JP2011078292A - Disconnection protective relay device - Google Patents

Disconnection protective relay device Download PDF

Info

Publication number
JP2011078292A
JP2011078292A JP2009230415A JP2009230415A JP2011078292A JP 2011078292 A JP2011078292 A JP 2011078292A JP 2009230415 A JP2009230415 A JP 2009230415A JP 2009230415 A JP2009230415 A JP 2009230415A JP 2011078292 A JP2011078292 A JP 2011078292A
Authority
JP
Japan
Prior art keywords
phase
current
disconnection
phase current
disconnection accident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009230415A
Other languages
Japanese (ja)
Inventor
Yoshiaki Date
義明 伊達
Masami Takenaka
正実 竹中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2009230415A priority Critical patent/JP2011078292A/en
Publication of JP2011078292A publication Critical patent/JP2011078292A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a disconnection protective relay device, capable of protecting a three-phase AC circuit against disconnection fault with only current elements even if there is an imbalance or a branched load in each phase current. <P>SOLUTION: The disconnection protective relay device 10 for protecting a power transmission line from the disconnection faults has a current change rate computing section 14 for determining the disconnection faults based on the symmetry of current change rates R, S, T and phase change angles Δθ<SB>R</SB>, Δθ<SB>S</SB>, Δθ<SB>T</SB>of R-phase, S-phase and T-phase currents I<SB>R</SB>, I<SB>S</SB>, I<SB>T</SB>respectively flowing through R-phase, S-phase and T-phase of the power transmission line, a phase change angle computing section 15, and a relay arithmetic processor 16. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、断線保護継電装置に関し、特に、断線事故から三相交流回路を保護するのに好適な断線保護継電装置に関する。   The present invention relates to a disconnection protection relay device, and more particularly to a disconnection protection relay device suitable for protecting a three-phase AC circuit from a disconnection accident.

従来、断線事故から三相交流回路を保護するために、断線事故時に発生する逆相電流I2(または、零相電流I0)を検出して、以下の4つの判定条件a1〜a4がすべて満たされた場合に断線事故と判定している。
[判定条件a1]逆相電流I2が正相電流I1のk倍(k(逆相電流検出感度)=10〜20%)以上であること(逆相電流の発生)。
[判定条件a2]3相のうち1相または2相の負荷電流が最小負荷電流Imin未満になったこと(事故相における負荷電流の喪失)。
[判定条件a3]3相のうち残りの2相または1相の負荷電流が最小負荷電流Imin以上であること(健全相の存在)。
[判定条件a4]零相電圧V0の発生がないこと(地絡事故ではないこと)。
Conventionally, in order to protect the three-phase AC circuit from the disconnection accident, the reverse phase current I 2 (or zero phase current I 0 ) generated at the disconnection accident is detected, and the following four determination conditions a 1 to a 4 If all of the above are satisfied, it is judged as a disconnection accident.
[Determination condition a 1 ] The reverse phase current I 2 is k times or more (k (reverse phase current detection sensitivity) = 10 to 20%) of the positive phase current I 1 (generation of the reverse phase current).
[Judgment condition a 2 ] The load current of one or two phases out of the three phases is less than the minimum load current I min (loss of load current in the accident phase).
[Judgment condition a 3 ] The remaining two-phase or one-phase load current of the three phases is equal to or greater than the minimum load current I min (presence of a healthy phase).
[Judgment condition a 4 ] No zero-phase voltage V 0 is generated (not a ground fault).

三相交流回路として図11に示すような2端子の送配電線(3相)を例にすると、A端(電源端)とB端(負荷端)との間に敷設された送配電線のA端側に断線保護継電装置110を設置して、断線保護継電装置110が、電源端母線に設けられた計器用変圧器(GPT)2から入力される零相電圧V0と送配電線のR相、S相およびT相のA端側にそれぞれ設置された第1乃至第3の変流器31〜33からそれぞれ入力されるR相、S相およびT相電流IR,IS,ITとに基づいて以下のようにして断線事故と判定すると、送配電線のR相、S相およびT相のA端側にそれぞれ設置された第1乃至第3の遮断器41〜43を一括遮断している。 Taking a two-terminal transmission / distribution line (three-phase) as shown in FIG. 11 as an example of a three-phase AC circuit, the transmission / distribution line laid between the A end (power supply end) and the B end (load end) The disconnection protection relay device 110 is installed on the A end side, and the disconnection protection relay device 110 transmits and distributes the zero-phase voltage V 0 inputted from the instrument transformer (GPT) 2 provided on the power source bus. R-phase, S-phase, and T-phase currents I R input from first to third current transformers 3 1 to 3 3 respectively installed on the A-end side of the R-phase, S-phase, and T-phase of the electric wire, If it is determined that the disconnection accident is based on I S and I T as follows, the first to third circuit breakers 4 respectively installed on the A-end side of the R-phase, S-phase, and T-phase of the transmission and distribution lines. Blocks 1 to 4 3 at once.

断線保護継電装置110は、R相、S相およびT相電流IR,IS,ITに基づいて(1−1)式および(1−2)式を用いて正相電流I1および逆相電流I2をそれぞれ求め、逆相電流I2が正相電流I1のk倍以上(I2≧kI1)であるかを常に監視している。
1=(IR+aIS+a2T)/3 (1−1)
2=(IR+a2S+aIT)/3 (1−2)
ここで、a(ベクトルオペレータ)=−1/2+j×31/2/2
また、断線保護継電装置110は、R相、S相およびT相電流IR,IS,ITと最小負荷電流Imin(充電電流)とを比較して、R相、S相およびT相電流IR,IS,ITのうちの1つだけまたは2つだけが最小負荷電流Imin未満にならないかを常に監視している。
さらに、断線保護継電装置110は、零相電圧V0を地絡事故時の零相電圧検出感度Vと比較して、零相電圧V0が零相電圧検出感度V未満かを常に監視している。
The disconnection protection relay device 110 uses the equations (1-1) and (1-2) based on the R-phase, S-phase, and T-phase currents I R , I S , I T and the positive-phase current I 1 and seeking negative sequence current I 2, respectively, reverse-phase current I 2 always monitors whether the higher k times the positive phase current I 1 (I 2 ≧ kI 1 ).
I 1 = (I R + aI S + a 2 I T ) / 3 (1-1)
I 2 = (I R + a 2 I S + aI T ) / 3 (1-2)
Here, a (vector operator) = − 1/2 + j × 3 1/2 / 2
The disconnection protection relay device 110 compares the R-phase, S-phase, and T-phase currents I R , I S , I T with the minimum load current I min (charging current), It is constantly monitoring whether only one or two of the phase currents I R , I S , I T are less than the minimum load current I min .
Furthermore, disconnection protective relay device 110 compares the zero-phase voltage V 0 and the zero-phase voltage sensitivity V during ground fault, constantly monitors the zero-phase voltage V 0 is a less than or zero-phase voltage sensitivity V ing.

たとえば送配電線のR相で断線事故が発生すると、図12(a)に実線で示すようにR相電流IRは流れずにS相電流ISおよびT相電流ITが逆向きに流れるため、同図(b)に示すように正常時のR相、S相およびT相電流IR’,IS’,IT’の大きさを基準(=1)とすると、正相電流I1および逆相電流I2の大きさは共に0.5になる。その結果、逆相電流検出感度k=20%とすると逆相電流I2は正相電流I1のk倍(=0.2×0.5=0.1)以上になるので、断線保護継電装置110は「判定条件a1が満たされた」と判定する。
また、R相電流IRのみが最小負荷電流Iminよりも小さくなるので、断線保護継電装置110は「判定条件a2および判定条件a3も満たされた」と判定する。
さらに、地絡事故は発生していないために零相電圧V0は零相電圧検出感度V未満のままであるので、断線保護継電装置110は「判定条件a4も満たされた」と判定する。
その結果、断線保護継電装置110は、4つの判定条件a1〜a4がすべて満たされたので、断線事故と判定して、第1乃至第3の遮断器41〜43を一括遮断する。
For example, disconnection accident R-phase transmission and distribution lines are generated, through S-phase current I S and T phase current I T is reversed without flow R-phase current I R as shown by the solid line in FIG. 12 (a) Therefore, as shown in FIG. 5B, assuming that the magnitudes of the R-phase, S-phase, and T-phase currents I R ′, I S ′, I T ′ at normal time are the reference (= 1), the positive phase current I The magnitudes of 1 and negative phase current I 2 are both 0.5. As a result, if the negative-phase current detection sensitivity k = 20%, the negative-phase current I 2 becomes k times (= 0.2 × 0.5 = 0.1) or more of the positive-phase current I 1. The electric device 110 determines that “the determination condition a 1 is satisfied”.
Further, since only the R-phase current I R becomes smaller than the minimum load current I min , the disconnection protection relay device 110 determines that “the determination condition a 2 and the determination condition a 3 are also satisfied”.
Further, since no ground fault has occurred, the zero-phase voltage V 0 remains lower than the zero-phase voltage detection sensitivity V, so the disconnection protection relay device 110 determines that “the determination condition a 4 is also satisfied”. To do.
As a result, since the disconnection protection relay device 110 has satisfied all the four determination conditions a 1 to a 4 , the disconnection protection relay device 110 determines that a disconnection accident has occurred and collectively shuts off the first to third circuit breakers 4 1 to 4 3. To do.

なお、下記の特許文献1には、ディジタル保護継電装置において負荷電流の変動や変流器の違いに関係なく1相断線を確実に判定するために、電力系統の3相電流を保護継電装置へ変流器を介して入力し、アナログ入力部を経てサンプリングしディジタル量化した3相電流を演算処理部に導き、零相電流I0,正相電流I1および逆相電流I2を算出して、次式がそれぞれ成立して所定時間継続する時に1相断線と判定する常時監視方式が開示されている。
3I0/(3T1+K0)>K11>K2
3T0/3I1>K3
ここで、K1,K3=零相/正相設定値。
0=アナログ入力部誤差に相当した正相分オフセット量。
2=アナログ入力部における誤差を含めた正相電流設定値。
In Patent Document 1 below, the three-phase current of the power system is protected and relayed in order to reliably determine a one-phase disconnection regardless of load current fluctuations or current transformer differences in the digital protection relay device. The three-phase current input to the device via a current transformer, sampled through the analog input section, and digitized into a digital processing quantity is led to the arithmetic processing section to calculate the zero-phase current I 0 , the positive-phase current I 1 and the negative-phase current I 2 Thus, there is disclosed a constant monitoring method in which the following formulas are satisfied and a one-phase disconnection is determined for a predetermined time.
3I 0 / (3T 1 + K 0 )> K 1 I 1 > K 2
3T 0 / 3I 1 > K 3
Here, K 1 and K 3 = zero phase / positive phase set value.
K 0 = positive phase offset amount corresponding to the analog input section error.
K 2 = Positive phase current setting value including error in the analog input section.

特開平7−107653号公報JP-A-7-107653

しかしながら、従来の断線保護継電装置110では、地絡事故が発生して地絡電流が送配電線の各相に流れると、1/3の大きさの逆相電流I2(零相電流I0)が生じて、3つの判定条件a1〜a3がすべて満たされるので、地絡事故でないこと(判定条件a4)を判定するために零相電圧V0(電圧要素)を用いる必要があるという問題があった。 However, in the conventional disconnection protection relay device 110, when a ground fault occurs and a ground fault current flows in each phase of the transmission and distribution line, a negative phase current I 2 (zero phase current I 2) having a magnitude of 1/3. 0 ) occurs, and all of the three determination conditions a 1 to a 3 are satisfied. Therefore, it is necessary to use the zero- phase voltage V 0 (voltage element) to determine that it is not a ground fault (determination condition a 4 ). There was a problem that there was.

また、断線事故時に発生する逆相電流I2を用いる方式であるため、送配電線の各相電流が平衡である場合には逆相電流検出感度kを大きくしても特に問題ないが、送配電線の各相電流に不平衡がある場合には正常時に発生する逆相電流I2によって誤動作する可能性があるので、逆相電流検出感度kを大きくすることができないという問題があった。 In addition, since the reverse phase current I 2 generated at the time of the disconnection accident is used, there is no particular problem even if the reverse phase current detection sensitivity k is increased when each phase current of the transmission and distribution lines is balanced. When there is an unbalance in each phase current of the distribution line, there is a possibility of malfunction due to the reverse phase current I 2 generated in the normal state, and there is a problem that the reverse phase current detection sensitivity k cannot be increased.

