JPH03214567A - Method for starting fuel modifier - Google Patents

Method for starting fuel modifier

Info

Publication number
JPH03214567A
JPH03214567A JP2006747A JP674790A JPH03214567A JP H03214567 A JPH03214567 A JP H03214567A JP 2006747 A JP2006747 A JP 2006747A JP 674790 A JP674790 A JP 674790A JP H03214567 A JPH03214567 A JP H03214567A
Authority
JP
Japan
Prior art keywords
fuel
steam
catalyst layer
reforming
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006747A
Other languages
Japanese (ja)
Inventor
Masatsuru Umemoto
梅本 真鶴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2006747A priority Critical patent/JPH03214567A/en
Publication of JPH03214567A publication Critical patent/JPH03214567A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE:To steam reform higher and unsaturated hydrocarbon series crude oil at a low S/C by oxidating and exhausting carbons educted onto a catalyst layer, and thereafter sending the fuel to a reforming pipe together with steam. CONSTITUTION:When a fuel reformer 1 to make steam reforming of a crude fuel 6 of hydrocarbon series such as naphtha is operated with frequent start and stop, hydrogen is generated in a catalyst layer in a reformer pipe 4 and also carbon eduction is made owing to secondary reactions. This educted carbon is oxidized by an oxidator gas into CO or CO2 by sending the oxidator gas into the reformer pipe 4 at a certain temp. appropriate for oxidation of carbon at the temp. rise time of catalyst layer to be made when the fuel reformer 1 is started, and the CO or CO2 gas thus produced can be removed. The steam carbon ratio (S/C) under driving can thus be lessened by removing the educted carbon from the catalyst layer when the fuel reformer 1 is started.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ナフサ等の炭化水素系の原燃料を水素に富む
ガスに改質する燃料改質器、特に改質した改質ガスを燃
料電池に供給する燃料改質器の起動方法に関する. 〔従来の技術〕 一般にメタン代表される炭化水素の.スチームリフォー
ミング反応は、Ni系の触媒を用いて約600〜900
℃で行なわれる.その反応式は理想的には下記の■〜■
のようである. m CmH.+ n H.O−on Go +  (n +
 − )H,  ―■2 n C O + n H * O − n C O t
  + n H *   −−−−−−−−■m C * H s + 2 n H t O →n C 
O t + ( 2 n +)  H t  −・・■
2 上記の反応において■は吸熱反応,■は発熱反応であり
、■と■の反応をトータルした■は吸熱反応である.し
たがって触媒の温度が上昇するに従って炭化水素の分解
反応である■式は右に進み、COの変成反応は左に進み
