 10 has a tolerance of ± 10% for the current change rate K Ry and the voltage change rate K R-S + 2T. With α (= 0.9 to 1.1), the current phase change angle Δθ Ry and the voltage phase change angle Δθ R-S + 2T have a tolerance of ± 10 ° β (= −10 ° to 10 °) The disconnection line is determined as follows.
(1) 0.78 ≦ K Ry ≦ 0.95, 20 ° ≦ Δθ Ry ≦ 40 °, 0.88 ≦ K R−S + 2T ≦ 1.1, −29.1 ° ≦ Δθ R−S + 2T In the case of ≦ −9.1 °, it is determined that a disconnection accident has occurred in the R phase of the transmission and distribution line.
(2) 0.78 ≦ K Ry ≦ 0.95, −40 ° ≦ Δθ Ry ≦ −20 °, 0.30 ≦ K R-S + 2T ≦ 0.36, −89.1 ° ≦ Δθ R-S When + 2T ≦ −69.1 °, it is determined that a disconnection accident has occurred in the S phase of the transmission and distribution line.
(3) −0.1 ≦ K Ry ≦ 0.1, −10 ° ≦ Δθ Ry ≦ 10 °, 0.59 ≦ K R-S + 2T ≦ 0.72, 30.9 ° ≦ Δθ R-S + When 2T ≦ 50.9 °, it is determined that a disconnection accident has occurred in the T phase of the transmission and distribution line.

次に、本発明の第7の実施例による断線保護継電システムについて説明する。
本実施例による断線保護継電システムは、図9に示した計器用変圧器2の代わりに図5(b)に示した電圧合成変圧器52を用いる点で、上述した第5の実施例による断線保護継電システムと異なる。
Next, a disconnection protection relay system according to a seventh embodiment of the present invention will be described.
The disconnection protection relay system according to this embodiment is based on the fifth embodiment described above in that the voltage synthesis transformer 52 shown in FIG. 5B is used instead of the instrument transformer 2 shown in FIG. Different from disconnection protection relay system.

したがって、本実施例による断線保護継電システムでは、断線保護継電装置10のリレー演算処理部16は、電流変化率KRyおよび電圧変化率KR-S-2Tについては±10%の裕度α(=0.9〜1.1)を持たせ、電流位相変化角ΔθRyおよび電圧位相変化角ΔθR-S-2Tについては±10°の裕度β(=−10°〜10°)を持たせて、以下のように断線回線を判定する。
(1)0.78≦KRy≦0.95、20°≦ΔθRy≦40°、0.30≦KR-S-2T≦0.36、60.9°≦ΔθR-S-2T≦80.9°の場合には、送配電線のR相で断線事故が発生したと判定する。
(2)0.78≦KRy≦0.95、−40°≦ΔθRy≦−20°、0.88≦KR-S-2T≦1.1、0.9°≦ΔθR-S-2T≦20.9°の場合には、送配電線のS相で断線事故が発生したと判定する。
(3)−0.1≦KRy≦0.1、−10°≦ΔθRy≦10°、0.59≦KR-S-2T≦0.72、−59.1°≦ΔθR-S-2T≦−39.1°の場合には、送配電線のT相で断線事故が発生したと判定する。
Therefore, in the disconnection protection relay system according to the present embodiment, the relay calculation processing unit 16 of the disconnection protection relay device 10 has a tolerance α (± 10% for the current change rate K Ry and the voltage change rate K RS-2T. = 0.9 to 1.1), and the current phase change angle Δθ Ry and the voltage phase change angle Δθ RS-2T have a tolerance β of ± 10 ° (= −10 ° to 10 °). The disconnection line is determined as follows.
(1) 0.78 ≦ K Ry ≦ 0.95, 20 ° ≦ Δθ Ry ≦ 40 °, 0.30 ≦ K RS-2T ≦ 0.36, 60.9 ° ≦ Δθ RS-2T ≦ 80.9 ° In the case of, it is determined that a disconnection accident has occurred in the R phase of the transmission and distribution line.
(2) 0.78 ≦ K Ry ≦ 0.95, −40 ° ≦ Δθ Ry ≦ −20 °, 0.88 ≦ K RS-2T ≦ 1.1, 0.9 ° ≦ Δθ RS-2T ≦ 20. In the case of 9 °, it is determined that a disconnection accident has occurred in the S phase of the transmission and distribution line.
(3) −0.1 ≦ K Ry ≦ 0.1, −10 ° ≦ Δθ Ry ≦ 10 °, 0.59 ≦ K RS-2T ≦ 0.72, −59.1 ° ≦ Δθ RS-2T ≦ − In the case of 39.1 °, it is determined that a disconnection accident has occurred in the T phase of the transmission and distribution line.

次に、本発明の第8の実施例による断線保護継電システムについて、図11を参照して説明する。
本実施例による断線保護継電システムは、図9に示したストレート貫通変流器22の代わりに図11に示すように和接続された第1および第2の変流器31,32を用いる点で、上述した第5の実施例による断線保護継電システムと異なる。
Next, a disconnection protection relay system according to an eighth embodiment of the present invention will be described with reference to FIG.
The disconnection protection relay system according to this embodiment includes first and second current transformers 3 1 and 3 2 that are summed as shown in FIG. 11 instead of the straight through current transformer 22 shown in FIG. This is different from the disconnection protection relay system according to the fifth embodiment described above.