さらに、図13に示すような3端子の送配電線(3相)では、逆相電流検出感度kを20%とすると、C端(分岐負荷端)側の分岐負荷率mが30%未満である送配電線では断線事故と判定することができないため、このような送配電線については逆相電流検出感度kを下げる必要があるが、逆相電流検出感度kを10%に下げても、分岐負荷率mが19%未満である送配電線では断線事故と判定することができないという問題があった。
たとえば、分岐負荷率mが30%である3端子の送配電線のR相のA端(電源端)から見て分岐点よりも前の地点(イ点)で断線事故が発生すると、正相電流I1の大きさは0.850になり、逆相電流I2の大きさは0.150になる。その結果、逆相電流検出感度kを20%としたときには逆相電流I2(=0.150)は正相電流I1のk倍(=0.2×0.850=0.17)未満になり、判定条件a1を満たさなくなる。
そこで、逆相電流検出感度kを10%に下げると、逆相電流I2(=0.150)は正相電流I1のk倍(=0.1×0.850=0.085)以上になるので判定条件a1を満たすようにすることができるが、分岐負荷率mが18%である送配電線では、正相電流I1の大きさは0.910となり、逆相電流I2の大きさは0.090になるので、逆相電流検出感度kを10%としても、逆相電流I2(=0.090)は正相電流I1のk倍(=0.1×0.910=0.091)未満になり、判定条件a1を満たさなくなる。
Further, in a three-terminal transmission / distribution line (three phases) as shown in FIG. 13, assuming that the reverse phase current detection sensitivity k is 20%, the branch load factor m on the C end (branch load end) side is less than 30%. Since it is not possible to determine a disconnection accident with a certain transmission / distribution line, it is necessary to lower the reverse-phase current detection sensitivity k for such a transmission / distribution line, but even if the reverse-phase current detection sensitivity k is reduced to 10%, There is a problem that a transmission / distribution line having a branch load factor m of less than 19% cannot be determined as a disconnection accident.
For example, if a disconnection accident occurs at a point (a point) before the branch point when viewed from the A end (power supply end) of the R phase of a three-terminal transmission and distribution line with a branch load factor m of 30%, the positive phase The magnitude of the current I 1 is 0.850, and the magnitude of the reverse phase current I 2 is 0.150. As a result, when the negative phase current detection sensitivity k is 20%, the negative phase current I 2 (= 0.150) is less than k times the positive phase current I 1 (= 0.2 × 0.850 = 0.17). And the determination condition a 1 is not satisfied.
Therefore, when the negative-phase current detection sensitivity k is lowered to 10%, the negative-phase current I 2 (= 0.150) is k times (= 0.1 × 0.850 = 0.085) or more of the positive-phase current I 1. since the can to satisfy the determination condition a 1, the transmission and distribution lines branching load factor m is 18%, the magnitude of the positive sequence current I 1 is becomes 0.910, negative sequence current I 2 Therefore, even if the negative phase current detection sensitivity k is 10%, the negative phase current I 2 (= 0.090) is k times the positive phase current I 1 (= 0.1 × 0). .910 = 0.091) and the determination condition a 1 is not satisfied.

さらに、3端子の送配電線では、A端から見て分岐点よりも前の地点(イ点)で断線事故が発生したか、分岐後のB端(負荷端)側の地点(ロ点)で断線事故が発生したか、分岐後のC端側の地点(ハ点)で断線事故が発生したかを判定することができないという問題があった。   Furthermore, in the case of a 3-terminal transmission / distribution line, a disconnection accident occurred at a point before the branch point (a point) as viewed from the A end, or a point on the B end (load end) side after the branch (b point) Therefore, there is a problem that it is impossible to determine whether a disconnection accident has occurred or whether a disconnection accident has occurred at a point on the C-end side after branching (C point).

本発明の目的は、電流要素のみで、かつ、各相電流に不平衡があったり分岐負荷があったりしても断線事故から三相交流回路を保護することができる断線保護継電装置を提供することにある。   An object of the present invention is to provide a disconnection protection relay device that can protect a three-phase AC circuit from a disconnection accident even if there is only a current element and each phase current is unbalanced or has a branch load. There is to do.

本発明の断線保護継電装置は、断線事故から三相交流回路を保護するための断線保護継電装置(10)であって、前記三相交流回路の各相を流れる相電流(IR,IS,IT)のみに基づいて断線事故を判定する断線事故判定手段(14〜16)を具備することを特徴とする。
ここで、前記断線事故判定手段が、前記三相交流回路の健全相を流れる相電流の電流変化率および位相変化角の対称性に基づいて断線事故を判定してもよい。
前記断線事故判定手段が、前記三相交流回路の遅れ相電流(IY)の電流変化率(Y)が進み相電流(IZ)の電流変化率(Z)に裕度(β)を掛けた値の範囲内にあり、かつ、前記遅れ相電流の位相変化角(ΔθY)の絶対値が前記進み相電流の位相変化角(ΔθZ)の絶対値に前記裕度を掛けた値の範囲内にあることを条件として、断線事故を判定してもよい。
前記三相交流回路が3端子の三相交流回路である場合には、前記断線事故判定手段が、該3端子の三相交流回路の遅れ相電流(IY)の位相変化角(ΔθY)に基づいて断線事故の地点を判定してもよい。
The disconnection protection relay device of the present invention is a disconnection protection relay device (10) for protecting a three-phase AC circuit from a disconnection accident, and includes phase currents (I R , A disconnection accident determination means (14-16) for determining a disconnection accident based only on I S , I T ) is provided.
Here, the disconnection accident determination means may determine a disconnection accident based on the current change rate of the phase current flowing through the healthy phase of the three-phase AC circuit and the symmetry of the phase change angle.
The disconnection accident determination means determines that the current change rate (Y) of the lagging phase current (I Y ) of the three-phase AC circuit is multiplied by the margin (β) of the current change rate (Z) of the leading phase current (I Z ). And the absolute value of the phase change angle (Δθ Y ) of the delayed phase current is a value obtained by multiplying the absolute value of the phase change angle (Δθ Z ) of the lead phase current by the tolerance. A disconnection accident may be determined on the condition that it is within the range.
In the case where the three-phase AC circuit is a three-terminal three-phase AC circuit, the disconnection accident determination means determines the phase change angle (Δθ Y ) of the delayed phase current (I Y ) of the three-terminal three-phase AC circuit. You may determine the point of a disconnection accident based on.

本発明の断線保護継電装置は、以下に示す効果を奏する。
(1)三相交流回路の健全相を流れる相電流の電流変化率および位相変化角の対称性に基づいて断線事故を判定することにより、電流要素(三相交流回路の各相を流れる相電流)のみで断線事故から三相交流回路を保護することができる。
(2)各相の不平衡電流の影響を受けない電流変化率に基づいて断線事故を判定するので、各相電流に不平衡があっても断線事故から三相交流回路を保護することができるとともに、分岐負荷があっても検出感度を低下させる必要がない。
(3)遅れ相電流の位相変化角に基づいて断線事故の地点を判定することにより、3端子の三相交流回路における断線事故の地点を判定することができる。
The disconnection protection relay device of the present invention has the following effects.
(1) By determining the disconnection accident based on the current change rate of the phase current flowing through the healthy phase of the three-phase AC circuit and the symmetry of the phase change angle, the current element (the phase current flowing through each phase of the three-phase AC circuit) ) Alone can protect the three-phase AC circuit from disconnection accidents.
(2) Since the disconnection accident is determined based on the current change rate that is not affected by the unbalanced current of each phase, the three-phase AC circuit can be protected from the disconnection accident even if each phase current is unbalanced. At the same time, it is not necessary to lower the detection sensitivity even if there is a branch load.
(3) By determining the location of the disconnection accident based on the phase change angle of the delayed phase current, the location of the disconnection accident in the three-terminal three-phase AC circuit can be determined.

本発明の一実施例による断線保護継電装置10を2端子の送配電線に設置した状態を示す図である。It is a figure which shows the state which installed the disconnection protection relay apparatus 10 by one Example of this invention in the transmission / distribution electric wire of 2 terminals. 各相電流が平衡である2端子の送配電線のR相で断線事故が発生したときのR相S相およびT相電流IR,IS,ITを示すベクトル図である。I R, R-phase S-phase and T-phase current when a disconnection fault in the R phase of transmission and distribution lines of the two-terminal phase current is balanced has occurred is a vector diagram showing the I S, I T. 各相電流が不平衡である2端子の送配電線におけるR相、S相およびT相電流IR,IS,ITを示すベクトル図であり、(a)は正常時のR相、S相およびT相電流IR’,IS’,IT’を示すベクトル図であり、(b)はR相で断線事故が発生したときのR相、S相およびT相電流IR,IS,ITを示すベクトル図である。FIG. 5 is a vector diagram showing R-phase, S-phase, and T-phase currents I R , I S , I T in a two-terminal transmission / distribution line in which each phase current is unbalanced, and FIG. FIG. 6 is a vector diagram showing phase and T phase currents I R ′, I S ′, and I T ′, and (b) shows R phase, S phase, and T phase currents I R , I when a disconnection accident occurs in the R phase. S, is a vector diagram showing the I T. 図1に示した断線保護継電装置10の具体的構成例を示すブロック図である。It is a block diagram which shows the specific structural example of the disconnection protection relay apparatus 10 shown in FIG. 図4に示したリレー演算処理部16における断線判定処理方法について説明するためのフローチャートである。It is a flowchart for demonstrating the disconnection determination processing method in the relay arithmetic processing part 16 shown in FIG. 本発明の一実施例による断線保護継電装置10を3端子の送配電線に設置した状態を示す図である。It is a figure which shows the state which installed the disconnection protection relay apparatus 10 by one Example of this invention in the transmission / distribution electric wire of 3 terminals. 各相電流が平衡である3端子の送配電線のR相で断線事故が発生したときのR相S相およびT相電流IR,IS,ITを示すベクトル図であり、(a)は図6に示すロ点で断線事故が発生したときのR相S相およびT相電流IR,IS,ITを示すベクトル図であり、(b)は図6に示すハ点で断線事故が発生したときのR相S相およびT相電流IR,IS,ITを示すベクトル図である。FIG. 5 is a vector diagram showing R-phase S-phase and T-phase currents I R , I S , I T when a disconnection accident occurs in the R-phase of a three-terminal transmission and distribution line in which each phase current is balanced; FIG. 7 is a vector diagram showing R-phase S-phase and T-phase currents I R , I S , I T when a disconnection accident occurs at point B shown in FIG. 6, and (b) is a disconnection at point C shown in FIG. It is a vector diagram showing R phase S phase and T phase currents I R , I S , I T when an accident occurs. 各相電流が平衡である3端子の送配電線で断線事故が発生したときの図4に示したリレー演算処理部16における断線判定処理方法について説明するためのフローチャートである。It is a flowchart for demonstrating the disconnection determination processing method in the relay arithmetic processing part 16 shown in FIG. 4 when a disconnection accident generate | occur | produces in the transmission / distribution line of 3 terminals with which each phase current is balanced. 各相電流が不平衡である3端子の送配電線のR相で断線事故が発生したときのR相S相およびT相電流IR,IS,ITを示すベクトル図であり、(a)は図6に示すロ点で断線事故が発生したときのR相S相およびT相電流IR,IS,ITを示すベクトル図であり、(b)は図6に示すハ点で断線事故が発生したときのR相S相およびT相電流IR,IS,ITを示すベクトル図である。FIG. 7 is a vector diagram showing R-phase S-phase and T-phase currents I R , I S , I T when a disconnection accident occurs in the R-phase of a three-terminal transmission / distribution line in which each phase current is unbalanced; ) Is a vector diagram showing R-phase S-phase and T-phase currents I R , I S , I T when a disconnection accident occurs at point B shown in FIG. 6, and (b) is a point C shown in FIG. R phase S phase and T-phase currents I R when the disconnection accident occurs, I S, is a vector diagram showing the I T. 各相電流が不平衡である3端子の送配電線で断線事故が発生したときの図4に示したリレー演算処理部16における断線判定処理方法について説明するためのフローチャートである。It is a flowchart for demonstrating the disconnection determination processing method in the relay arithmetic processing part 16 shown in FIG. 4 when a disconnection accident generate | occur | produces with the transmission / distribution line of 3 terminals where each phase current is unbalanced. 従来の断線保護継電装置110について説明するための図である。It is a figure for demonstrating the conventional disconnection protection relay apparatus 110. FIG. 図11に示した送配電線のR相に断線事故が発生したときの断線保護継電装置110の動作について説明するための図である。It is a figure for demonstrating operation | movement of the disconnection protection relay apparatus 110 when a disconnection accident generate | occur | produces in the R phase of the power transmission and distribution line shown in FIG. 図11に示した断線保護継電装置110を3端子の送配電線に使用したときの問題点について説明するための図である。It is a figure for demonstrating a problem when the disconnection protection relay apparatus 110 shown in FIG. 11 is used for a 3-terminal power transmission and distribution line.