、■式は右に進む.このような反応に基づいてナフサ等
の炭化水素系の原燃料を水素に富むガスに改質するとき
には下記のような方法で行なわれる.すなわちバーナを
備えた炉容器内に改質触媒が充填された改質管を配設し
、この改質管に原燃料を水蒸気とともに通流し、バーナ
での燃焼による熱媒体により改質管を加熱して改質管内
の改賀触媒からなる触媒層を昇温しで原燃料をスチーム
リフォーミングしている.なお、スチームリフォーミン
グされた改質ガスは燃料電池に供給される. ところで、カーボン数が多いより高級な炭化水素あるい
は不飽和の炭化水素を多量に含む原燃料をスチームリフ
ォーミングしようとする場合は、実際の触媒層内の反応
には下記のようなカーボン析出反応も副次的に起り得る
. m CaHm  −4n C ”      Hx  −・
−■2 このようにカーボンの析出反応が起きると、触媒層の圧
力損失が増加し、反応■の平衡が左側により、炭化水素
の分解が抑制される.さらに極端な場合には、触媒層が
カーボンによって閉そくされ、運転が不可能となる.こ
のような事態に至らぬように高級な炭化水素あるいは不
飽和分を多く含む炭化水素のスチームリフォーミングで
は過剰に供給するスチームの割合(通常カーボン原子の
モル敗に対して水分子のモル数を比でとって示したスチ
ームカーボン比S/Cと呼称している)をより大過剰と
し、水と炭化水素の反応中間体.との反応機会を増やし
、カーボンの析出を押さえている.またプラント全体の
定期メンテナンス時に析出したカーボンを各種の酸化剤
で酸化・燃焼させて取りのぞく掻作、すなわちデコーキ
ングを実施している. 〔発明が解決しようとする課題〕 上記のようにより高級で不飽和を多く含む炭化水素系の
原燃料からスチームリフォーミングにより、燃料電池本
体で使用するhガスを得ようとする場合、S/Cは原燃
料が純メタンの場合にくらべ71.5〜2.5倍大きく
とってやる必要がある.一方、オンサイト型の燃料電池
と燃料改質器とがらなる燃料電池発電システムの場合等
、コジェネレーシ5ンシステムとしてはより高温の排熱
をより多く供給する能力を有することが、そのシステム
の効率に結びついている.ところで、スチームリフォー
ミングのためのスチームは燃料電池発電システムからの
排熱を利用するもののうち高温で最も多量の熱量が必要
となる.したがって改質のための過剰スチームが大量に
必要であるということは外部にその分の排熱を供給でき
ないということになる.また特に改質のためのスチーム
は燃料電池本体の加圧冷却水から電池本体の排熱のエネ
ルギーを利用して作るものであるため、電池本体の排熱
エネルギー以上のスチームを供給することば熱エネルギ
ー源を別に必要とし、このため起動用の電気ヒータ等を
使用することになり、燃料電池発電システム全体の効率
も低下するという問題がある. また、定期メンテナンス時にデコーキングを行なう場合
にはそのための機器やユーティリティも必要となり、設
備費や保守費が高くなるという問題もある. 本発明の目的は、ナフサで代表されるようなより高級で
不飽和を含む炭化水素系の原燃料をなるべく低いS/C
でスチームリフォーミングできるとともにデコーキング
を必要としない燃料改買器の起動方法を提供することで
ある. 〔課題を解決するための手段〕 上記課題を解決するために、本発明によればナフサ等の
炭化水素系の燃料を水蒸気とともに改質触媒が充填され
てなる触媒層を有する改質管に通流し、バーナでの燃焼
による熱媒体により改質管を加熱して水素に富むガスに
改質する燃料改質器の起動方法において、この改質器の
起動昇温時所定温度で酸化剤ガスを改質管に送気して触
媒層に析出した炭素を酸化して排出した後、前記燃料を
水蒸気とともに改質管に送気するものとする.〔作用〕 ナフサ等の炭化水素系の原燃料をスチームリフォーミン
グする燃料改質器がしばしば起動.停止して運転される
場合、改質管内の触媒層では前記■〜■式の反応により
水素を発生させると同時に■式の副次反応によりカーボ
ンの析出が起きている.この析出したカーボンは、燃料
改質器を起動する時に行なわれる触媒層の昇温時カーボ
ンの酸化に適切な所定温度にて酸化剤ガスを改質管に送
気することにより、酸化剤ガスにより酸化されてcoま
たはCotのガスとなって取除くことができる. このように燃料改質器の起動時に触媒層から析出カーボ
ンを取除くことにより運転時のS/Cを小さくすること
ができる.なお、S/Cが小さい程よりカーボンが析出
しやすいので、燃料改質器の運転パターンを考慮し、析
出したカーボンが燃料改質器やこの改質器を備えた燃料
電池発電システムの運転に支障をきたさないようにS/
Cを決定する.例えばオンサイト用の燃料電池発電シス
テムは週始めに起動昇温し、週末に停止し、その間は夜
間も連続運転するような運転パターンで運転される場合
、すなわち週に一度停止するようなシステムの場合、ナ
フサの成分にもよるがS/Cを4.0程度まで下げるこ
とができる.〔実施例〕 以下図面に基づいて本発明の実施例について説明する.