ここで、第1および第2の変流器31,32は、送配電線のR相およびS相にそれぞれ設置されている。
したがって、和接続された第1および第2の変流器31,32から断線保護継電装置10に入力される合成電流IRyは、R相電流IRとS相電流ISとのベクトル和となり、図9に示したストレート貫通変流器22から断線保護継電装置10に入力される合成電流IRyと同じになる。
その結果、上述した第5の実施例による断線保護継電システムと同様の効果を得ることができる。
Here, the first and second current transformers 3 1 and 3 2 are respectively installed in the R phase and the S phase of the transmission and distribution line.
Therefore, the combined current I Ry inputted to the disconnection protection relay device 10 from the first and second current transformers 3 1 and 3 2 connected in sum is the R-phase current I R and the S-phase current I S. The vector sum is obtained, which is the same as the combined current I Ry input to the disconnection protection relay device 10 from the straight through current transformer 22 shown in FIG.
As a result, the same effect as the disconnection protection relay system according to the fifth embodiment described above can be obtained.

なお、本実施例による断線保護継電システムにおいても、計器用変圧器2の代わりに図5(a),(b)に示した電圧合成変圧器51,52を用いてもよい。   In the disconnection protection relay system according to the present embodiment, the voltage synthesis transformers 51 and 52 shown in FIGS. 5A and 5B may be used instead of the instrument transformer 2.

次に、本発明の第9の実施例による断線保護継電システムについて、図12および図13を参照して説明する。
本実施例による断線保護継電システムは、図1に示したクロス貫通変流器21の代わりに図12に示す二相貫通変流器23を用いる点で、上述した第1の実施例による断線保護継電システムと異なる。
Next, a disconnection protection relay system according to a ninth embodiment of the present invention will be described with reference to FIGS.
The disconnection protection relay system according to the present embodiment uses the two-phase through current transformer 23 shown in FIG. 12 in place of the cross through current transformer 21 shown in FIG. Different from protective relay system.

ここで、二相貫通変流器23は、2次コイルを巻装した環状鉄心に送配電線のR相およびS相を同じ向きに貫通させた貫通形変流器である。すなわち、送配電線のR相およびS相はともに二相貫通変流器23の極性方向(環状鉄心の第1の開口面から環状鉄心の第2の開口面への方向)に貫通されている。
また、送配電線のR相は1回だけ二相貫通変流器23を貫通されているが、送配電線のS相は2回ほど二相貫通変流器23を貫通されている。これにより、二相貫通変流器23からは、送配電線のR相を流れる電流とS相を流れる電流を2倍した電流との和電流が出力される。
Here, the two-phase through current transformer 23 is a through-type current transformer in which the R phase and the S phase of the transmission / distribution electric wire are penetrated in the same direction through an annular core around which a secondary coil is wound. That is, both the R-phase and S-phase of the transmission / distribution line are penetrated in the polarity direction of the two-phase through current transformer 23 (direction from the first opening surface of the annular core to the second opening surface of the annular core). .
In addition, the R phase of the transmission / distribution line passes through the two-phase through current transformer 23 only once, but the S phase of the transmission / distribution line passes through the two-phase through current transformer 23 twice. As a result, the two-phase through current transformer 23 outputs a sum current of a current flowing through the R phase of the transmission and distribution line and a current that is twice the current flowing through the S phase.

したがって、正常時のR相電流IR’と正常時のS相電流IS’とは図13(a)に示すように120°の位相差で二相貫通変流器23の環状鉄心を極性方向に貫通して流れるため、二相貫通変流器23から断線保護継電装置10に入力される正常時の合成電流IRy’は正常時のR相電流IR’と正常時のS相電流IS’を2倍した電流(=2IS’)とのベクトル和となり、正常時の合成電流IRy1の大きさおよび位相は31/2および90°となる。
|IRy’|=|IR’+2IS’|=31/2
θRy’=90°
Therefore, the normal R-phase current I R ′ and the normal S-phase current I S ′ are polar in the annular core of the two-phase through current transformer 23 with a phase difference of 120 ° as shown in FIG. The normal combined current I Ry ′ input from the two-phase through current transformer 23 to the disconnection protection relay device 10 is normal R phase current I R ′ and normal S phase. It becomes a vector sum with a current (= 2I S ') that is twice the current I S ', and the magnitude and phase of the combined current I Ry1 in the normal state are 3 1/2 and 90 °.
| I Ry '| = | I R ' + 2I S '| = 3 1/2
θ Ry '= 90 °

次に、送配電線において断線事故が発生したときの電流変化率KRy、電流位相変化角ΔθRy、電圧変化率KTRおよび電圧位相変化角ΔθTRについて、図13(b)〜(d)を参照して説明する。 Next, the current change rate K Ry , current phase change angle Δθ Ry , voltage change rate K TR, and voltage phase change angle Δθ TR when a disconnection accident occurs in the transmission / distribution line are shown in FIGS. Will be described with reference to FIG.