上記の目的を、三相交流回路の健全相を流れる相電流の電流変化率および位相変化角の対称性に基づいて断線事故を判定することにより実現した。   The above object has been realized by determining the disconnection accident based on the current change rate of the phase current flowing through the healthy phase of the three-phase AC circuit and the symmetry of the phase change angle.

以下、本発明の断線保護継電装置の実施例について図面を参照して説明する。
なお、以下の説明では、
(1)正常時のR相、S相およびT相電流IR’,IS’,IT’の大きさを基準(=1)とし、正常時のR相電流IR’の位相θR’を基準(=0°)とする。
(2)R相、S相およびT相電流IR,IS,ITの正常時のR相、S相およびT相電流IR’,IS’,IT’に対する電流変化率をR(=|IR|/|IR’|),S(=|IS|/|IS’|)およびT(=|IT|/|IT’|)とし、R相、S相およびT相電流IR,IS,ITの位相θR,θS,θTの正常時のR相、S相およびT相電流IR’,IS’,IT’の位相θR’,θS’,θT’に対する位相変化角をΔθR(=θR−θR’),ΔθS(=θS−θS’),ΔθT(=θT−θT’)とする。
(3)断線事故が発生した事故相Xを流れる相電流を事故相電流IXとし、事故相Xに対して遅れ相Yを流れる相電流を遅れ相電流IYとし、事故相Xに対して進み相Zを流れる相電流を進み相電流IZとする。また、事故相、遅れ相および進み相電流IX,IY,IZの正常時の事故相、遅れ相および進み相電流IX’,IY’,IZ’に対する電流変化率をX(=|IX|/|IX’|)、Y(=|IY|/|IY’|)、およびZ(=|IZ|/|IZ’|)とし、事故相、遅れ相および進み相電流IX,IY,IZの位相θX,θY,θZの正常時の事故相、遅れ相および進み相電流IX’,IY’,IZ’の位相θX’,θY’,θZ’に対する位相変化角をΔθX(=θX−θX’),ΔθY(=θY−θY’),ΔθZ(=θZ−θZ’)とする。
(4)第1の裕度α=0.2とし、第2の裕度β=0.9〜1.1とし、第3の裕度γ=−10°〜10°とし、第4の裕度δ=0.9とし、第5の裕度ε=1.1とする。
(5)3端子の送配電線では、A端(電源端)の負荷を100%として、B端(負荷端)の分岐負荷率を(100−m)%とし、C端(分岐負荷端)の分岐負荷率をm%とする。
(6)3端子の送配電線のR相、S相およびT相の分岐点よりもB端側を流れる相電流をB端側R相、S相およびT相電流IBR,IBS,IBTとし、分岐点よりもC端側を流れる相電流をC端側R相、S相およびT相電流ICR,ICS,ICTとする。
(7)2端子の送配電線の各相電流が不平衡である場合には、正常時のR相電流IR’の大きさに対する正常時のS相およびT相電流IS’,IT’の大きさの比をS相およびT相不平衡率nS(=|IS’|/|IR’|),nT(=|IT’|/|IR’|)とする。
(8)3端子の送配電線の各相電流が不平衡である場合には、正常時のB端側R相電流IBR’の大きさに対する正常時のB端側S相およびT相電流IBS’,IBT’の大きさの比をB端側S相およびT相不平衡率nBS(=|IBS’|/|IBR’|),nBT(=|IBT’|/|IBR’|)とし、正常時のC端側R相電流ICR’の大きさに対する正常時のC端側S相およびT相電流ICS’,ICT’の大きさの比をC端側S相およびT相不平衡率nCS(=|ICS’|/|ICR’|),nCT(=|ICT’|/|ICR’|)とする。
(9)第6の裕度ζ=1/(nCS+nCT)〜(nCS+nCT)とする。
Embodiments of the disconnection protection relay device of the present invention will be described below with reference to the drawings.
In the following explanation,
(1) The phase θ R of the normal R-phase current I R ′ with the magnitudes of the normal R-phase, S-phase, and T-phase currents I R ′, I S ′, I T ′ as the reference (= 1) 'Is the reference (= 0 °).
(2) The rate of current change with respect to the R-phase, S-phase, and T-phase currents I R ′, I S ′, I T ′ when the R-phase, S-phase, and T-phase currents I R , I S , I T are normal. (= | I R | / | I R '|), S (= | I S | / | I S ' |) and T (= | I T | / | I T '|), R phase, S phase and T-phase currents I R, I S, the phase theta R of I T, θ S, normal state R-phase theta T, S-phase and T-phase currents I R ', I S', the phase theta R of I T ' The phase change angles for ', θ S ', and θ T 'are Δθ R (= θ R −θ R '), Δθ S (= θ S −θ S '), Δθ T (= θ T −θ T '). To do.
(3) The phase current flowing through the accident phase X where the disconnection accident occurred is defined as the accident phase current I X , the phase current flowing through the delay phase Y with respect to the accident phase X is defined as the delay phase current I Y, and A phase current flowing through the leading phase Z is defined as a leading phase current I Z. Further, the rate of change of current with respect to the accident phase, delay phase, and lead phase currents I X ′, I Y ′, I Z ′ of the fault phase, delay phase, and lead phase currents I X , I Y , I Z when normal is represented by X ( = | I X | / | I X '|), Y (= | I Y | / | I Y ' |), and Z (= | I Z | / | I Z '|) and proceeds phase currents I X, I Y, the phase theta X of I Z, θ Y, fault phase during normal theta Z, lag phase and proceeds phase currents I X ', I Y', the phase theta X of I Z ' The phase change angles for ', θ Y ', and θ Z 'are Δθ X (= θ X −θ X '), Δθ Y (= θ Y −θ Y '), Δθ Z (= θ Z −θ Z '). To do.
(4) The first tolerance α = 0.2, the second tolerance β = 0.9 to 1.1, the third tolerance γ = −10 ° to 10 °, and the fourth tolerance The degree δ = 0.9 and the fifth tolerance ε = 1.1.
(5) For a 3-terminal transmission and distribution line, the load at the A end (power supply end) is 100%, the branch load factor at the B end (load end) is (100-m)%, and the C end (branch load end) The branch load factor of is m%.
(6) The B-side R-phase, S-phase, and T-phase currents I BR , I BS , I Let BT be the phase current flowing on the C end side from the branch point, and let the C end side R phase, S phase, and T phase currents I CR , I CS , and I CT .
(7) When the phase currents of the two-terminal transmission and distribution lines are unbalanced, the normal S-phase and T-phase currents I S ′ and I T with respect to the normal R-phase current I R ′ The ratio of the magnitudes of 'is assumed to be the S-phase and T-phase unbalance ratio n S (= | I S ' | / | I R '|), n T (= | I T ' | / | I R '|) .
(8) When the phase currents of the 3-terminal transmission and distribution lines are unbalanced, the B-end side S-phase and T-phase currents in the normal state with respect to the magnitude of the B-end side R-phase current I BR ′ in the normal state I BS ', I BT' size ratio of the B-end side S-phase and T-phase unbalanced ratio n BS (= | I BS ' | / | I BR' |), n BT (= | I BT '| / | I BR '|), and the ratio of the magnitude of the C-terminal side S-phase current and the T-phase current I CS ′, I CT ′ to the magnitude of the normal C-terminal side R-phase current I CR ′ The C-side S-phase and T-phase unbalance ratios n CS (= | I CS '| / | I CR ' |), n CT (= | I CT '| / | I CR ' |).
(9) The sixth tolerance ζ = 1 / (n CS + n CT ) to (n CS + n CT ).

本発明の断線保護継電装置は、断線事故時における健全相を流れる相電流の大きさおよび位相の対称的変化(健全相の事故時/正常時の電流変化率と位相変化角の絶対値とが同じになる変化)に着目して断線事故と判定することにより、電流要素のみで断線事故と判定することを特徴とする。   The disconnection protection relay device of the present invention has a symmetrical change in the magnitude and phase of the phase current flowing through the healthy phase in the event of a disconnection accident (the current change rate and the absolute value of the phase change angle during the fault / normal phase of the healthy phase) It is characterized in that a disconnection accident is determined only by a current element by determining a disconnection accident by paying attention to a change in which the two are the same.

次に、図1に示すように本発明の一実施例による断線保護継電装置10を2端子の送配電線(3相)に使用した場合について、図2乃至図5を参照して説明する。
2端子の送配電線の各相電流が平衡である場合には、この送配電線のR相で断線事故が発生すると、事故相を流れる相電流であるR相電流IRは0になり、健全相を流れる相電流であるS相およびT相電流IS,ITの電流変化率S,Tは共に31/2/2になり、S相電流ISの位相θSは正常時のS相電流IS’の位相θS’に対して30°進み、T相電流ITの位相θTは正常時のT相電流IT’の位相θT’に対して30°遅れる。
Next, the case where the disconnection protection relay device 10 according to one embodiment of the present invention is used for a two-terminal transmission / distribution line (three phases) as shown in FIG. 1 will be described with reference to FIGS. .
If each phase current of the 2-terminal transmission / distribution line is balanced, if a disconnection accident occurs in the R-phase of this transmission / distribution line, the R-phase current I R, which is the phase current flowing through the accident phase, becomes 0, a phase current flowing through the sound phase S-phase and T-phase current I S, the rate of change of current I T S, T are both 3 1/2 / 2, of the S-phase current I S phase theta S is the normal S-phase current I S 30 ° advances against 'phase theta S' of the phase theta T T-phase current I T is delayed 30 ° with respect to 'the phase theta T of' normal state T phase current I T.

また、図3(a)に示すように2端子の送配電線の各相電流が不平衡である場合には、この送配電線のR相で断線事故が発生すると、同図(b)に実線で示すように、R相電流IRは0になり、S相およびT相電流IS,ITの電流変化率S,Tは共に31/2(nS+nT)/4になり、S相電流ISの位相θSは正常時のS相電流IS’の位相θS’に対して30°進み、T相電流ITの位相θTは正常時のT相電流IT’の位相θT’に対して30°遅れる。 Also, as shown in FIG. 3 (a), when each phase current of the two-terminal transmission / distribution line is unbalanced, if a disconnection accident occurs in the R-phase of this transmission / distribution line, as shown by the solid line, the R-phase current I R becomes 0, S-phase and T-phase current I S, the rate of change of current I T S, T are both in 3 1/2 (n S + n T ) / 4 , S-phase current I phase theta S of S advances 30 ° with respect to 'the phase theta S of' S-phase current I S during normal, T-phase current I T of the phase theta T is in a normal T-phase current I T Delayed by 30 ° with respect to 'phase θ T '.