第1図は本発明の実施例による燃料改質器の起動方法を
行なうときの燃料改質器の系統図である.図において1
は燃料改質器であり、バーナ2と炉容器3内に改質触媒
が充填されてなる触フサ等の原燃料を水蒸気とともに改
質管4に供給する改質原料供給系であり、原燃料を供給
する原燃料供給系6と原燃料に混合する水蒸気を供給す
る水蒸気供給系7とを備えている.なお8.9は弁であ
る. 10は改質管4からの水蒸気改質されたガスを図示しな
い燃料電池に供給する水蒸気改質ガス供給系、11は燃
料電池からの未使用の水素を含むオフガスをバーナ2に
供給するオフガス排出系である.水蒸気改質ガス供給系
10とオフガス排出系11とを接続してバイパス系14
が設けられている.なお13,18. 19は弁である
. 15はバーナ2に起動用の補助燃料を供給する燃料供給
系、16はバーナ2に燃焼空気を供給する燃焼空気供給
系、17は燃焼排ガスを排出する排ガス系である. 20は排ガス系17と改質原料供給系5とを接続し、燃
焼排ガスを改質管4に送気する排ガス供給系であり、弁
21を備えている.22は水蒸気改質ガス供給系10に
接続し、改質管4を通流した燃焼排ガスを外部に排出す
る排ガス排出系であり、弁23を備えている. このような系統構成により第2図に示した燃料改質器の
起動時のフロー図により、第1図の系統図を引用しなが
ら本発明による燃料改質器の起動方法について説明する
. 第1図.第2図において燃料改質器の起動(弁8,9,
 13.18,19.21.23は閉状fi)は次のよ
うにして行なわれる.ステップ31にてまず燃料改質器
lの炉容器3内の燃焼室に燃焼空気供給系16から空気
給し、燃焼空気供給系からの過剰空気の燃焼空気により
燃料を着火,燃焼する.そして燃焼に寄与しない残存酸
素を含む燃焼排ガスは排ガス系17から外部に排出する
.ステップ33にてバーナ2にその燃焼による燃焼ガス
により改質管4内の触媒層は昇温する.そしてステップ
34にて触媒層の温度が500℃を超えたら、ステップ
35にて残存酸素を含む燃焼排ガスを弁21を開にして
排ガス供給系20を経て改質管4の触媒層への還流を開
始する.なお触媒層から排出される燃焼排ガスは弁23
を開にした排ガス排出系22から外部に排出される.そ
してステップ36にて触媒層の温度が500℃と燃料改
質器の運転温度との間の温度になるように制御する.こ
の状態でステップ37にて触媒層に燃焼排ガスが流れる
ときの圧力損失を、あらかじめ測定しておいた改質触媒
の初期充填時の触媒層の圧力損失の初期値を同じになる
まで燃焼排ガスを触媒層に通流し、ステップ38にて圧
力損失が初期値と同z1 しになった状態で燃焼排ガスの通流を弁鈍を閉にして終
了する.つぎにステップ39にて弁9を開にして水蒸気
供給系7からスチームを改質管4内の触媒層に送気して
残存燃焼排ガスをスチームパージをする.触媒層を通流
したスチームは排ガス排出系22から排出される.スチ
ームパージ終了後弁23を閉、弁8を開にしてナフサ等
の原燃料を原燃料供給系6から供給し、水蒸気供給系7
からの水蒸気とともに改質管4に供給し、改質を開始す
るとともに触媒層の昇温を行なう.この際未改質の原燃
料を含む水蒸気改質ガスは燃料電池に送出せず、弁13
を開にしたバイパス管14を経てバーナ2に供給され、
燃料として使用される.そしてステップ41にて触媒層
の昇温か進められ、触媒層の温度が水蒸気改質に適切な
所定温度になったら燃料改質器の起動を終了する. このようにして燃料改質器の起動時、残存酸素を含む燃
焼排ガスを触媒層の昇温時の所定温度で触媒層に遣流す
ることにより析出していたカーボンは酸化され、COや
CO,となって外部に排出され、カーボンは触媒層から
取除かれる.なお、上記実施例では酸化剤ガスとして燃
焼排ガスを使用しているが、空気を窒素ガスで薄めたガ
スを酸化剤ガスとして用いても同じ効果が得られる. 〔発明の効果〕 以上の説明から明らかなように、本発明によれば燃料改
質器の起動昇温時、所定温度で酸化剤ガスを改質管内の
触媒層に通流して触媒層に析出するカーボンを酸化して
取除《ようにしたことにより、より高級で不飽和炭化水
素を含む原燃料を水蒸気改質する場合でもS/Cを低く
できるので、スチーム量が少なくなり、このためこれを
加熱する熱量は少なくなり、例えば燃料電池発電システ
ムの場合でもより多くの排熱を外部に供給できる.また
、デコーキング用のユーティリティや機器を設ける必要
がなくなるので、設備費や保守費が少なくなるとともに
、析出カーボンを除去する時間もデコーキングの操作よ
り短かくなり、またプラントの効率も向上するという効
果がある.