(1)R相断線時
送配電線のR相に断線事故が発生すると、図13(b)に示すように、R相電流IRは0となり、健全相を流れるS相およびT相電流IS,ITの大きさおよび位相は対称的に変化する。
その結果、合成電流IRyの大きさおよび位相は(13−1)式および(13−2)式でそれぞれ表される。
|IRy|=|IR+2IS|=|0+2IS|=2×|IS|=2×31/2/2=31/2 (13−1)
θRy=90° (13−2)
したがって、電流変化率KRyおよび電流位相変化角ΔθRyは(13−3)式および(13−4)式でそれぞれ表される。
Ry=|IRy|/|IRy’|=31/2/31/2=1 (13−3)
ΔθRy=θRy−θRy’=90°−90°=0° (13−4)
また、送配電線のR相に断線事故が発生すると、計器用変圧器2から断線保護継電器10に入力されるTR線間電圧VTRの大きさおよび位相は上記(1−5)式および上記(1−6)式でそれぞれ表される。
したがって、電圧変化率KTRおよび電圧位相変化角ΔθTRは上記(1−7)式および上記(1−8)式でそれぞれ表される。
(1) During R-phase disconnection When a disconnection accident occurs in the R-phase of the transmission and distribution line, the R-phase current I R becomes 0 as shown in FIG. 13B, and the S-phase and T-phase current I flowing through the healthy phase The magnitudes and phases of S and I T change symmetrically.
As a result, the magnitude and phase of the combined current I Ry are expressed by the equations (13-1) and (13-2), respectively.
| I Ry | = | I R + 2I S | = | 0 + 2I S | = 2 × | I S | = 2 × 3 1/2 / 2 = 3 1/2 (13-1)
θ Ry = 90 ° (13-2)
Therefore, the current change rate K Ry and the current phase change angle Δθ Ry are expressed by the equations (13-3) and (13-4), respectively.
K Ry = | I Ry | / | I Ry '| = 3 1/2 / 3 1/2 = 1 (13-3)
Δθ Ry = θ Ry −θ Ry '= 90 ° −90 ° = 0 ° (13-4)
Further, when a disconnection accident occurs in the R phase of the transmission and distribution line, the magnitude and phase of the TR line voltage V TR input from the instrument transformer 2 to the disconnection protection relay 10 are the above formula (1-5) and the above Each is represented by the formula (1-6).
Therefore, the voltage change rate K TR and the voltage phase change angle Δθ TR are expressed by the above equations (1-7) and (1-8), respectively.

(2)S相断線時
送配電線のS相に断線事故が発生すると、図13(c)に示すように、S相電流ISは0となり、健全相を流れるR相およびT相電流IR,ITの大きさおよび位相は対称的に変化する。
その結果、合成電流IRyの大きさおよび位相は(14−1)式および(14−2)式でそれぞれ表される。
|IRy|=|IR+2IS|=|IR+0|=|IR|=31/2/2 (14−1)
θRy=30° (14−2)
したがって、電流変化率KRyおよび電流位相変化角ΔθRyは(14−3)式および(14−4)式でそれぞれ表される。
Ry=|IRy|/|IRy’|=(31/2/2)/31/2=0.5 (14−3)
ΔθRy=θRy−θRy’=30°−90°=−60° (14−4)
また、送配電線のS相に断線事故が発生すると、TR相線間電圧VTRの大きさおよび位相は上記(2−5)式および上記(2−6)式でそれぞれ表される。
したがって、電圧変化率KTRおよび電圧位相変化角ΔθTRは上記(2−7)式および上記(2−8)式でそれぞれ表される。
(2) When a disconnection accident S phase of S-phase disconnection during transmission and distribution lines are generated, as shown in FIG. 13 (c), S-phase current I S is zero, through a sound phase R phase and T-phase currents I The magnitudes and phases of R 1 and I T change symmetrically.
As a result, the magnitude and phase of the combined current I Ry are expressed by the equations (14-1) and (14-2), respectively.
| I Ry | = | I R + 2I S | = | I R +0 | = | I R | = 3 1/2 / 2 (14-1)
θ Ry = 30 ° (14-2)
Therefore, the current change rate K Ry and the current phase change angle Δθ Ry are expressed by the equations (14-3) and (14-4), respectively.
K Ry = | I Ry | / | I Ry '| = (3 1/2 / 2) / 3 1/2 = 0.5 (14-3)
Δθ Ry = θ Ry −θ Ry '= 30 ° −90 ° = −60 ° (14-4)
When a disconnection accident occurs in the S phase of the transmission / distribution line, the magnitude and phase of the TR phase line voltage V TR are expressed by the above formulas (2-5) and (2-6), respectively.
Therefore, the voltage change rate K TR and the voltage phase change angle Δθ TR are expressed by the above equations (2-7) and (2-8), respectively.