そこで、断線保護継電装置10は、第1乃至第3の裕度α,β,γを用いて定められた以下に示す4つの判定条件A〜Dがすべて満たされた場合に、断線事故と判定する。
[判定条件A]事故相電流IXの電流変化率Xが第1の裕度α以下であること。
[判定条件B]遅れ相電流IYの電流変化率Yが31/2(nS+nT)/4に第2の裕度βを掛けた値の範囲内にあり、かつ、遅れ相電流IYの位相変化角ΔθYの絶対値が30°を中心として第3の裕度γの範囲内にあること。
[判定条件C]進み相電流IZの電流変化率Zが31/2(nS+nT)/4に第2の裕度βを掛けた値の範囲内にあり、かつ、進み相電流IZの位相変化角ΔθZ(=θZ−θZ’)の絶対値が30°を中心として第3の裕度γの範囲内にあること。
[判定条件D]遅れ相電流IYの電流変化率Yが進み相電流IZの電流変化率Zに第2の裕度βを掛けた値の範囲内にあり、かつ、遅れ相電流IYの位相変化角ΔθYの絶対値が進み相電流IZの位相変化角ΔθZの絶対値に第2の裕度βを掛けた値の範囲内にあること。
Therefore, the disconnection protection relay device 10 is considered to be a disconnection accident when all of the following four determination conditions A to D defined using the first to third tolerances α, β, and γ are satisfied. judge.
[Criteria A] The current change rate X of the accident phase current I X is not more than the first tolerance α.
[Criteria B] The current change rate Y of the delayed phase current I Y is within the range of 3 1/2 (n S + n T ) / 4 multiplied by the second tolerance β, and the delayed phase current The absolute value of the phase change angle Δθ Y of I Y is within the range of the third tolerance γ with 30 ° as the center.
[Criteria C] The rate of change Z of the leading phase current I Z is within the range of 3 1/2 (n S + n T ) / 4 multiplied by the second tolerance β, and the leading phase current The absolute value of the phase change angle Δθ Z (= θ Z −θ Z ′) of I Z is within the range of the third tolerance γ with 30 ° as the center.
Is in the range of [the determination condition D] late-phase current I obtained by multiplying the second margin β to the current change rate Z of current change rate Y advances phase current I Z of Y, and late-phase current I Y The absolute value of the phase change angle Δθ Y is within the range of the value obtained by multiplying the absolute value of the phase change angle Δθ Z of the phase current I Z by the second tolerance β.

次に、断線保護継電装置10の具体的構成例について、図4を参照して説明する。
断線保護継電装置10は、図4に示すように、入力変換器11と、アナログ入力部12と、メモリ13と、電流変化率算出部14と、位相変化角算出部15と、リレー演算処理部16と、整定・表示部17と、入出力部18と、外部機器インターフェース部(外部機器I/F部)19とを具備する。
Next, a specific configuration example of the disconnection protection relay device 10 will be described with reference to FIG.
As shown in FIG. 4, the disconnection protection relay device 10 includes an input converter 11, an analog input unit 12, a memory 13, a current change rate calculation unit 14, a phase change angle calculation unit 15, and a relay calculation process. Unit 16, settling / display unit 17, input / output unit 18, and external device interface unit (external device I / F unit) 19.

入力変換器11は、第1乃至第3の変流器31〜33(図1参照)からそれぞれ入力されるR相、S相およびT相電流IR,IS,ITのレベルをアナログ入力部12の処理に適したレベルに変換する。なお、説明の簡単のために、第1乃至第3の変流器31〜33の変流比は1:1とする。
アナログ入力部12は、バンドパスフィルタとサンプリングホールド回路とマルチプレクサ回路とアナログ/ディジタル変換器とを備え、入力変換器11から入力されるアナログのR相、S相およびT相電流IR,IS,ITをディジタルのR相、S相およびT相電流IR,IS,ITに変換する。
メモリ13は、アナログ入力部12によってディジタルデータに変換されたR相、S相およびT相電流IR,IS,ITを格納するためのものである。
The input converter 11 determines the levels of the R-phase, S-phase, and T-phase currents I R , I S , and I T respectively input from the first to third current transformers 3 1 to 3 3 (see FIG. 1). The level is converted to a level suitable for processing of the analog input unit 12. For simplicity of explanation, the current transformation ratio of the first to third current transformers 3 1 to 3 3 is 1: 1.
The analog input unit 12 includes a bandpass filter, a sampling hold circuit, a multiplexer circuit, and an analog / digital converter, and analog R-phase, S-phase, and T-phase currents I R and I S input from the input converter 11. , I T are converted into digital R-phase, S-phase and T-phase currents I R , I S , I T.
The memory 13 is for storing the R-phase, S-phase, and T-phase currents I R , I S , I T converted into digital data by the analog input unit 12.

電流変化率算出部14は、アナログ入力部12から入力されるR相、S相およびT相電流IR,IS,ITの大きさをメモリ13に格納されている1サイクル前のR相、S相およびT相電流IR,IS,ITの大きさで割る。
これにより、断線事故時には、電流変化率算出部14は、R相、S相およびT相電流IR,IS,ITの大きさを1サイクル前のR相、S相およびT相電流IR,IS,IT(すなわち、正常時のR相、S相およびT相電流IR’,IS’,IT’)の大きさで割ることにより、R相、S相およびT相電流IR,IS,ITの電流変化率R,S,Tを算出する。
The current change rate calculation unit 14 stores the magnitudes of the R-phase, S-phase, and T-phase currents I R , I S , and I T input from the analog input unit 12 in the memory 13 one cycle before the R-phase. , S-phase and T-phase currents I R , I S , and I T.
Thereby, at the time of a disconnection accident, the current change rate calculation unit 14 sets the magnitudes of the R phase, S phase, and T phase currents I R , I S , I T to the R phase, S phase, and T phase currents I one cycle before. By dividing by the magnitudes of R 1 , I S , I T (ie, normal R phase, S phase and T phase currents I R ′, I S ′, I T ′), R phase, S phase and T phase current I R, I S, the rate of change of current I T R, S, to calculate the T.

位相変化角算出部15は、アナログ入力部12から入力されるR相、S相およびT相電流IR,IS,ITの位相θR,θS,θTからメモリ13に格納されている1サイクル前のR相、S相およびT相電流IR,IS,ITの位相θR,θS,θTを引く。
これにより、断線事故時には、位相変化角算出部15は、R相、S相およびT相電流IR,IS,ITの位相θR,θS,θTから1サイクル前のR相、S相およびT相電流IR,IS,ITの位相θR,θS,θT(すなわち、正常時のR相、S相およびT相電流IR’,IS’,IT’の位相θR’,θS’,θT’)を引くことにより、R相、S相およびT相電流IR,IS,ITの位相変化角ΔθR,ΔθS,ΔθTを算出する。
The phase change angle calculation unit 15 is stored in the memory 13 from the phases θ R , θ S , θ T of the R-phase, S-phase, and T-phase currents I R , I S , I T input from the analog input unit 12. The phases θ R , θ S , and θ T of the R-phase, S-phase, and T-phase currents I R , I S , and I T one cycle before are subtracted.
Thus, in the event of a disconnection accident, the phase change angle calculation unit 15 causes the R phase one cycle before the phases θ R , θ S , θ T of the R phase, S phase, and T phase currents I R , I S , I T , Phases θ R , θ S , θ T of S phase and T phase currents I R , I S , I T (ie, normal R phase, S phase and T phase currents I R ′, I S ′, I T ′) phase θ R ', θ S', by subtracting the theta T '), R phase, S phase and T-phase currents I R, I S, the phase change angle [Delta] [theta] R of I T, [Delta] [theta] S, calculates the [Delta] [theta] T To do.

リレー演算処理部16は、電流変化率算出部14によって算出された電流変化率R,S,Tと位相変化角算出部15によって算出された位相変化角ΔθR,ΔθS,ΔθTとに基づいて後述する断線判定処理を行うことにより断線事故か否かを判定し、断線事故と判定すると、第1乃至第3の遮断器41〜43を一括遮断するためのトリップ信号Tを生成し、生成したトリップ信号Tを入出力部18および外部機器インターフェース部19を介して第1乃至第3の遮断器41〜43に出力する。 The relay calculation processing unit 16 is based on the current change rates R, S, T calculated by the current change rate calculating unit 14 and the phase change angles Δθ R , Δθ S , Δθ T calculated by the phase change angle calculating unit 15. Then, it is determined whether or not there is a disconnection accident by performing a disconnection determination process to be described later, and if it is determined that the disconnection accident occurs, a trip signal T is generated to collectively disconnect the first to third circuit breakers 4 1 to 4 3. The generated trip signal T is output to the first to third circuit breakers 4 1 to 4 3 via the input / output unit 18 and the external device interface unit 19.

整定・表示部17は、リレー整定処理を行うとともに、整定値などを外部に表示する。   The settling / display unit 17 performs relay settling processing and displays the settling value and the like to the outside.

次に、断線保護継電装置10のリレー演算処理部16における断線判定処理方法について、図5に示すフローチャートを参照して説明する。   Next, the disconnection determination processing method in the relay calculation processing unit 16 of the disconnection protection relay device 10 will be described with reference to the flowchart shown in FIG.

リレー演算処理部16は、R相、S相およびT相電流IR,IS,ITの電流変化率R,S,Tが0.2以下のものがあるか否かを調べる事故相電流判定処理を行う(ステップS11)。
その結果、該当の相電流がある場合には、リレー演算処理部16は、該当の相を事故相Xとする。
Relay processing section 16, R phase, S phase and T-phase currents I R, I S, the fault phase currents to investigate whether the rate of change of current I T R, S, T is there is less than 0.2 A determination process is performed (step S11).
As a result, when there is a corresponding phase current, the relay calculation processing unit 16 sets the corresponding phase as the accident phase X.

ステップS11における結果が“YES”である場合には、リレー演算処理部16は、判定条件Aが満たされたと判定して、遅れ相電流IYの電流変化率Yが31/2(nS+nT)/4に0.9〜1.1を掛けた値の範囲内にあり、かつ、遅れ相電流IYの位相変化角ΔθYの絶対値が30°を中心として−10°〜10°の範囲内にあるか否かを調べる遅れ相電流判定処理を行う(ステップS12)。 If the result in step S11 is "YES", the relay processing unit 16, it is determined that the determination condition A is satisfied, a delay phase current I current change rate Y of Y is 3 1/2 (n S + N T ) / 4 multiplied by 0.9 to 1.1, and the absolute value of the phase change angle Δθ Y of the delayed phase current I Y is −10 ° to 10 centered on 30 ° A delayed phase current determination process is performed to check whether or not the angle is within the range of ° (step S12).

その結果が“YES”である場合には、リレー演算処理部16は、判定条件Bが満たされたと判定して、進み相電流IZの電流変化率Zが31/2(nS+nT)/4に0.9〜1.1を掛けた値の範囲内にあり、進み相電流IZの位相変化角ΔθZの絶対値が30°を中心として−10°〜10°の範囲内にあるか否かを調べる進み相電流判定処理を行う(ステップS13)。 In that case the result is "YES", the relay processing unit 16, it is determined that the determination condition B is satisfied, the current change rate Z of the advance phase current I Z is 3 1/2 (n S + n T ) / 4 multiplied by 0.9 to 1.1, and the absolute value of the phase change angle Δθ Z of the leading phase current I Z is within a range of −10 ° to 10 ° centering on 30 °. A lead phase current determination process is performed to check whether or not the current is in the range (step S13).

その結果が“YES”である場合には、リレー演算処理部16は、判定条件Cが満たされたと判定して、遅れ相電流IYの電流変化率Yが進み相電流IZの電流変化率Zに0.9〜1.1を掛けた値の範囲内にあるか否かを調べるとともに、遅れ相電流IYの位相変化角ΔθYの絶対値が進み相電流IZの位相変化角ΔθZの絶対値に0.9〜1.1を掛けた値の範囲内にあるか否かを調べる遅れ相・進み相電流対称性判定処理を行う。(ステップS14)。 When the result is “YES”, the relay calculation processing unit 16 determines that the determination condition C is satisfied, and the current change rate Y of the delayed phase current I Y is the current change rate of the advanced phase current I Z. Whether Z is within a range of 0.9 to 1.1 is checked, and the absolute value of the phase change angle Δθ Y of the delayed phase current I Y is advanced, and the phase change angle Δθ of the phase current I Z is Delayed phase / leading phase current symmetry determination processing is performed to determine whether the absolute value of Z is within a range of values obtained by multiplying 0.9 to 1.1. (Step S14).