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a fuel reformer for reforming hydrocarbon-based raw fuel such as naphtha into hydrogen-rich gas, and in particular for converting the reformed gas into a fuel. This article concerns how to start up the fuel reformer that supplies the fuel to the battery. [Prior art] Hydrocarbons typically represented by methane. The steam reforming reaction uses a Ni-based catalyst with a reaction rate of about 600 to 900
It is carried out at ℃. Ideally, the reaction formula is as shown below.
It seems like. m CmH. + n H. O-on Go + (n +
-)H, ―■2 n C O + n H * O - n C O t
+ n H * −−−−−−−■m C * H s + 2 n H t O →n C
O t + (2 n +) H t −・・■
2 In the above reaction, ■ is an endothermic reaction, ■ is an exothermic reaction, and ■, which is the total of the reactions of ■ and ■, is an endothermic reaction. Therefore, as the temperature of the catalyst rises, the hydrocarbon decomposition reaction (Equation 2) proceeds to the right, the CO transformation reaction proceeds to the left, and Equation 2 proceeds to the right. Based on such reactions, the following method is used to reform hydrocarbon raw fuels such as naphtha into hydrogen-rich gas. In other words, a reforming tube filled with a reforming catalyst is placed in a furnace vessel equipped with a burner, raw fuel is passed through the reforming tube along with steam, and the reforming tube is heated by the heat medium generated by combustion in the burner. The temperature of the catalyst layer consisting of the Kaiga catalyst inside the reforming tube is raised, and the raw fuel is steam-reformed. The reformed gas that has undergone steam reforming is supplied to the fuel cell. By the way, when attempting to steam reform raw fuel containing higher hydrocarbons with a large number of carbons or large amounts of unsaturated hydrocarbons, the following carbon precipitation reaction may occur in the actual reaction within the catalyst layer. It can occur as a side effect. m CaHm −4n C ” Hx −・
-■2 When the carbon precipitation reaction occurs in this way, the pressure loss in the catalyst layer increases, and the equilibrium of reaction (2) shifts to the left, suppressing the decomposition of hydrocarbons. In more extreme cases, the catalyst layer becomes blocked by carbon, making operation impossible. In order to avoid this situation, in the steam reforming of high-grade hydrocarbons or hydrocarbons containing a large amount of unsaturation, the proportion of steam supplied in excess (usually the number of moles of water molecules per mole of carbon atoms) is The steam carbon ratio S/C (referred to as the ratio S/C) is increased to a larger excess, and the reaction intermediate between water and hydrocarbons. This increases the chance of reaction with carbon and suppresses carbon precipitation. In addition, decoking, or decoking, is used to oxidize and burn off the carbon deposited during periodic maintenance of the entire plant using various oxidizing agents. [Problems to be Solved by the Invention] When trying to obtain H gas to be used in the fuel cell body by steam reforming from the above-mentioned higher-grade hydrocarbon raw fuel containing a large amount of unsaturation, S/C needs to be 71.5 to 2.5 times larger than when the raw fuel is pure methane. On the other hand, in the case of a fuel cell power generation system consisting of an on-site fuel cell and a fuel reformer, etc., the efficiency of the system is improved by having the ability to supply more high-temperature waste heat as a cogeneration system. It is tied to By the way, steam for steam reforming uses the waste heat from a fuel cell power generation system, and requires the highest temperature and the largest amount of heat. Therefore, the large amount of excess steam required for reforming means that the exhaust heat cannot be supplied to the outside. In addition, the steam for reforming in particular is generated by using the energy of the exhaust heat of the fuel cell itself from the pressurized cooling water of the fuel cell body, so it is possible to supply steam that exceeds the exhaust heat energy of the battery body. This requires a separate power source, which necessitates the use of an electric heater, etc. for startup, which poses the problem of reducing the efficiency of the entire fuel cell power generation system. Furthermore, when performing decoking during regular maintenance, equipment and utilities are required for this purpose, which raises the problem of increased equipment and maintenance costs. The purpose of the present invention is to convert higher-grade unsaturated hydrocarbon raw fuels such as naphtha into as low S/C ratio as possible.