(3)T相断線時
送配電線のT相に断線事故が発生すると、図13(d)に示すように、T相電流ITは0となり、健全相を流れるR相およびS相電流IR,ISの大きさおよび位相は対称的に変化する。
その結果、合成電流IRyの大きさおよび位相は(15−1)式および(15−2)式でそれぞれ表される。
|IRy|=|IR+2IS|=|IS|=31/2/2 (15−1)
θRy=150° (15−2)
したがって、電流変化率KRyおよび電流位相変化角ΔθRyは(15−3)式および(15−4)式でそれぞれ表される。
Ry=|IRy|/|IRy’|=(31/2/2)/31/2=0.5 (15−3)
ΔθRy=θRy−θRy’=150°−90°=60° (15−4)
また、送配電線のT相に断線事故が発生すると、TR相線間電圧VTRの大きさおよび位相は上記(3−5)式および上記(3−6)式でそれぞれ表される。
したがって、電圧変化率KTRおよび電圧位相変化角ΔθTRは上記(3−7)式および上記(3−8)式でそれぞれ表される。
(3) When T phase disconnection accident T-phase disconnection during transmission and distribution lines are generated, as shown in FIG. 13 (d), T-phase current I T is 0, through a sound phase R phase and S-phase currents I The magnitudes and phases of R 1 and I S change symmetrically.
As a result, the magnitude and phase of the combined current I Ry are expressed by the equations (15-1) and (15-2), respectively.
| I Ry | = | I R + 2I S | = | I S | = 3 1/2 / 2 (15-1)
θ Ry = 150 ° (15-2)
Therefore, the current change rate K Ry and the current phase change angle Δθ Ry are expressed by the equations (15-3) and (15-4), respectively.
K Ry = | I Ry | / | I Ry '| = (3 1/2 / 2) / 3 1/2 = 0.5 (15-3)
Δθ Ry = θ Ry −θ Ry '= 150 ° −90 ° = 60 ° (15-4)
When a disconnection accident occurs in the T phase of the transmission / distribution line, the magnitude and phase of the TR phase line voltage V TR are expressed by the above formulas (3-5) and (3-6), respectively.
Therefore, the voltage change rate K TR and the voltage phase change angle Δθ TR are expressed by the above expressions (3-7) and (3-8), respectively.

次に、断線保護継電装置10のリレー演算処理部16における断線事故判定処理方法について説明する。   Next, the disconnection accident determination processing method in the relay calculation processing unit 16 of the disconnection protection relay device 10 will be described.

リレー演算処理部16は、電流変化率KRyおよび電圧変化率KTRについては±10%の裕度α(=0.9〜1.1)を持たせ、電流位相変化角ΔθRyおよび電圧位相変化角ΔθTRについては±10°の裕度β(=−10°〜10°)を持たせて、以下のように断線回線を判定する。
(1)0.9≦KRy≦1.1、−10°≦ΔθRy≦10°、0.45≦KTR≦0.55、50°≦ΔθTR≦70°の場合には、送配電線のR相で断線事故が発生したと判定する。
(2)0.45≦KRy≦0.55、−70°≦ΔθRy≦−50°、0.9≦KTR≦1.1、−10°≦ΔθTR≦10°の場合には、送配電線のS相で断線事故が発生したと判定する。
(3)0.45≦KRy≦0.55、50°≦ΔθRy≦70°、0.45≦KTR≦0.55、−70°≦ΔθTR≦−50°の場合には、送配電線のT相で断線事故が発生したと判定する。
The relay arithmetic processing unit 16 gives a tolerance α (= 0.9 to 1.1) of ± 10% for the current change rate K Ry and the voltage change rate K TR , and the current phase change angle Δθ Ry and the voltage phase. The change angle Δθ TR is given a tolerance β (= −10 ° to 10 °) of ± 10 °, and a broken line is determined as follows.
(1) When 0.9 ≦ K Ry ≦ 1.1, −10 ° ≦ Δθ Ry ≦ 10 °, 0.45 ≦ K TR ≦ 0.55, 50 ° ≦ Δθ TR ≦ 70 ° It is determined that a disconnection accident has occurred in the R phase of the wire.
(2) When 0.45 ≦ K Ry ≦ 0.55, −70 ° ≦ Δθ Ry ≦ −50 °, 0.9 ≦ K TR ≦ 1.1, −10 ° ≦ Δθ TR ≦ 10 °, It is determined that a disconnection accident has occurred in the S phase of the transmission and distribution line.
(3) When 0.45 ≦ K Ry ≦ 0.55, 50 ° ≦ Δθ Ry ≦ 70 °, 0.45 ≦ K TR ≦ 0.55, −70 ° ≦ Δθ TR ≦ −50 °, It is determined that a disconnection accident has occurred in the T phase of the distribution line.

次に、本発明の第10の実施例による断線保護継電システムについて説明する。
本実施例による断線保護継電システムは、図12に示した計器用変圧器2の代わりに図5(a)に示した電圧合成変圧器51を用いる点で、上述した第9の実施例による断線保護継電システムと異なる。
Next, a disconnection protection relay system according to a tenth embodiment of the present invention will be described.
The disconnection protection relay system according to this embodiment is based on the ninth embodiment described above in that the voltage synthesis transformer 51 shown in FIG. 5A is used in place of the instrument transformer 2 shown in FIG. Different from disconnection protection relay system.