その結果が“YES”である場合には、判定条件Dが満たされたと判定して、リレー演算処理部16は、事故相Xで断線事故が発生したと判定する(ステップS15)。   When the result is “YES”, it is determined that the determination condition D is satisfied, and the relay calculation processing unit 16 determines that a disconnection accident has occurred in the accident phase X (step S15).

これにより、電流要素のみで、かつ、各相電流に不平衡があっても、断線事故から2端子の送配電線を保護することができる。   Thereby, even if it is only an electric current element and there is an imbalance in each phase current, it is possible to protect the two-terminal transmission and distribution line from a disconnection accident.

次に、図6に示すように断線保護継電装置10を3端子の送配電線(3相)に使用した場合について、図7乃至図10を参照して説明する。   Next, the case where the disconnection protection relay device 10 is used for a three-terminal transmission / distribution line (three phases) as shown in FIG. 6 will be described with reference to FIGS.

3端子の送配電線の各相電流が平衡である場合には、たとえばこの送配電線のR相のA端から見て分岐点よりも前の地点(イ点)で断線事故が発生すると、上述した2端子の送配電線のR相で断線事故が発生したときと同様にして、R相電流IRは0になり、S相およびT相電流IS,ITの電流変化率S,Tは共に31/2/2になり、S相電流ISの位相θSは正常時のS相電流IS’の位相θS’に対して30°進み、T相電流ITの位相θTは正常時のT相電流IT’の位相θT’に対して30°遅れる。 When each phase current of the 3-terminal transmission / distribution line is balanced, for example, when a disconnection accident occurs at a point (a point) before the branch point when viewed from the A-phase end of the R-phase of this transmission / distribution line, in the same manner as when a disconnection in the R phase the transmission and distribution lines of the two-terminal described above accident occurs, the R-phase current I R becomes 0, S-phase and T-phase current I S, the rate of change of current I T S, T becomes both the 3 1/2 / 2, S-phase current I phase theta S of S advances 30 ° with respect to 'the phase theta S of' S-phase current I S of the normal, the T-phase current I T phase θ T is delayed by 30 ° with respect to the phase θ T ′ of the normal T-phase current I T ′.

また、この送配電線のR相のA端から見て分岐点よりもB端側の地点(ロ点)で断線事故が発生すると、B端側R相、S相およびT相電流IBR,IBS,IBTとC端側R相、S相およびT相電流ICR,ICS,ICTとは(2−1)式〜(2−6)式で表される。
BR=0 (2−1)
BS=(100−m)/100 (2−2)
BT=(100−m)/100 (2−3)
CR=m/100 (2−4)
CS=m/100 (2−5)
CT=m/100 (2−6)
したがって、R相、S相およびT相電流IR,IS,ITの電流変化率R,S,Tおよび位相変化角ΔθR,ΔθS,ΔθTは(3−1)式〜(3−6)式で表される(図7(a)参照)。
R=m/100 (3−1)
ΔθR=0° (3−2)
S={(100−m)/100}∠120°+(m/100)∠90°
=[(31/2/2)2+{(100−m)/200}21/2 (3−3)
ΔθS=−30°+tan[{(100−m)/200}/(31/2/2)]
=−30°+tan{(100−m)/(31/2×100)} (3−4)
T={(100−m)/100}∠(−120°)+(m/100)∠(−90°)
=[(31/2/2)2+{(100−m)/200}21/2 (3−5)
ΔθT=30°−tan[{(100−m)/200}/(31/2/2)]
=30°−tan{(100−m)/(31/2×100)} (3−6)
In addition, when a disconnection accident occurs at a point (B point) on the B end side of the branch point when viewed from the A end of the R phase of the transmission and distribution line, the B end side R phase, S phase and T phase currents I BR , I BS , I BT and C-terminal side R-phase, S-phase and T-phase currents I CR , I CS , I CT are expressed by equations (2-1) to (2-6).
I BR = 0 (2-1)
I BS = (100−m) / 100 (2-2)
I BT = (100-m) / 100 (2-3)
I CR = m / 100 (2-4)
I CS = m / 100 (2-5)
I CT = m / 100 (2-6)
Thus, R phase, S phase and T-phase currents I R, I S, the rate of change of current I T R, S, T and the phase change angle Δθ R, Δθ S, Δθ T is (3-1) to (3 −6) It is expressed by the formula (see FIG. 7A).
R = m / 100 (3-1)
Δθ R = 0 ° (3-2)
S = {(100−m) / 100} ∠120 ° + (m / 100) ∠90 °
= [(3 1/2 / 2) 2 + {(100-m) / 200} 2 ] 1/2 (3-3)
Δθ S = −30 ° + tan [{(100−m) / 200} / (3 1/2 / 2)]
= −30 ° + tan {(100−m) / (3 1/2 × 100)} (3-4)
T = {(100−m) / 100} ∠ (−120 °) + (m / 100) ∠ (−90 °)
= [(3 1/2 / 2) 2 + {(100-m) / 200} 2 ] 1/2 (3-5)
Δθ T = 30 ° −tan [{(100−m) / 200} / (3 1/2 / 2)]
= 30 ° -tan {(100-m) / (3 1/2 × 100)} (3-6)

さらに、この送配電線のR相のA端から見て分岐点よりもC端側の地点(ハ点)で断線事故が発生すると、B端側R相電流IBRとC端側R相電流ICRとは(4−1)式および(4−2)式で表され、B端側S相およびT相電流IBS,IBTとC端側S相およびT相電流ICS,ICTとは上記(2−3)式〜(2−6)式で表される。
BR=(100−m)/100 (4−1)
CR=0 (4−3)
したがって、R相電流IRの電流変化率Rは(5−1)式で表され、S相およびT相電流IS,ITの電流変化率S,TとR相S相およびT相電流IR,IS,ITの位相変化角ΔθR,ΔθS,ΔθTとは上記(3−2)式〜(3−6)式で表される(図7(b)参照)。
R=(100−m)/100 (5−1)
Furthermore, when a disconnection accident occurs at a point (C point) on the C end side of the branch point as viewed from the A end of the R phase of this transmission and distribution line, the B end side R phase current I BR and the C end side R phase current I CR is expressed by the equations (4-1) and (4-2), and the B-terminal side S-phase and T-phase currents I BS and I BT and the C-terminal side S-phase and T-phase currents I CS and I CT Is represented by the above formulas (2-3) to (2-6).
I BR = (100−m) / 100 (4-1)
I CR = 0 (4-3)
Accordingly, the current rate of change of the R-phase current I R R is represented by (5-1) equation, S-phase and T-phase current I S, the rate of change of current I T S, T and R phase S phase and T-phase current The phase change angles Δθ R , Δθ S , and Δθ T of I R , I S , and I T are expressed by the above expressions (3-2) to (3-6) (see FIG. 7B).
R = (100-m) / 100 (5-1)

そこで、断線保護継電装置10は、第2および第4の裕度β,δを用いて定められた以下に示す4つの判定条件A’〜D’がすべて満たされた場合に、断線事故と判定する。
[判定条件A’]事故相電流IXの電流変化率Xが(100−m)/100以下であること。
[判定条件B’]遅れ相電流IYの電流変化率Yが[(31/2/2)2+{(100−m)/200}21/2から(31/2/2)に第4の裕度δを掛けた値までの範囲内にあり、かつ、遅れ相電流IYの位相変化角ΔθYが−30°+tan{(100−m)/(31/2×100)}以下であること。
[判定条件C’]進み相電流IZの電流変化率Zが[(31/2/2)2+{(100−m)/200}21/2から(31/2/2)に第4の裕度δを掛けた値までの範囲内にあり、かつ、進み相電流IZの位相θZの位相変化角ΔθZが30°−tan{(100−m)/(31/2×100)}以上であること。
[判定条件D’]遅れ相電流IYの電流変化率Yが進み相電流IZの電流変化率Zに第2の裕度βを掛けた値の範囲内にあり、かつ、遅れ相電流IYの位相変化角ΔθYの絶対値が進み相電流IZの位相変化角ΔθZの絶対値に第2の裕度βを掛けた値の範囲内にあること。
Therefore, the disconnection protection relay device 10 determines that a disconnection accident occurs when all of the following four determination conditions A ′ to D ′ defined using the second and fourth tolerances β and δ are satisfied. judge.
[Determination Conditions A '] fault phase currents I X of the current change rate X is (100-m) / 100 be less.
[Judgment condition B ′] Current change rate Y of delayed phase current I Y is changed from [(3 1/2 / 2) 2 + {(100−m) / 200} 2 ] 1/2 to (3 1/2 / 2 ) to in the range of up to the value obtained by multiplying the fourth margin [delta], and the phase change angle [Delta] [theta] Y of the delay phase current I Y is -30 ° + tan {(100- m) / (3 1/2 × 100)} or less.
[Criteria C ′] Current change rate Z of lead phase current I Z is changed from [(3 1/2 / 2) 2 + {(100−m) / 200} 2 ] 1/2 to (3 1/2 / 2 ) to in the range of up to the value obtained by multiplying the fourth margin [delta], and the phase change angle [Delta] [theta] Z of the advance phase current I Z phase theta Z is 30 ° -tan {(100-m ) / (3 1/2 × 100)} or more.
Is in the range of [Determination Conditions D '] late phase current I obtained by multiplying the second margin β to the current change rate Z of current change rate Y advances phase current I Z of Y, and late-phase current I lying within the range of values obtained by multiplying the second margin β to the absolute value of the phase change angle [Delta] [theta] Z of the absolute value advances phase current I Z phase change angle [Delta] [theta] Y of the Y.

また、断線保護継電装置10は、第2、第4および第5の裕度β,δ,εを用いて、以下のようにして、断線事故の地点を判定する。
(1)遅れ相電流IYの位相変化角ΔθYが−30°に第2の裕度βを掛けた値の範囲内にある場合には、分岐前の地点で断線事故が発生したと判定する。
(2)遅れ相電流IYの位相変化角ΔθYが−30°に第4の裕度δを掛けた値よりも大きくかつ−13.9°に第5の裕度εを掛けた値未満である場合には、分岐後B端側の地点で断線事故が発生したと判定する。
(3)遅れ相電流IYの位相変化角ΔθYが−13.9°に第4の裕度δを掛けた値よりも大きくかつ−30°+tan{(100−m)/(31/2×100)}未満である場合には、分岐後C端側の地点で断線事故が発生したと判定する。
(4)遅れ相電流IYの位相変化角ΔθYが−13.9°に第2の裕度βを掛けた値の範囲内にある場合には、分岐後B端側またはC端側の地点で断線事故が発生したと判定する。
Further, the disconnection protection relay device 10 uses the second, fourth, and fifth tolerances β, δ, ε to determine the point of the disconnection accident as follows.
(1) determined that when the phase change angle [Delta] [theta] Y of the delay phase current I Y is within the range of values obtained by multiplying the second margin β in -30 °, the disconnection accident occurred at a point before the branch To do.
(2) a delay phase current I Y phase change angle [Delta] [theta] Y is -30 ° to less than 4 and greater than a value obtained by multiplying the tolerance δ of -13.9 ° to multiplied by the fifth tolerance ε values of If it is, it is determined that a disconnection accident has occurred at the point on the B end side after branching.
(3) delay of phase current I phase shift angle [Delta] [theta] Y Y is -13.9 ° in the fourth margin δ the multiplied greatly and -30 ° than the value + tan {(100-m) / (3 1 / 2 <100)}, it is determined that a disconnection accident has occurred at the point on the C-end side after the branch.
(4) When the phase change angle [Delta] [theta] Y of the delay phase current I Y is within the range of values obtained by multiplying the second margin β in -13.9 °, the branch after the B-end side or C-terminal It is determined that a disconnection accident has occurred at that point.

次に、この場合の断線保護継電装置10のリレー演算処理部16における断線判定処理方法について、図8に示すフローチャートを参照して説明する。   Next, the disconnection determination processing method in the relay calculation processing unit 16 of the disconnection protection relay device 10 in this case will be described with reference to the flowchart shown in FIG.