The purpose of the present invention is to provide a method for starting a fuel converter that allows steam reforming and does not require decoking. [Means for Solving the Problems] In order to solve the above problems, according to the present invention, a hydrocarbon fuel such as naphtha is passed together with steam through a reforming tube having a catalyst layer filled with a reforming catalyst. In the startup method of a fuel reformer, in which the reformer tube is heated by a heat medium generated by combustion in a burner and reformed into hydrogen-rich gas, the oxidizer gas is After air is sent to the reforming tube to oxidize and discharge the carbon deposited on the catalyst layer, the fuel is sent to the reforming tube together with steam. [Operation] A fuel reformer that steam-reforms hydrocarbon raw fuel such as naphtha is often activated. When the system is stopped and operated, hydrogen is generated in the catalyst layer in the reforming tube by the reactions of formulas 1 to 2 above, and at the same time, carbon is deposited by the side reaction of formula 2. This precipitated carbon can be removed by oxidizing gas by feeding the oxidizing gas into the reforming tube at a predetermined temperature suitable for oxidizing carbon when the temperature of the catalyst layer is raised when starting the fuel reformer. It can be oxidized into Co or Cot gas and removed. In this way, by removing precipitated carbon from the catalyst layer when starting up the fuel reformer, the S/C during operation can be reduced. Note that the smaller the S/C, the easier carbon will precipitate, so consider the operating pattern of the fuel reformer and ensure that the precipitated carbon does not interfere with the operation of the fuel reformer or the fuel cell power generation system equipped with this reformer. S/ so as not to cause any trouble.
Determine C. For example, an on-site fuel cell power generation system starts up at the beginning of the week, rises in temperature, shuts down on the weekend, and operates continuously at night during that time. In this case, the S/C can be lowered to around 4.0, depending on the naphtha composition. [Examples] Examples of the present invention will be described below based on the drawings.
FIG. 1 is a system diagram of a fuel reformer when performing a fuel reformer startup method according to an embodiment of the present invention. In the figure 1
is a fuel reformer, which is a reforming raw material supply system that supplies raw fuel such as a cape, which is made up of a burner 2 and a furnace vessel 3 filled with a reforming catalyst, to a reforming tube 4 together with steam; It is equipped with a raw fuel supply system 6 that supplies raw fuel and a steam supply system 7 that supplies steam to be mixed with the raw fuel. Note that 8.9 is a valve. 10 is a steam reformed gas supply system that supplies steam reformed gas from the reforming pipe 4 to a fuel cell (not shown); 11 is an off-gas discharge system that supplies off-gas containing unused hydrogen from the fuel cell to the burner 2; It is a system. Bypass system 14 connects steam reformed gas supply system 10 and off-gas discharge system 11
is provided. Note 13, 18. 19 is a valve. 15 is a fuel supply system that supplies auxiliary fuel for startup to the burner 2; 16 is a combustion air supply system that supplies combustion air to the burner 2; and 17 is an exhaust gas system that discharges combustion exhaust gas. Reference numeral 20 denotes an exhaust gas supply system that connects the exhaust gas system 17 and the reforming material supply system 5 and supplies combustion exhaust gas to the reforming pipe 4, and is equipped with a valve 21. Reference numeral 22 denotes an exhaust gas exhaust system connected to the steam reforming gas supply system 10 and discharging the combustion exhaust gas that has passed through the reforming pipe 4 to the outside, and is equipped with a valve 23. The method for starting the fuel reformer according to the present invention will be explained with reference to the system diagram in FIG. 1 using the flowchart for starting the fuel reformer shown in FIG. 2 with such a system configuration. Figure 1. In Fig. 2, the fuel reformer is started (valve 8, 9,