したがって、本実施例による断線保護継電システムでは、断線保護継電装置10のリレー演算処理部16は、電流変化率KRyおよび電圧変化率KR-S+2Tについては±10%の裕度α(=0.9〜1.1)を持たせ、電流位相変化角ΔθRyおよび電圧位相変化角ΔθR-S+2Tについては±10°の裕度β(=−10°〜10°)を持たせて、以下のように断線回線を判定する。
(1)0.9≦KRy≦1.1、−10°≦ΔθRy≦10°、0.88≦KR-S+2T≦1.1、−29.1°≦ΔθR-S+2T≦−9.1°の場合には、送配電線のR相で断線事故が発生したと判定する。
(2)0.45≦KRy≦0.55、−70°≦ΔθRy≦−50°、0.30≦KR-S+2T≦0.36、−89.1°≦ΔθR-S+2T≦−69.1°の場合には、送配電線のS相で断線事故が発生したと判定する。
(3)0.45≦KRy≦0.55、50°≦ΔθRy≦70°、0.59≦KR-S+2T≦0.72、30.9°≦ΔθR-S+2T≦50.9°の場合には、送配電線のT相で断線事故が発生したと判定する。
Therefore, in the disconnection protection relay system according to the present embodiment, the relay calculation processing unit 16 of the disconnection protection relay device 10 has a tolerance of ± 10% for the current change rate K Ry and the voltage change rate K R-S + 2T. With α (= 0.9 to 1.1), the current phase change angle Δθ Ry and the voltage phase change angle Δθ R-S + 2T have a tolerance of ± 10 ° β (= −10 ° to 10 °) The disconnection line is determined as follows.
(1) 0.9 ≦ K Ry ≦ 1.1, −10 ° ≦ Δθ Ry ≦ 10 °, 0.88 ≦ K R−S + 2T ≦ 1.1, −29.1 ° ≦ Δθ R−S + When 2T ≦ −9.1 °, it is determined that a disconnection accident has occurred in the R phase of the transmission and distribution line.
(2) 0.45 ≦ K Ry ≦ 0.55, −70 ° ≦ Δθ Ry ≦ −50 °, 0.30 ≦ K R-S + 2T ≦ 0.36, −89.1 ° ≦ Δθ R-S When + 2T ≦ −69.1 °, it is determined that a disconnection accident has occurred in the S phase of the transmission and distribution line.
(3) 0.45 ≦ K Ry ≦ 0.55, 50 ° ≦ Δθ Ry ≦ 70 °, 0.59 ≦ K R-S + 2T ≦ 0.72, 30.9 ° ≦ Δθ R-S + 2T ≦ In the case of 50.9 °, it is determined that a disconnection accident has occurred in the T phase of the transmission and distribution line.

次に、本発明の第11の実施例による断線保護継電システムについて説明する。
本実施例による断線保護継電システムは、図12に示した計器用変圧器2の代わりに図5(b)に示した電圧合成変圧器52を用いる点で、上述した第9の実施例による断線保護継電システムと異なる。
Next, a disconnection protection relay system according to an eleventh embodiment of the present invention will be described.
The disconnection protection relay system according to the present embodiment is in accordance with the ninth embodiment described above in that the voltage synthesis transformer 52 shown in FIG. 5B is used instead of the instrument transformer 2 shown in FIG. Different from disconnection protection relay system.

したがって、本実施例による断線保護継電システムでは、断線保護継電装置10のリレー演算処理部16は、電流変化率KRyおよび電圧変化率KR-S-2Tについては±10%の裕度α(=0.9〜1.1)を持たせ、電流位相変化角ΔθRyおよび電圧位相変化角ΔθR-S-2Tについては±10°の裕度β(=−10°〜10°)を持たせて、以下のように断線回線を判定する。
(1)0.9≦KRy≦1.1、−10°≦ΔθRy≦10°、0.30≦KR-S-2T≦0.36、60.9°≦ΔθR-S-2T≦80.9°の場合には、送配電線のR相で断線事故が発生したと判定する。
(2)0.45≦KRy≦0.55、−70°≦ΔθRy≦−50°、0.88≦KR-S-2T≦1.1、0.9°≦ΔθR-S-2T≦20.9°の場合には、送配電線のS相で断線事故が発生したと判定する。
(3)0.45≦KRy≦0.55、50°≦ΔθRy≦70°、0.59≦KR-S-2T≦0.72、−59.1°≦ΔθR-S-2T≦−39.1°の場合には、送配電線のT相で断線事故が発生したと判定する。
Therefore, in the disconnection protection relay system according to the present embodiment, the relay calculation processing unit 16 of the disconnection protection relay device 10 has a tolerance α (± 10% for the current change rate K Ry and the voltage change rate K RS-2T. = 0.9 to 1.1), and the current phase change angle Δθ Ry and the voltage phase change angle Δθ RS-2T have a tolerance β of ± 10 ° (= −10 ° to 10 °). The disconnection line is determined as follows.
(1) 0.9 ≦ K Ry ≦ 1.1, −10 ° ≦ Δθ Ry ≦ 10 °, 0.30 ≦ K RS-2T ≦ 0.36, 60.9 ° ≦ Δθ RS-2T ≦ 80.9 In the case of °, it is determined that a disconnection accident has occurred in the R phase of the transmission and distribution line.
(2) 0.45 ≦ K Ry ≦ 0.55, −70 ° ≦ Δθ Ry ≦ −50 °, 0.88 ≦ K RS-2T ≦ 1.1, 0.9 ° ≦ Δθ RS-2T ≦ 20. In the case of 9 °, it is determined that a disconnection accident has occurred in the S phase of the transmission and distribution line.
(3) 0.45 ≦ K Ry ≦ 0.55, 50 ° ≦ Δθ Ry ≦ 70 °, 0.59 ≦ K RS-2T ≦ 0.72, −59.1 ° ≦ Δθ RS-2T ≦ −39. In the case of 1 °, it is determined that a disconnection accident has occurred in the T phase of the transmission and distribution line.

