JPH03214092A - 核燃料要素 - Google Patents
核燃料要素Info
- Publication number
- JPH03214092A JPH03214092A JP2007211A JP721190A JPH03214092A JP H03214092 A JPH03214092 A JP H03214092A JP 2007211 A JP2007211 A JP 2007211A JP 721190 A JP721190 A JP 721190A JP H03214092 A JPH03214092 A JP H03214092A
- Authority
- JP
- Japan
- Prior art keywords
- cladding tube
- clad tube
- oxygen potential
- nuclear fuel
- zirconium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003758 nuclear fuel Substances 0.000 title claims abstract description 19
- 239000000446 fuel Substances 0.000 claims abstract description 16
- 229910052751 metal Inorganic materials 0.000 claims abstract description 15
- 239000002184 metal Substances 0.000 claims abstract description 15
- 239000010949 copper Substances 0.000 claims abstract description 14
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 12
- 229910052802 copper Inorganic materials 0.000 claims abstract description 12
- 238000005253 cladding Methods 0.000 claims description 59
- 239000008188 pellet Substances 0.000 claims description 10
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 claims 1
- 239000005751 Copper oxide Substances 0.000 claims 1
- 229910000431 copper oxide Inorganic materials 0.000 claims 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 33
- 229910052760 oxygen Inorganic materials 0.000 abstract description 33
- 239000001301 oxygen Substances 0.000 abstract description 33
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 abstract description 20
- 229910052726 zirconium Inorganic materials 0.000 abstract description 20
- 238000005260 corrosion Methods 0.000 abstract description 9
- 238000005336 cracking Methods 0.000 abstract description 9
- 238000007747 plating Methods 0.000 abstract description 5
- 238000000034 method Methods 0.000 abstract description 3
- 238000007772 electroless plating Methods 0.000 abstract description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 2
- 238000010438 heat treatment Methods 0.000 abstract 2
- 239000006185 dispersion Substances 0.000 abstract 1
- 230000004992 fission Effects 0.000 description 12
- 238000012360 testing method Methods 0.000 description 12
- 230000035882 stress Effects 0.000 description 9
- 230000007797 corrosion Effects 0.000 description 8
- 239000007789 gas Substances 0.000 description 4
- 244000183278 Nephelium litchi Species 0.000 description 3
- 235000015742 Nephelium litchi Nutrition 0.000 description 3
- 229910052793 cadmium Inorganic materials 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000002485 combustion reaction Methods 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 241001629511 Litchi Species 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 229910001093 Zr alloy Inorganic materials 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 230000002285 radioactive effect Effects 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 229910021386 carbon form Inorganic materials 0.000 description 1
- 230000002301 combined effect Effects 0.000 description 1
- 238000012669 compression test Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- BERDEBHAJNAUOM-UHFFFAOYSA-N copper(I) oxide Inorganic materials [Cu]O[Cu] BERDEBHAJNAUOM-UHFFFAOYSA-N 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- KRFJLUBVMFXRPN-UHFFFAOYSA-N cuprous oxide Chemical compound [O-2].[Cu+].[Cu+] KRFJLUBVMFXRPN-UHFFFAOYSA-N 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 230000008717 functional decline Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Other Surface Treatments For Metallic Materials (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