13.18, 19.21.23 are closed fi) is performed as follows. In step 31, air is first supplied from the combustion air supply system 16 to the combustion chamber in the furnace vessel 3 of the fuel reformer 1, and the fuel is ignited and combusted by the excess combustion air from the combustion air supply system. The combustion exhaust gas containing residual oxygen that does not contribute to combustion is discharged from the exhaust gas system 17 to the outside. In step 33, the temperature of the catalyst layer in the reforming tube 4 is raised by the combustion gas produced by the combustion in the burner 2. When the temperature of the catalyst layer exceeds 500° C. in step 34, the valve 21 is opened to allow the combustion exhaust gas containing residual oxygen to flow back to the catalyst layer of the reforming tube 4 via the exhaust gas supply system 20 in step 35. Start. Incidentally, the combustion exhaust gas discharged from the catalyst layer is discharged through the valve 23.
The exhaust gas is discharged to the outside from the open exhaust gas exhaust system 22. Then, in step 36, the temperature of the catalyst layer is controlled to be between 500°C and the operating temperature of the fuel reformer. In this state, in step 37, the pressure loss when the combustion exhaust gas flows through the catalyst layer is the same as the initial value of the pressure loss of the catalyst layer at the time of initial filling of the reforming catalyst, which was measured in advance. The flow of the combustion exhaust gas is conducted through the catalyst layer, and in step 38, the flow of the combustion exhaust gas is terminated by closing the valve blunt when the pressure loss becomes the same as the initial value z1. Next, in step 39, the valve 9 is opened and steam is sent from the steam supply system 7 to the catalyst layer in the reforming tube 4 to steam purge the remaining combustion exhaust gas. The steam that has passed through the catalyst layer is discharged from the exhaust gas discharge system 22. After completing the steam purge, the valve 23 is closed, the valve 8 is opened, raw fuel such as naphtha is supplied from the raw fuel supply system 6, and the steam supply system 7
It is supplied to the reforming tube 4 along with steam from the catalytic converter to start reforming and raise the temperature of the catalyst layer. At this time, the steam reformed gas containing unreformed raw fuel is not sent to the fuel cell, and the valve 13
is supplied to the burner 2 through an open bypass pipe 14,
Used as fuel. Then, in step 41, the temperature of the catalyst layer is increased, and when the temperature of the catalyst layer reaches a predetermined temperature suitable for steam reforming, the startup of the fuel reformer is finished. In this way, when the fuel reformer is started, the combustion exhaust gas containing residual oxygen is passed through the catalyst layer at a predetermined temperature when the temperature of the catalyst layer is increased, and the precipitated carbon is oxidized, resulting in CO, CO, The carbon is discharged to the outside, and the carbon is removed from the catalyst layer. Although combustion exhaust gas is used as the oxidizing gas in the above embodiment, the same effect can be obtained by using air diluted with nitrogen gas as the oxidizing gas. [Effects of the Invention] As is clear from the above description, according to the present invention, when the fuel reformer is started and the temperature rises, the oxidant gas is passed through the catalyst layer in the reforming tube at a predetermined temperature and deposited on the catalyst layer. By oxidizing and removing the carbon that is produced, S/C can be lowered even when steam reforming raw fuel containing higher grade unsaturated hydrocarbons, so the amount of steam is reduced. The amount of heat used to heat the fuel is reduced, and even in the case of a fuel cell power generation system, for example, more waste heat can be supplied to the outside. Additionally, since there is no need to install utilities or equipment for decoking, equipment and maintenance costs are reduced, and the time required to remove precipitated carbon is shorter than for decoking operations, which also improves plant efficiency. effective.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例による燃料改質器の起動方法を