以上では、送配電線の各相電流が平衡である場合について説明したが、本発明による断線保護継電システムは、少なくとも2つの相電流を合成した合成電流(電流要素)に基づいて断線事故を判定するので、各相電流に不平衡があっても断線事故から送配電線を保護することができる。
また、裕度α=0.9〜1.1(±10%)とすることにより、不平衡電流±20%程度まで判定可能とすることができる。たとえば、第1乃至第4の実施例による断線保護継電システムでは、T相電流ITが不平衡率1.2(+20%)の場合には送配電線のR相断線時またはS相断線時の合成電流IRyの電流変化率KRy=0.55となるが、上述したように判定条件は0.45≦KRy≦0.55であるため、判定可能となる。第5乃至第8の実施例による断線保護継電システムでは、T相電流ITが不平衡率1.2(+20%)の場合には送配電線のR相断線時またはS相断線時の合成電流IRyの電流変化率KRy=0.95となるが、上述したように判定条件は0.78≦KRy≦0.95であるため、判定可能となる。第9乃至第11の実施例による断線保護継電システムでは、T相電流ITが不平衡率1.2(+20%)の場合には送配電線のR相断線時の合成電流IRyの電流変化率KRy=1.1となりS相断線時の合成電流IRyの電流変化率KRy=0.55となるが、上述したようにR相断線時の判定条件は0.9≦KRy≦1.1でありS相断線時の判定条件は0.45≦KRy≦0.55であるため、判定可能となる。
同様にして、裕度α=0.8〜1.2(±20%)とすることにより、不平衡電流±40%程度まで判定可能とすることができる。
In the above, the case where each phase current of the transmission / distribution line is balanced has been described. However, the disconnection protection relay system according to the present invention can prevent a disconnection accident based on a combined current (current element) obtained by combining at least two phase currents. Since it determines, even if there is imbalance in each phase current, a transmission and distribution line can be protected from a disconnection accident.
Further, by setting the tolerance α = 0.9 to 1.1 (± 10%), it is possible to determine up to about ± 20% of the unbalanced current. For example, in the disconnection protection relay system according to the first to fourth embodiments, when the T-phase current I T has an unbalance rate of 1.2 (+ 20%), the transmission / distribution line is in the R-phase disconnection or the S-phase disconnection. The current change rate K Ry = 0.55 of the combined current I Ry at that time, but since the determination condition is 0.45 ≦ K Ry ≦ 0.55 as described above, it can be determined. In the disconnection protection relay system according to the fifth to eighth embodiments, when the T-phase current I T has an unbalance rate of 1.2 (+ 20%), the transmission line is in the R-phase disconnection or the S-phase disconnection. Although the current change rate K Ry = 0.95 of the combined current I Ry , since the determination condition is 0.78 ≦ K Ry ≦ 0.95 as described above, it can be determined. In the disconnection protection relay system according to the ninth to eleventh embodiments, when the T-phase current I T has an unbalance rate of 1.2 (+ 20%), the combined current I Ry at the R-phase disconnection of the transmission / distribution line is reduced. Although the current change rate K Ry = 1.1 and the current change rate K Ry = 0.55 of the combined current I Ry at the S phase disconnection, as described above, the determination condition at the R phase disconnection is 0.9 ≦ K Since Ry ≦ 1.1 and the determination condition when the S phase is broken is 0.45 ≦ K Ry ≦ 0.55, determination is possible.
Similarly, by setting the tolerance α = 0.8 to 1.2 (± 20%), it is possible to determine up to about an unbalanced current ± 40%.

また、TR線間電圧VTRを用いたが、ST線間電圧VSTを用いてもよい。 Further, although the TR line voltage V TR is used, the ST line voltage V ST may be used.

さらに、合成電流IRyの変化率、TR線間電圧VTRの変化率、合成電圧VR-S+2T,VR-S-2Tの変化率を用いたが、合成電流IRyの変化量(|IRy|−|IRy’|)、TR線間電圧VTRの変化量(|VTR|−|VTR’|)および合成電圧VR-S+2T,VR-S-2Tの変化量(|VR-S+2T|−|VR-S+2T’|、|VR-S-2T|−|VR-S-2T’|)を用いてもよい。 Furthermore, the rate of change of the resultant current I Ry, rate of change of the TR line voltages V TR, composite voltage V RS + 2T, is used the rate of change of V RS-2T, the change amount of the combined current I Ry (| I Ry | − | I Ry '|), the amount of change in TR line voltage V TR (| V TR | − | V TR ' |) and the amount of change in combined voltages V R-S + 2T and V RS-2T ( | V R-S + 2T | − | V R−S + 2T ′ |, | V RS−2T | − | V RS−2T ′ |) may be used.

さらに、送配電線のB端側に設置されている送電線保護継電器に断線保護継電装置10の機能を付加するようにしてもよい。   Furthermore, you may make it add the function of the disconnection protection relay apparatus 10 to the power transmission line protection relay installed in the B end side of a transmission / distribution electric wire.