リレー演算処理部16は、R相、S相およびT相電流IR,IS,ITの電流変化率R,S,Tが(100−m)/100以下のものがあるか否かを調べる事故相電流判定処理を行う(ステップS21)。
その結果、該当の相電流がある場合には、リレー演算処理部16は、該当の相を事故相Xとする。
Relay processing section 16, R phase, S phase and T-phase currents I R, I S, the rate of change of current I T R, S, whether T there is a (100-m) / 100 following ones A fault phase current determination process is performed (step S21).
As a result, when there is a corresponding phase current, the relay calculation processing unit 16 sets the corresponding phase as the accident phase X.

ステップS21における結果が“YES”である場合には、リレー演算処理部16は、判定条件A’が満たされたと判定して、遅れ相電流IYの電流変化率Yが[(31/2/2)2+{(100−m)/200}21/2から(31/2/2)に0.9を掛けた値(=0.78)までの範囲内にあり、かつ、遅れ相電流IYの位相変化角ΔθYが−30°+tan{(100−m)/(31/2×100)}以下であるか否かを調べる遅れ相電流判定処理を行う(ステップS22)。 If the result at step S21 is "YES", the relay processing unit 16, it is determined that the determination condition A 'is satisfied, the current change rate Y of the delay phase current I Y is [(3 1/2 / 2) 2 + {(100−m) / 200} 2 ] 1/2 to (3 1/2 / 2) multiplied by 0.9 (= 0.78), and , the phase change angle [Delta] [theta] Y of the delay phase current I Y makes a -30 ° + tan {(100- m) / (3 1/2 × 100)} lag phase current determination process checks if it is less (step S22).

その結果が“YES”である場合には、リレー演算処理部16は、判定条件B’が満たされたと判定して、進み相電流IZの電流変化率Zが[(31/2/2)2+{(100−m)/200}21/2から(31/2/2)に0.9を掛けた値(=0.78)までの範囲内にあり、かつ、進み相電流IZの位相θZの位相変化角ΔθZが30°−tan{(100−m)/(31/2×100)}以上であるか否かを調べる進み相電流判定処理を行う(ステップS23)。 In that case the result is "YES", the relay processing unit 16, it is determined that the determination condition B 'are met, the current change rate of the advance phase current I Z Z is [(3 1/2 / 2 ) 2 + is in {(100-m) / 200 } 2] value multiplied by 0.9 to 1/2 (3 1/2 / 2) (= 0.78) in the range up to, and proceeds phase current I Z phase theta Z of the phase change angle [Delta] [theta] Z performs 30 ° -tan {(100-m ) / (3 1/2 × 100)} examined by whether or advances phase current determination process (Step S23).

その結果が“YES”である場合には、リレー演算処理部16は、判定条件C’が満たされたと判定して、遅れ相電流IYの電流変化率Yが進み相電流IZの電流変化率Zに0.9〜1.1を掛けた値の範囲内にあり、かつ、遅れ相電流IYの位相変化角ΔθYの絶対値が進み相電流IZの位相変化角ΔθZの絶対値に0.9〜1.1を掛けた値の範囲内にあるか否かを調べる遅れ相・進み相電流対称性判定処理を行う。(ステップS24)。 When the result is “YES”, the relay calculation processing unit 16 determines that the determination condition C ′ is satisfied, and the current change rate Y of the delayed phase current I Y increases and the current change of the advanced phase current I Z. The absolute value of the phase change angle Δθ Y of the delayed phase current I Y is within the range of the value obtained by multiplying the rate Z by 0.9 to 1.1, and the absolute value of the phase change angle Δθ Z of the lead phase current I Z Delayed phase / leading phase current symmetry determination processing is performed to check whether the value is within a range of values obtained by multiplying 0.9 to 1.1. (Step S24).

その結果が“YES”である場合には、判定条件D’が満たされたと判定して、リレー演算処理部16は、遅れ相電流IYの位相変化角ΔθYを調べ、その結果に応じて以下のように断線事故が発生した地点を判定する。
(1)遅れ相電流IYの位相変化角ΔθYが−30°に0.9〜1.1を掛けた値(=−27°〜−33°)の範囲内にある(すなわち、−33°≦ΔθY≦−27°)場合には、分岐前の地点で断線事故が発生したと判定する(ステップS25,S29a)。
(2)遅れ相電流IYの位相変化角ΔθYが−30°に0.9を掛けた値(=−27°)よりも大きくかつ−13.9°に1.1を掛けた値(=−15.3°)未満である(すなわち、−27°<ΔθY<−15.3°)場合には、分岐後B端側の地点で断線事故が発生したと判定する(ステップS26,S29b)。
(3)遅れ相電流IYの位相変化角ΔθYが−13.9°に0.9を掛けた値(=−12.5°)よりも大きくかつ−30°+tan{(100−m)/(31/2×100)}未満である場合には、分岐後C端側の地点で断線事故が発生したと判定する(ステップS27,S29c)。
(4)遅れ相電流IYの位相変化角ΔθYが−13.9°に0.9〜1.1を掛けた値(−12.5°〜−15.3°)の範囲内にある(すなわち、−15.3°≦ΔθY≦−12.5°)場合には、分岐後B端側またはC端側の地点で断線事故が発生したと判定する(ステップS28,S29d)。
When the result is “YES”, it is determined that the determination condition D ′ is satisfied, and the relay calculation processing unit 16 examines the phase change angle Δθ Y of the delayed phase current I Y , and according to the result. The point where the disconnection accident occurred is determined as follows.
(1) a delay phase current I Y of the phase change angle [Delta] [theta] Y is within the range of values obtained by multiplying the 0.9 to 1.1 to -30 ° (= -27 ° ~- 33 °) ( i.e., -33 (° ≦ Δθ Y ≦ −27 °), it is determined that a disconnection accident has occurred at a point before branching (steps S25 and S29a).
(2) a delay phase current I value phase shift angle [Delta] [theta] Y is multiplied by 0.9 to -30 ° for Y (= -27 °) and greater than -13.9 value obtained by multiplying 1.1 ° ( = −15.3 °) (ie, −27 ° <Δθ Y <−15.3 °), it is determined that a disconnection accident has occurred at the point on the B-end side after branching (step S26, S29b).
(3) The value phase shift angle [Delta] [theta] Y of the delay phase current I Y is multiplied by 0.9 to -13.9 ° (= -12.5 °) greater than and -30 ° + tan {(100- m) / (3 1/2 × 100)}, it is determined that a disconnection accident has occurred at a point on the C-end side after branching (steps S27 and S29c).
(4) a phase change angle [Delta] [theta] Y of the delay phase current I Y is within a range of values multiplied by 0.9 to 1.1 to -13.9 ° (-12.5 ° ~-15.3 °) In the case of (that is, −15.3 ° ≦ Δθ Y ≦ −12.5 °), it is determined that a disconnection accident has occurred at a point on the B end side or the C end side after branching (steps S28 and S29d).

これにより、電流要素のみで断線事故から3端子の送配電線を保護することができる。   Thereby, the transmission / distribution line of 3 terminals can be protected from a disconnection accident with only the current element.

3端子の送配電線の各相電流が不平衡である場合には、この送配電線のR相のA端から見て分岐点よりも前の地点(イ点)で断線事故が発生すると、上述した3端子の送配電線の各相電流が平衡である場合のR相で断線事故が発生したときと同様にして、R相電流IRは0になり、S相およびT相電流IS,ITの電流変化率S,Tは共に31/2/2になり、S相電流ISの位相θSは正常時のS相電流IS’の位相θS’に対して30°進み、T相電流ITの位相θTは正常時のT相電流IT’の位相θT’に対して30°遅れる。 If each phase current of the 3-terminal transmission / distribution line is unbalanced, if a disconnection accident occurs at a point (a point) before the branch point when viewed from the A-phase end of the R-phase of this transmission / distribution line, The R-phase current I R becomes 0, and the S-phase and T-phase currents I S in the same manner as when the disconnection accident occurs in the R-phase when the phase currents of the three-terminal transmission and distribution lines are balanced. , the rate of change of current I T S, T are both the 3 1/2 / 2, 30 ° with respect to 'the phase theta S of' S-phase current I S of the phase theta S is S-phase current I S during normal It advances the phase theta T T-phase current I T is delayed 30 ° with respect to 'the phase theta T of' normal state T phase current I T.

正常時のB端側R相、S相およびT相電流IBR’,IBS’,IBT’と正常時のC端側R相、S相およびT相電流ICR’,ICS’,ICT’とは(6−1)式〜(6−6)式で表される。
BR’=(100−m)/100 (6−1)
BS’={(100−m)/100}×nBS (6−2)
BT’={(100−m)/100}×nBT (6−3)
CR’=m/100 (6−4)
CS’=(m/100)×nCS (6−5)
CT’=(m/100)×nCT (6−6)
したがって、正常時のR相、S相およびT相電流IR’,IS’,IT’は(6−7)式〜(6−9)式で表される。
R’=(100−m)/100+m/100=1 (6−7)
S’={(100−m)/100}×nBS+{m/100}×nCS (6−8)
T’={(100−m)/100}×nBT+{m/100}×nCT (6−9)
B-terminal side R-phase, S-phase and T-phase currents I BR ', I BS ', I BT 'in normal state and C-terminal side R-phase, S-phase and T-phase currents I CR ', I CS ', I CT ′ is expressed by equations (6-1) to (6-6).
I BR '= (100-m) / 100 (6-1)
I BS ′ = {(100−m) / 100} × n BS (6-2)
I BT ′ = {(100−m) / 100} × n BT (6-3)
I CR '= m / 100 (6-4)
I CS '= (m / 100) × n CS (6-5)
I CT '= (m / 100) × n CT (6-6)
Therefore, the normal R-phase, S-phase, and T-phase currents I R ′, I S ′, and I T ′ are expressed by equations (6-7) to (6-9).
I R ′ = (100−m) / 100 + m / 100 = 1 (6-7)
I S ′ = {(100−m) / 100} × n BS + {m / 100} × n CS (6-8)
I T ′ = {(100−m) / 100} × n BT + {m / 100} × n CT (6-9)

また、この送配電線のR相のA端から見て分岐点よりもB端側の地点(ロ点)で断線事故が発生すると、B端側R相、S相およびT相電流IBR,IBS,IBTとC端側R相、S相およびT相電流ICR,ICS,ICTとは(7−1)式〜(7−6)式で表される。
BR=0 (7−1)
BS={(100−m)/100}×nBS (7−2)
BT={(100−m)/100}×nBT (7−3)
CR=m/100 (7−4)
CS={(ICS’+ICT’)/2}×(31/2/2)
=[{(m/100)×nCS+(m/100)×nCT}/2]×(31/2/2)
={(31/2×m)/200}×{(nCS+nCT)/2} (7−5)
CT={(ICS’+ICT’)/2}×(31/2/2)
={(31/2×m)/200}×{(nCS+nCT)/2} (7−6)
このときのR相電流IRとR相電流IRの電流変化率RとS相電流ISとS相電流ISの位相変化角ΔθSとT相電流ITとT相電流IT位相変化角ΔθTは(8−1)式〜(8−6)式で表される(図9(a)参照)。
R=IBR+ICR=0+m/100=m/100 (8−1)
R=IR/IR’=(m/100)/1=m/100 (8−2)
S=IBS∠120°+ICS∠90°
=(IBS 2+ICS 2−2×IBS×ICS×cos150°)1/2 (8−3)
ΔθS=−sin-1{(ICS×sin150°)/IS} (8−4)
T=IBT∠120°+ICT∠90°
=(IBT 2+ICT 2−2×IBT×ICT×cos150°)1/2 (8−5)
ΔθT=sin-1{(ICT×sin150°)/IT} (8−6)
In addition, when a disconnection accident occurs at a point (B point) on the B end side of the branch point when viewed from the A end of the R phase of the transmission and distribution line, the B end side R phase, S phase and T phase currents I BR , I BS and I BT and the C-terminal side R-phase, S-phase and T-phase currents I CR , I CS and I CT are expressed by equations (7-1) to (7-6).
I BR = 0 (7-1)
I BS = {(100−m) / 100} × n BS (7-2)
I BT = {(100−m) / 100} × n BT (7-3)
I CR = m / 100 (7-4)
I CS = {(I CS '+ IC T ') / 2} × (3 1/2 / 2)
= [{(M / 100) × n CS + (m / 100) × n CT } / 2] × (3 1/2 / 2)
= {(3 1/2 × m) / 200} × {(n CS + n CT ) / 2} (7-5)
I CT = {(I CS '+ IC T ') / 2} × (3 1/2 / 2)
= {(3 1/2 × m) / 200} × {(n CS + n CT ) / 2} (7-6)
At this time, the current change rate R of the R phase current I R and the R phase current I R , the phase change angle Δθ S of the S phase current I S and the S phase current I S , the T phase current I T and the T phase current I T phase. The change angle Δθ T is expressed by equations (8-1) to (8-6) (see FIG. 9A).
I R = I BR + I CR = 0 + m / 100 = m / 100 (8-1)
R = I R / I R '= (m / 100) / 1 = m / 100 (8-2)
I S = I BS ∠120 ° + I CS ∠90 °
= (I BS 2 + I CS 2 −2 × I BS × I CS × cos 150 °) 1/2 (8-3)
Δθ S = −sin −1 {(I CS × sin 150 °) / I S } (8-4)
I T = I BT ∠120 ° + I CT ∠90 °
= (I BT 2 + I CT 2 -2 × I BT × I CT × cos150 °) 1/2 (8-5)
Δθ T = sin -1 {(I CT × sin150 °) / I T} (8-6)