適用するときの燃料改質器の系統図、第2図は第1図に
示した燃料改質器の起動時の手順を示すフロー図である
. 1:燃料改質器、4:改質管、20:燃焼排ガス第 1 図 第 2 図
FIG. 1 is a system diagram of a fuel reformer when applying the method for starting a fuel reformer according to an embodiment of the present invention, and FIG. 2 shows the procedure for starting the fuel reformer shown in FIG. FIG. 1: Fuel reformer, 4: Reforming pipe, 20: Combustion exhaust gas Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1)ナフサ等の炭化水素系の燃料を水蒸気とともに改質
触媒が充填されてなる触媒層を有する改質管に通流し、
バーナでの燃焼による熱媒体により改質管を加熱して水
素に富むガスに改質する燃料改質器の起動方法において
、この改質器の起動昇温時所定温度で酸化剤ガスを改質
管に送気して触媒層に析出した炭素を酸化して排出した
後、前記燃料を水蒸気とともに改質管に送気することを
特徴とする燃料改質器の起動方法。
1) A hydrocarbon fuel such as naphtha is passed together with steam through a reforming tube having a catalyst layer filled with a reforming catalyst,
In a fuel reformer startup method that heats a reforming tube with a heat medium generated by combustion in a burner to reform the gas into hydrogen-rich gas, the oxidizing gas is reformed at a predetermined temperature when the reformer is started and the temperature rises. A method for starting a fuel reformer, comprising: supplying air to a pipe to oxidize and discharge carbon deposited on a catalyst layer, and then supplying the fuel together with water vapor to a reforming pipe.
JP2006747A 1990-01-16 1990-01-16 Method for starting fuel modifier Pending JPH03214567A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006747A JPH03214567A (en) 1990-01-16 1990-01-16 Method for starting fuel modifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006747A JPH03214567A (en) 1990-01-16 1990-01-16 Method for starting fuel modifier

Publications (1)

Publication Number Publication Date
JPH03214567A true JPH03214567A (en) 1991-09-19

Family

ID=11646787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006747A Pending JPH03214567A (en) 1990-01-16 1990-01-16 Method for starting fuel modifier

Country Status (1)

Country Link
JP (1) JPH03214567A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002134151A (en) * 2000-10-24 2002-05-10 Toyota Motor Corp Removing of precipitated carbon in reformer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002134151A (en) * 2000-10-24 2002-05-10 Toyota Motor Corp Removing of precipitated carbon in reformer

Similar Documents

Publication Publication Date Title
JP4724029B2 (en) Method for shutting down reformer
JP2003282114A (en) Stopping method of fuel cell power generating device
JP2003002605A (en) Method for operating and stopping steam reformer
KR20010075696A (en) Apparatus for producing hydrogen gas and fuel cell system using the same
JP2002008701A (en) Method for starting and stopping solid polymer fuel cell
JP2001093550A (en) Solid polymer fuel cell generator and method for operating
WO2011111554A1 (en) Syngas production method
JP3886789B2 (en) Reforming apparatus and operation method thereof
JP2001085039A (en) Fuel cell system
JPH03214567A (en) Method for starting fuel modifier
JPS6347228B2 (en)
JP4145573B2 (en) Start-up method of reformer
JP2006294464A (en) Fuel cell power generation system
JP2020193129A (en) Hydrogen generator and its operation method
JP2005209642A (en) Starting and stopping method of fuel cell generator
JP4049526B2 (en) Method for starting reformer for fuel cell
JP2008074657A (en) Method for starting self-heating reforming reaction at a low temperature
JPH0381969A (en) Starting method for fuel reformer
JP2001155747A (en) Fuel cell system
JPH03129674A (en) Method of starting reformer for fuel cell
JP2001080906A (en) Gaseous hydrogen generating device
JP2002124288A (en) Fuel cell power generation device and its starting method
JP2003327404A (en) Hydrogen manufacturing apparatus and its operation method
JPH04243538A (en) Method and device for controlling catalyst layer temperature of fuel reformer for fuel battery use
JP5369404B2 (en) Method for shutting down reformer