1 電源
2 計器用変圧器
1〜33 第1乃至第3の変流器
1〜43 第1乃至第3の遮断器
10 断線保護継電装置
11 入力変換器
12 アナログ入力部
13 メモリ
14 電流変化率・電流位相変化角算出部
15 電圧変化率・電圧位相変化角算出部
16 リレー演算処理部
17 整定・表示部
18 入出力部
19 外部機器インターフェース部(外部機器I/F部)
21 クロス貫通変流器
22 ストレート貫通変流器
23 二相貫通変流器
51,52 電圧合成変圧器
111 不足電圧継電器
112 電流継電器
R,IS,IT R相、S相およびT相電流
R’,IS’,IT’ 正常時のR相、S相およびT相電流
Ry 合成電流
Ry’ 正常時の合成電流
0 零相電流
1 正相電流
2 逆相電流
min 最小負荷電流
R,VS,VT R相、S相およびT相電圧
R’,VS’,VT’ 正常時のR相、S相およびT相電圧
TR TR線間電圧
TR’ 正常時のTR線間電圧
R-S+2T,VR-S-2T 合成電圧
R-S+2T’,VR-S-2T’ 正常時の合成電圧
θR’,θRy,θRy’,θTR,θTR’,θR-S+2T,θR-S-2T’,θR-S+2T,θR-S-2T’ 位相
Ry 電流変化率
TR,KR-S+2T,KR-S-2T 電圧変化率
ΔθRy 電流位相変化角
ΔθTR,ΔθR-S+2T,ΔθR-S-2T 電圧位相変化角
T トリップ信号
a ベクトルオペレータ
k 逆相電流検出感度
α 裕度
DESCRIPTION OF SYMBOLS 1 Power supply 2 Instrument transformer 3 1 to 3 3 1st thru | or 3rd current transformer 4 1 to 4 3 1st to 3rd circuit breaker 10 Disconnection protection relay apparatus 11 Input converter 12 Analog input part 13 Memory 14 Current Change Rate / Current Phase Change Angle Calculation Unit 15 Voltage Change Rate / Voltage Phase Change Angle Calculation Unit 16 Relay Operation Processing Unit 17 Setting / Display Unit 18 Input / Output Unit 19 External Device Interface Unit (External Device I / F Unit)
21 Cross-through current transformer 22 Straight-through current transformer 23 Two-phase through current transformer 51, 52 Voltage synthesis transformer 111 Undervoltage relay 112 Current relay I R , I S , I T R phase, S phase and T phase current I R ', I S ', I T 'Normal R phase, S phase and T phase currents I Ry Composite current I Ry ' Normal composite current I 0 Zero phase current I 1 Positive phase current I 2 Reverse phase current I min Minimum load current V R , V S , V T R phase, S phase and T phase voltage V R ', V S ', V T 'Normal R phase, S phase and T phase voltage V TR TR line Voltage V TR ′ Normal TR line voltage V R-S + 2T , V RS-2T Composite voltage V R-S + 2T ′, V RS-2T ′ Normal composite voltage θ R ′, θ Ry , θ Ry ', θ TR, θ TR ', θ RS + 2T, θ RS-2T ', θ RS + 2T, θ RS-2T' phase K Ry current change rate K TR, K RS + 2T , K RS-2T voltage change rate Δθ Ry current phase change angle Δθ TR , Δθ R-S + 2T , Δθ RS-2T voltage phase change angle S T Trip signal a Vector operator k Reverse phase current detection sensitivity α Tolerance

Claims (4)