さらに、この送配電線のR相のA端から見て分岐点よりもC端側の地点(ハ点)で断線事故が発生すると、B端側R相電流IBRとC端側R相電流ICRとは(9−1)式および(9−2)式で表され、B端側S相およびT相電流IBS,IBTとC端側S相およびT相電流ICS,ICTとは上記(7−2)式、(7−3)式、(7−5)式および(7−6)式で表される。
BR=(100−m)/100 (9−1)
CR=0 (9−2)
このときのR相電流IRとR相電流IRの電流変化率Rは(10−1)式および(10−2)式で表され、S相電流ISとS相電流ISの位相変化角ΔθSとT相電流ITとT相電流IT位相変化角ΔθTは上記(8−2)式〜(8−6)式で表される(図9(b)参照)。
R=IBR+ICR=(100−m)/100 (10−1)
R=IR/IR’={(100−m)/100}/1=(100−m)/100 (10−2)
Furthermore, when a disconnection accident occurs at a point (C point) on the C end side of the branch point as viewed from the A end of the R phase of this transmission and distribution line, the B end side R phase current I BR and the C end side R phase current I CR is expressed by the formulas (9-1) and (9-2), and the B-terminal side S-phase and T-phase currents I BS and I BT and the C-terminal side S-phase and T-phase currents I CS and I CT. Is represented by the above formulas (7-2), (7-3), (7-5) and (7-6).
I BR = (100−m) / 100 (9-1)
I CR = 0 (9-2)
The current change rate R of the R phase current I R and the R phase current I R at this time is expressed by the equations (10-1) and (10-2), and the phase of the S phase current I S and the S phase current I S. The change angle Δθ S , the T phase current I T, and the T phase current I T phase change angle Δθ T are expressed by the above equations (8-2) to (8-6) (see FIG. 9B).
I R = I BR + I CR = (100−m) / 100 (10−1)
R = I R / I R ' = {(100-m) / 100} / 1 = (100-m) / 100 (10-2)

そこで、断線保護継電装置10は、第2および第6の裕度β,ζを用いて定められた以下に示す4つの判定条件A”〜D”がすべて満たされた場合に、断線事故と判定する。
[判定条件A”]事故相電流IXの電流変化率Xが(100−m)/100以下であること。
[判定条件B”]C端側遅れ相電流ICYの大きさが{(31/2×m)/200}×{(nCS+nCT)/2}以上であり、かつ、遅れ相電流IYの位相変化角ΔθYが−sin-1{(ICS×sin150°)/IS}以下であること。
[判定条件C”]C端側進み相電流ICZの大きさが{(31/2×m)/200}×{(nCS+nCT)/2}以上であり、かつ、進み相電流IZの位相θZの位相変化角ΔθZがsin-1{(ICT×sin150°)/IT}以上であること。
[判定条件D”]C側遅れ相電流ICYの大きさがC側進み相電流ICZの大きさに第2の裕度βを掛けた値の範囲内にあり、かつ、遅れ相電流IYの位相変化角ΔθYの絶対値が進み相電流IZの位相変化角ΔθZの絶対値に第6の裕度ζを掛けた値の範囲内にあること。
Therefore, the disconnection protection relay device 10 determines that a disconnection accident occurs when all of the following four determination conditions A ″ to D ″ defined using the second and sixth tolerances β and ζ are satisfied. judge.
[Determination Conditions A "] fault phase currents I X of the current change rate X is (100-m) / 100 be less.
[Judgment condition B ″] The magnitude of the C-side delayed phase current I CY is {(3 1/2 × m) / 200} × {(n CS + n CT ) / 2} or more, and the delayed phase current phase shift angle [Delta] [theta] Y of I Y is -sin -1 {(I CS × sin150 °) / I S} or less.
[Criteria C ″] The C-terminal side leading phase current I CZ is {(3 1/2 × m) / 200} × {(n CS + n CT ) / 2} or more, and the leading phase current I Z phase theta Z of the phase change angle [Delta] [theta] Z is sin -1 {(I CT × sin150 °) / I T} or that it is.
[Determination Condition D ″] The magnitude of the C-side delayed phase current I CY is in the range of the magnitude of the C-side advanced phase current I CZ multiplied by the second tolerance β, and the delayed phase current I lying within the range of values obtained by multiplying the sixth tolerance ζ of the absolute value of the phase change angle [Delta] [theta] Z of the absolute value advances phase current I Z phase change angle [Delta] [theta] Y of the Y.

また、断線保護継電装置10は、第2裕度βと、第1の基準角θ1(分岐負荷率m=50%としたときの−sin-1{(ICS×sin150°)/IS}の値)と第2の基準角θ2(分岐負荷率m=50%としB端側S相およびT相不平衡率を1/nBS,1/nBTとしC端側S相およびT相不平衡率を1/nCS,1/nCTとしたときの−sin-1{(ICS×sin150°)/IS}の値)を用いて、以下のようにして、断線事故の地点を判定する。
(1)遅れ相電流IYの位相変化角ΔθYが−30°に第2の裕度βを掛けた値の範囲内にある場合には、分岐前の地点で断線事故が発生したと判定する。
(2)遅れ相電流IYの位相変化角ΔθYが第1の基準角θ1未満である場合には、分岐後B端側の地点で断線事故が発生したと判定する。
(3)遅れ相電流IYの位相変化角ΔθYが第2の基準角θ2以上である場合には、分岐後C端側の地点で断線事故が発生したと判定する。
(4)遅れ相電流IYの位相変化角ΔθYが第1の基準角θ1から第2の基準角θ2までの範囲内である場合には、分岐後B端側またはC端側の地点で断線事故が発生したと判定する。
Further, the disconnection protection relay device 10 includes the second tolerance β and the first reference angle θ 1 (−sin −1 {(I CS × sin 150 °) / I when the branch load factor m = 50%). S } value) and the second reference angle θ 2 (branch load factor m = 50%, B-end S-phase and T-phase imbalance are 1 / n BS and 1 / n BT , and C-end S-phase and Using -sin −1 {(I CS × sin 150 °) / I S }) when the T-phase unbalance rate is 1 / n CS and 1 / n CT , a disconnection accident is performed as follows. Determine the point.
(1) determined that when the phase change angle [Delta] [theta] Y of the delay phase current I Y is within the range of values obtained by multiplying the second margin β in -30 °, the disconnection accident occurred at a point before the branch To do.
(2) When the phase change angle Δθ Y of the delayed phase current I Y is less than the first reference angle θ 1, it is determined that a disconnection accident has occurred at a point on the B end side after branching.
(3) When the phase change angle Δθ Y of the delayed phase current I Y is equal to or greater than the second reference angle θ 2, it is determined that a disconnection accident has occurred at a point on the C-end side after branching.
(4) When the phase change angle Δθ Y of the delayed phase current I Y is within the range from the first reference angle θ 1 to the second reference angle θ 2 , It is determined that a disconnection accident has occurred at that point.

次に、この場合の断線保護継電装置10のリレー演算処理部16における断線判定処理方法について、図10に示すフローチャートを参照して説明する。   Next, the disconnection determination processing method in the relay calculation processing unit 16 of the disconnection protection relay device 10 in this case will be described with reference to the flowchart shown in FIG.

リレー演算処理部16は、R相、S相およびT相電流IR,IS,ITの電流変化率R,S,Tが(100−m)/100以下のものがあるか否かを調べる事故相電流判定処理を行う(ステップS31)。
その結果、該当の相電流がある場合には、リレー演算処理部16は、該当の相を事故相Xとする。
Relay processing section 16, R phase, S phase and T-phase currents I R, I S, the rate of change of current I T R, S, whether T there is a (100-m) / 100 following ones A fault phase current determination process is performed (step S31).
As a result, when there is a corresponding phase current, the relay calculation processing unit 16 sets the corresponding phase as the accident phase X.

ステップS31における結果が“YES”である場合には、リレー演算処理部16は、判定条件A”が満たされたと判定して、C端側遅れ相電流ICYの大きさが{(31/2×m)/200}×{(nCS+nCT)/2}以上であり、かつ、遅れ相電流IYの位相変化角ΔθYが−sin-1{(ICS×sin150°)/IS}以下であるか否かを調べる遅れ相電流判定処理を行う(ステップS32)。 When the result in step S31 is “YES”, the relay calculation processing unit 16 determines that the determination condition A ”is satisfied, and the magnitude of the C-terminal delayed phase current I CY is {(3 1 / 2 × m) / 200} is a × {(n CS + n CT ) / 2} or more, and, the phase change angle [Delta] [theta] Y of the delay phase current I Y is -sin -1 {(I CS × sin150 °) / I S } A delayed phase current determination process is performed to check whether or not it is less than or equal to (step S32).

その結果が“YES”である場合には、リレー演算処理部16は、判定条件B”が満たされたと判定して、C端側進み相電流ICZの大きさが{(31/2×m)/200}×{(nCS+nCT)/2}以上であり、かつ、進み相電流IZの位相θZの位相変化角ΔθZがsin-1{(ICT×sin150°)/IT}以上であるか否かを調べる進み相電流判定処理を行う(ステップS33)。 When the result is “YES”, the relay calculation processing unit 16 determines that the determination condition B ”is satisfied, and the magnitude of the C-terminal side advanced phase current I CZ is {(3 1/2 × m) / 200} × {( n CS + n CT) / 2} or more, and, the phase change angle [Delta] [theta] Z of the advance phase current I Z phase theta Z is sin -1 {(I CT × sin150 °) / I T } is performed to determine whether or not the advanced phase current is determined (step S33).

その結果が“YES”である場合には、リレー演算処理部16は、判定条件C”が満たされたと判定して、C側遅れ相電流ICYの大きさがC側進み相電流ICZの大きさに0.9〜1.1を掛けた値の範囲内にあり、かつ、遅れ相電流IYの位相変化角ΔθYの絶対値が進み相電流IZの位相変化角ΔθZの絶対値に1/(nCS+nCT)〜(nCS+nCT)を掛けた値の範囲内にあるか否かを調べる遅れ相・進み相電流対称性判定処理を行う。(ステップS34)。 When the result is “YES”, the relay calculation processing unit 16 determines that the determination condition C ”is satisfied, and the magnitude of the C-side delayed phase current I CY is equal to the C-side advanced phase current I CZ . The magnitude is within a range of 0.9 to 1.1, and the absolute value of the phase change angle Δθ Y of the delayed phase current I Y is the absolute value of the phase change angle Δθ Z of the lead phase current I Z. Delayed phase / leading phase current symmetry determination processing is performed to determine whether or not the value is within a range of values multiplied by 1 / (n CS + n CT ) to (n CS + n CT ) (step S34).

その結果が“YES”である場合には、判定条件D”が満たされたと判定して、リレー演算処理部16は、遅れ相電流IYの位相変化角ΔθYを調べ、その結果に応じて以下のように断線事故が発生した地点を判定する。
(1)遅れ相電流IYの位相変化角ΔθYが−30°に0.9〜1.1を掛けた値(=−27°〜−33°)の範囲内にある(すなわち、−33°≦ΔθY≦−27°)場合には、分岐前の地点で断線事故が発生したと判定する(ステップS35,S39a)。
(2)遅れ相電流IYの位相変化角ΔθYが第1の基準角θ1未満である場合には、分岐後B端側の地点で断線事故が発生したと判定する(ステップS36,S39b)。
(3)遅れ相電流IYの位相変化角ΔθYが第2の基準角θ2以上である場合には、分岐後C端側の地点で断線事故が発生したと判定する(ステップS37,S39c)。
(4)遅れ相電流IYの位相変化角ΔθYが第1の基準角θ1から第2の基準角θ2までの範囲内である場合には、分岐後B端側またはC端側の地点で断線事故が発生したと判定する(ステップS38,S39d)。
When the result is “YES”, it is determined that the determination condition D ”is satisfied, and the relay calculation processing unit 16 examines the phase change angle Δθ Y of the delayed phase current I Y , and according to the result. The point where the disconnection accident occurred is determined as follows.
(1) a delay phase current I Y of the phase change angle [Delta] [theta] Y is within the range of values obtained by multiplying the 0.9 to 1.1 to -30 ° (= -27 ° ~- 33 °) ( i.e., -33 (° ≦ Δθ Y ≦ −27 °), it is determined that a disconnection accident has occurred at a point before branching (steps S35 and S39a).
(2) When the phase change angle Δθ Y of the delayed phase current I Y is less than the first reference angle θ 1, it is determined that a disconnection accident has occurred at a point on the B-end side after branching (steps S36 and S39b). ).
(3) When the phase change angle Δθ Y of the delayed phase current I Y is equal to or greater than the second reference angle θ 2, it is determined that a disconnection accident has occurred at a point on the C-end side after branching (steps S37 and S39c). ).
(4) When the phase change angle Δθ Y of the delayed phase current I Y is within the range from the first reference angle θ 1 to the second reference angle θ 2 , It is determined that a disconnection accident has occurred at the point (steps S38 and S39d).

これにより、電流要素のみで、かつ、各相電流に不平衡があっても、断線事故から3端子の送配電線を保護することができる。   Thereby, even if it has only an electric current element and each phase current has imbalance, it can protect a 3-terminal transmission and distribution line from a disconnection accident.

1 電源
2 計器用変成器(GPT)
1〜33 第1乃至第3の変流器
1〜43 第1乃至第3の遮断器
10,110 断線保護継電装置
11 入力変換器
12 アナログ入力部
13 メモリ
14 電流変化率算出部
15 位相変化角算出部
16 リレー演算処理部
17 整定・表示部
18 入出力部
19 外部機器インターフェース部(外部機器I/F部)
a ベクトルオペレータ
k 逆相電流検出感度
m 分岐負荷率
S,nT S相およびT相不平衡率
BS,nBT B端側S相およびT相不平衡率
CS,nCT C端側S相およびT相不平衡率
R,IS,IT R相、S相およびT相電流
R’,IS’,IT’ 正常時のR相、S相およびT相電流
BR,IBS,IBT B端側R相、S相およびT相電流
CR,ICS,ICT C端側R相、S相およびT相電流
BR’,IBS’,IBT’ 正常時のB端側R相、S相およびT相電流
CR’,ICS’,ICT’ 正常時のC端側R相、S相およびT相電流
X,IY,IZ 事故相、遅れ相および進み相電流
X’,IY’,IZ’ 正常時の事故相、遅れ相および進み相電流
0 零相電流
1 正相電流
2 逆相電流
min 最小負荷電流
0 零相電圧
V 零相電圧検出感度
T トリップ信号
R,S,T,X,Y,Z 電流変化率
X,Y,Z 事故相、遅れ相および進み相
θR,θS,θT,θR’,θS’,θT’ 位相
ΔθR,ΔθS,ΔθT,ΔθX,ΔθY,ΔθZ 位相変化角
θ1,θ2 第1および第2の基準角
α,β,γ,δ,ε,ζ 第1乃至第6の裕度
S11〜S15,S21〜S28,S29a〜S29d,S31〜S38,S39a〜S39d ステップ
1 Power supply 2 Instrument transformer (GPT)
3 1 to 3 3 1st to 3rd current transformers 4 1 to 4 3 1st to 3rd circuit breakers 10 and 110 Disconnection protection relay device 11 Input converter 12 Analog input unit 13 Memory 14 Current change rate calculation Unit 15 Phase change angle calculation unit 16 Relay operation processing unit 17 Setting / display unit 18 Input / output unit 19 External device interface unit (external device I / F unit)
a Vector operator k Reverse phase current detection sensitivity m Branch load factor n S , n T S phase and T phase unbalance ratio n BS , n BT B side S phase and T phase unbalance ratio n CS , n CT C side S-phase and T-phase unbalance ratios I R , I S , I T R-phase, S-phase and T-phase currents I R ′, I S ′, I T ′ Normal R-phase, S-phase and T-phase currents I BR , I BS , I BT B side R phase, S phase and T phase currents I CR , I CS , I CT C side R phase, S phase and T phase currents I BR ′, I BS ′, I BT ′ Normal B-side R-phase, S-phase, and T-phase currents I CR ′, I CS ′, I CT ′ Normal C-side R-phase, S-phase, and T-phase currents I X , I Y , I Z Accident phase , Lagging phase and leading phase currents I X ′, I Y ′, I Z ′ Normal fault phase, lagging phase and leading phase current I 0 zero phase current I 1 positive phase current I 2 reverse phase current I min minimum load current V 0 the zero-phase zero-phase voltage V voltage detection sensitivity T trip signal R S, T, X, Y, Z current change rate X, Y, Z fault phase, lag phase and proceeds phase θ R, θ S, θ T , θ R ', θ S', θ T ' phase [Delta] [theta] R, [Delta] [theta] S , Δθ T , Δθ X , Δθ Y , Δθ Z phase change angles θ 1 , θ 2 first and second reference angles α, β, γ, δ, ε, ζ first to sixth tolerances S11 to S11. S15, S21 to S28, S29a to S29d, S31 to S38, S39a to S39d Steps

Claims (4)

断線事故から三相交流回路を保護するための断線保護継電装置(10)であって、
前記三相交流回路の各相を流れる相電流(IR,IS,IT)のみに基づいて断線事故を判定する断線事故判定手段(14〜16)を具備することを特徴とする断線保護継電装置。
A disconnection protection relay device (10) for protecting a three-phase AC circuit from a disconnection accident,
Disconnection protection comprising disconnection accident determination means (14 to 16) for determining a disconnection accident based only on phase currents (I R , I S , I T ) flowing through each phase of the three-phase AC circuit Relay device.
前記断線事故判定手段が、前記三相交流回路の健全相を流れる相電流の電流変化率および位相変化角の対称性に基づいて断線事故を判定することを特徴とする、請求項1記載の断線保護継電装置。   2. The disconnection accident according to claim 1, wherein the disconnection accident determination means determines a disconnection accident based on a current change rate and a phase change angle symmetry of a phase current flowing through a healthy phase of the three-phase AC circuit. Protective relay device. 前記断線事故判定手段が、前記三相交流回路の遅れ相電流(IY)の電流変化率(Y)が進み相電流(IZ)の電流変化率(Z)に裕度(β)を掛けた値の範囲内にあり、かつ、前記遅れ相電流の位相変化角(ΔθY)の絶対値が前記進み相電流の位相変化角(ΔθZ)の絶対値に前記裕度を掛けた値の範囲内にあることを条件として、断線事故を判定することを特徴とする、請求項2記載の断線保護継電装置。 The disconnection accident determination means determines that the current change rate (Y) of the lagging phase current (I Y ) of the three-phase AC circuit is multiplied by the margin (β) of the current change rate (Z) of the leading phase current (I Z ). And the absolute value of the phase change angle (Δθ Y ) of the delayed phase current is a value obtained by multiplying the absolute value of the phase change angle (Δθ Z ) of the lead phase current by the tolerance. The disconnection protection relay device according to claim 2, wherein a disconnection accident is determined on condition that it is within a range. 前記三相交流回路が3端子の三相交流回路である場合には、前記断線事故判定手段が、該3端子の三相交流回路の遅れ相電流(IY)の位相変化角(ΔθY)に基づいて断線事故の地点を判定することを特徴とする、請求項1乃至3いずれかに記載の断線保護継電装置。 In the case where the three-phase AC circuit is a three-terminal three-phase AC circuit, the disconnection accident determination means determines the phase change angle (Δθ Y ) of the delayed phase current (I Y ) of the three-terminal three-phase AC circuit. The disconnection protection relay device according to any one of claims 1 to 3, wherein the location of the disconnection accident is determined on the basis of the above.
JP2009230415A 2009-10-02 2009-10-02 Disconnection protective relay device Withdrawn JP2011078292A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009230415A JP2011078292A (en) 2009-10-02 2009-10-02 Disconnection protective relay device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009230415A JP2011078292A (en) 2009-10-02 2009-10-02 Disconnection protective relay device

Publications (1)

Publication Number Publication Date
JP2011078292A true JP2011078292A (en) 2011-04-14

Family

ID=44021655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009230415A Withdrawn JP2011078292A (en) 2009-10-02 2009-10-02 Disconnection protective relay device

Country Status (1)

Country Link
JP (1) JP2011078292A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012204461A1 (en) 2011-03-31 2012-10-04 Fuji Jukogyo K.K. Cooling air supply device for a vehicle
JP2023516072A (en) * 2020-03-02 2023-04-17 ヒタチ・エナジー・スウィツァーランド・アクチェンゲゼルシャフト Detecting electrical faults in transmission line surveillance zones

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012204461A1 (en) 2011-03-31 2012-10-04 Fuji Jukogyo K.K. Cooling air supply device for a vehicle
JP2023516072A (en) * 2020-03-02 2023-04-17 ヒタチ・エナジー・スウィツァーランド・アクチェンゲゼルシャフト Detecting electrical faults in transmission line surveillance zones
JP7488352B2 (en) 2020-03-02 2024-05-21 ヒタチ・エナジー・リミテッド Detection of electrical faults within the monitored area of a power line

Similar Documents

Publication Publication Date Title
US7319576B2 (en) Apparatus and method for providing differential protection for a phase angle regulating transformer in a power system
US7196884B2 (en) Apparatus and method for detecting the loss of a current transformer connection coupling a current differential relay to an element of a power system
WO2019219897A1 (en) Method and apparatus for use in earth-fault protection
JP2008164374A (en) Device and method for measuring leakage current
EP1929602B1 (en) Method and system for fault detection in electrical power devices
Calero Rebirth of negative-sequence quantities in protective relaying with microprocessor-based relays
JP5380702B2 (en) Leakage current measuring device and measuring method
JP5881919B1 (en) Protection relay device
JP2009027824A (en) Ratio differential relay and method of preventing erroneous operation of ratio differential relay
JP2011078292A (en) Disconnection protective relay device
JP2010060329A (en) Apparatus and method for measuring leakage current of electrical path and electric instrument
JP5241434B2 (en) Cable section accident detection device
JP2009089505A (en) Transformer protection relay
JP2013088256A (en) Ground accident section plotting device
Thompson Protection system for phase-shifting transformers improves simplicity, dependability, and security
JP2011045215A (en) Ground fault distance protective relay device
JPH10313531A (en) Ratio differential relay
Thompson et al. AEP experience with protection of three delta/hex phase angle regulating transformers
JP2008295144A (en) Ground distance relay
JP2011091910A (en) Disconnection protective relay system
Hou Comparing Fault Resistance Coverage of Different Distribution System Grounding Methods
CN112119556A (en) Method and apparatus for use in ground fault protection
JP2011078293A (en) Disconnection protective relay device
JP2010166783A (en) Directional protective relay device and directional power relay device
JP5645578B2 (en) Current differential protection relay

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20121204