断線事故から三相交流回路を保護するための断線保護継電システムであって、
前記三相交流回路の第1乃至第3の相をそれぞれ流れる第1乃至第3の相電流(IR,IS,IT)のうちの該第1および第2の相電流を合成した合成電流(IRy)を検出するための合成電流検出手段(31,32;21;22;23)と、
前記三相交流回路の1つの線間電圧を検出するための計器用変圧器(2)または前記三相交流回路の3つの相電圧の合成電圧を検出するための電圧合成変圧器(51;52)と、
前記合成電流検出手段から入力される前記合成電流と前記計器用変圧器から入力される前記1つの線間電圧または前記電圧合成変圧器から入力される前記合成電圧とに基づいて断線事故を判定する断線保護継電装置(10)と、
を具備することを特徴とする、断線保護継電システム。
A disconnection protection relay system for protecting a three-phase AC circuit from a disconnection accident,
A synthesis in which the first and second phase currents of the first to third phase currents (I R , I S , I T ) flowing through the first to third phases of the three-phase AC circuit are synthesized. Combined current detection means (3 1 , 3 2 ; 21; 22; 23) for detecting the current (I Ry );
An instrument transformer (2) for detecting one line voltage of the three-phase AC circuit or a voltage synthesis transformer (51; 52) for detecting a composite voltage of three phase voltages of the three-phase AC circuit )When,
A disconnection accident is determined based on the combined current input from the combined current detecting means and the one line voltage input from the instrument transformer or the combined voltage input from the voltage combining transformer. Disconnection protection relay device (10);
A disconnection protection relay system comprising:
前記断線保護継電装置が、前記合成電流の変化量または変化率および位相変化角と前記線間電圧または前記合成電圧の変化量または変化率および位相変化角とに基づいて断線事故を判定することを特徴とする、請求項1記載の断線保護継電システム。   The disconnection protection relay device determines a disconnection accident based on a change amount or change rate and phase change angle of the combined current and a change amount or change rate and phase change angle of the line voltage or the combined voltage. The disconnection protection relay system according to claim 1. 前記合成電流検出手段が、前記三相交流回路の前記第1の相が極性方向に貫通されているとともに該三相交流回路の前記第2の相が反極性方向に貫通されているクロス貫通変流器(21)、または、前記三相交流回路の前記第1および第2の相に設置されたかつ差接続された変流器(31,32)、または、前記三相交流回路の前記第1および第2の相が極性方向に貫通されているストレート貫通変流器(22)、または、前記三相交流回路の前記第1および第2の相に設置されたかつ和接続された変流器(31,32)、または、前記三相交流回路の前記第2の相が前記第1の相と同じ向きに異なる回数だけ貫通されている二相貫通変流器(23)であることを特徴とする、請求項1または2記載の断線保護継電システム。 The combined current detecting means includes a cross-penetration variable in which the first phase of the three-phase AC circuit is penetrated in the polarity direction and the second phase of the three-phase AC circuit is penetrated in the opposite polarity direction. A current transformer (21), or a current transformer (3 1 , 3 2 ) installed in the first and second phases of the three-phase AC circuit and connected in a differential manner, or of the three-phase AC circuit A straight through current transformer (22) in which the first and second phases are penetrated in the polar direction, or a sum-connected and installed in the first and second phases of the three-phase AC circuit Current transformer (3 1 , 3 2 ) or two-phase through current transformer (23) in which the second phase of the three-phase AC circuit is penetrated a different number of times in the same direction as the first phase The disconnection protection relay system according to claim 1 or 2, characterized in that 前記電圧合成変圧器が、前記三相交流回路の前記第1の相の相電圧を極性方向で、該三相交流回路の前記第2の相の相電圧を反極性方向で、該三相交流回路の前記第3の相の相電圧を極性方向で2倍して合成するように2次側が結線された電圧合成変圧器(51)、または、前記三相交流回路の前記第1の相の相電圧を極性方向で、該三相交流回路の前記第2の相の相電圧を反極性方向で、該三相交流回路の前記第3の相の相電圧を反極性方向で2倍して合成するように2次側が結線された電圧合成変圧器(52)であることを特徴とする、請求項1乃至3いずれかに記載の断線保護継電システム。   The voltage synthesis transformer is configured such that the phase voltage of the first phase of the three-phase AC circuit is in the polarity direction, and the phase voltage of the second phase of the three-phase AC circuit is in the opposite polarity direction, the three-phase AC A voltage synthesis transformer (51) whose secondary side is connected so as to synthesize the phase voltage of the third phase of the circuit by doubling in the polarity direction, or the first phase of the three-phase AC circuit Double the phase voltage in the polarity direction, the phase voltage in the second phase of the three-phase AC circuit in the opposite polarity direction, and the phase voltage in the third phase of the three-phase AC circuit in the opposite polarity direction. The disconnection protection relay system according to any one of claims 1 to 3, characterized in that it is a voltage synthesis transformer (52) whose secondary side is connected so as to be combined.
JP2009242305A 2009-10-21 2009-10-21 Disconnection protective relay system Withdrawn JP2011091910A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009242305A JP2011091910A (en) 2009-10-21 2009-10-21 Disconnection protective relay system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009242305A JP2011091910A (en) 2009-10-21 2009-10-21 Disconnection protective relay system

Publications (1)

Publication Number Publication Date
JP2011091910A true JP2011091910A (en) 2011-05-06

Family

ID=44109632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009242305A Withdrawn JP2011091910A (en) 2009-10-21 2009-10-21 Disconnection protective relay system

Country Status (1)

Country Link
JP (1) JP2011091910A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106771812A (en) * 2016-12-29 2017-05-31 许继集团有限公司 A kind of recognition methods of transformer current transformer disconnection and device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106771812A (en) * 2016-12-29 2017-05-31 许继集团有限公司 A kind of recognition methods of transformer current transformer disconnection and device
CN106771812B (en) * 2016-12-29 2019-05-14 许继集团有限公司 A kind of transformer current transformer disconnection recognition methods and device

Similar Documents

Publication Publication Date Title
Kezunovic et al. Design, modeling and evaluation of protective relays for power systems
JP3929767B2 (en) Power system cross current compensation control system
US8395871B2 (en) Device and method for detecting faulted phases in a multi-phase electrical network
JP5881919B1 (en) Protection relay device
JP5073003B2 (en) Distribution transformer secondary side ground fault detection system
JP2010187446A (en) Power cable ground fault detecting apparatus and power cable ground fault protection device
JP2019165569A (en) Failure determination device and protective relay device
JP2011091910A (en) Disconnection protective relay system
JP2009198442A (en) Voltage abnormality detection device and voltage protection relay device
JP2012141232A (en) Detection system for secondary-side ground fault of distribution transformer
JP5537318B2 (en) Accident section discrimination means for distribution lines
JP2013088256A (en) Ground accident section plotting device
JP5241434B2 (en) Cable section accident detection device
JP4921246B2 (en) Ground fault distance relay
JP5224783B2 (en) Distribution line ground fault protection system
JP5063282B2 (en) Transformer protection relay
JP2011078292A (en) Disconnection protective relay device
JP2002135969A (en) Digital protective relay
JP2011078293A (en) Disconnection protective relay device
JP2016152741A (en) Ground directional relay
JP2004336899A (en) Ratio differential relay
JP2010166783A (en) Directional protective relay device and directional power relay device
JP5247164B2 (en) Protective relay device
JP4836663B2 (en) Loop system protection device and method
JP6729483B2 (en) Ratio differential relay

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130108