め要約のデータは記録されません。
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、軽水冷却型原子炉の核燃料要素に係り、とく
に被覆管を改良して耐応力腐食割れ性を向上させた核燃
料要素に関するものである。
に被覆管を改良して耐応力腐食割れ性を向上させた核燃
料要素に関するものである。
[従来の技術]
核燃料要素は、燃料被覆管内に複数個の核燃料ペレット
を積層収容し、上端部にガス溜用プレナム部と核燃料ペ
レットを安定に支持するためのプレナムスプリングを有
し、両端開口部を上部および下部端栓で密封溶接した構
造となっている。
を積層収容し、上端部にガス溜用プレナム部と核燃料ペ
レットを安定に支持するためのプレナムスプリングを有
し、両端開口部を上部および下部端栓で密封溶接した構
造となっている。
以上の構成において、被覆管には、核燃料ペレットから
放出される放射性核分裂生成物が管外周部の冷却材中に
混入するのを防止するため、当該放射性核分裂生成物が
外部に漏洩するのを阻止する機能が求められているが、
現在までの運転経験によれば、燃料燃焼度が高くなった
段階で出力が急激に上昇すると、被覆管と腐食性核分裂
生成物との化学反応がおこり、また核燃料ペレットが熱
膨張することによって被覆管に熱応力が加わり、上記両
者の重畳作用により、被覆管に応力腐食割れを生じる可
能性が考えられることが判明した。
放出される放射性核分裂生成物が管外周部の冷却材中に
混入するのを防止するため、当該放射性核分裂生成物が
外部に漏洩するのを阻止する機能が求められているが、
現在までの運転経験によれば、燃料燃焼度が高くなった
段階で出力が急激に上昇すると、被覆管と腐食性核分裂
生成物との化学反応がおこり、また核燃料ペレットが熱
膨張することによって被覆管に熱応力が加わり、上記両
者の重畳作用により、被覆管に応力腐食割れを生じる可
能性が考えられることが判明した。
しかして、上記したごとき被覆管の応力腐食割れを防止
することを目的として、被覆管の内周面にたとえば厚さ
80〜100μmの純ジルコニウムライチ層を障壁とし
て張設した、いわゆるジルコニウムライチ管が特開昭5
5−164396号公報として提案されており、上記純
ジルコニウムライナ装置によって被覆管と腐食性核分裂
生成物との接触を防止するとともに、被覆管に発生する
局所応力を緩和して、当該被覆管の応力腐食割れを防止
する効果が期待されている。
することを目的として、被覆管の内周面にたとえば厚さ
80〜100μmの純ジルコニウムライチ層を障壁とし
て張設した、いわゆるジルコニウムライチ管が特開昭5
5−164396号公報として提案されており、上記純
ジルコニウムライナ装置によって被覆管と腐食性核分裂
生成物との接触を防止するとともに、被覆管に発生する
局所応力を緩和して、当該被覆管の応力腐食割れを防止
する効果が期待されている。
[発明が解決しようとする課題]
しかし、従来型のジルコニウムライチ型被覆管の内表面
には活発な純ジルコニウム層が露出しているため、燃料
要素内空間のガスと反応して、応力腐食割れ防止機能が
一時的に低下する可能性が生した。
には活発な純ジルコニウム層が露出しているため、燃料
要素内空間のガスと反応して、応力腐食割れ防止機能が
一時的に低下する可能性が生した。
すなわち、燃料被覆管内空間部に存在する酸素濃度(以
下、全て酸素ポテンシャルという)に着目すると、燃料
要素の使用中に酸素ポテンシャルが過渡的に低下する一
時期があり、この時期が前記応力腐食割れ防止機能の低
下時期とほぼ一致し、この期間中における核分裂生成物
からの被害によって、被覆管が脆化され易い場合がある
こと・が判明した。
下、全て酸素ポテンシャルという)に着目すると、燃料
要素の使用中に酸素ポテンシャルが過渡的に低下する一
時期があり、この時期が前記応力腐食割れ防止機能の低
下時期とほぼ一致し、この期間中における核分裂生成物
からの被害によって、被覆管が脆化され易い場合がある
こと・が判明した。
本発明の目的は、上記した従来技術の課題を解決して、
ジルコニウムライチ型被覆管を改良し、耐応力腐食割れ
機能を向上させ、信頼性の高い核燃料要素を提供するこ
とである。
ジルコニウムライチ型被覆管を改良し、耐応力腐食割れ
機能を向上させ、信頼性の高い核燃料要素を提供するこ
とである。
[課題を解決するための手段]
本発明は燃料被覆管の内表面に金属と該金属の酸化物を
分散配置させ、それによって被覆管内における酸素ポテ
ンシャルを調整するようにして、上記目的を達成したも
のである。
分散配置させ、それによって被覆管内における酸素ポテ
ンシャルを調整するようにして、上記目的を達成したも
のである。
[作 用]
本発明は、従来型のUO2ペレット内蔵のジルコニウム
ライチ型被覆管の20Giga拳Watt −d a
y/ t o n (GWd/ t)前後の燃焼度にお
けるFP放出率(%)、被覆管内の酸素ポテシャルを詳
細に検討中に見出された事項に基づいてなされたもので
ある。第2図を用いて、上記検討内容について説明する
。
ライチ型被覆管の20Giga拳Watt −d a
y/ t o n (GWd/ t)前後の燃焼度にお
けるFP放出率(%)、被覆管内の酸素ポテシャルを詳
細に検討中に見出された事項に基づいてなされたもので
ある。第2図を用いて、上記検討内容について説明する
。
第2図は、原子炉内で使用中(燃焼中)のジルコニウム
ライチ型被覆管内の核分裂生成物(F I’)の放出率
および被覆管内の酸素ポテンシャルの燃焼度依存性を示
す図である。
ライチ型被覆管内の核分裂生成物(F I’)の放出率
および被覆管内の酸素ポテンシャルの燃焼度依存性を示
す図である。
上記ライナ型被覆管のUO2燃料ベレットが核分裂によ
って燃焼すると、例えばCs、Cd、1など種々の腐食
性核分裂生成物(FP)が生じる。
って燃焼すると、例えばCs、Cd、1など種々の腐食
性核分裂生成物(FP)が生じる。
しかし、これらの大部分は燃焼初期(0〜20GWd/
l)にはUO2の結晶粒内に一定時間蓄えられて外部へ
放出されないため、その間、放出率はほぼ0%である。
l)にはUO2の結晶粒内に一定時間蓄えられて外部へ
放出されないため、その間、放出率はほぼ0%である。
その後、燃焼度が進むにつれて拡散等によって、漸次被
覆管内表面に到達するようになる。FP放出曲線21は
、潜伏期(0〜20GWd/l)から漸増期(20〜3
0GWd/1)におけるFP放出率(%)の観測値の推
移を示すものである。
覆管内表面に到達するようになる。FP放出曲線21は
、潜伏期(0〜20GWd/l)から漸増期(20〜3
0GWd/1)におけるFP放出率(%)の観測値の推
移を示すものである。
つぎに、U02ペレットを装入して、所定量のHeガス
を密封した被覆管内の酸素ポテンシャル(kJ/mol
)の燃焼度(GWd/l)依存性について観測した結果
につき説明する。燃焼開始期(0〜5GWd/l)では
、不純物として混入した酸素ガスのために酸素ポテンシ
ャルは若干高いが、被覆管の内表面に露出している活性
の純ジルコニウムに向って急速に拡散しくZr中の酸素
の拡散係数は大きい(約10−” cnf/s) )
、燃焼度5 (GWd/l)で酸素ポテンシャルは極小
値を示す。Uの核分裂と共にUが消滅するので酸化物燃
料UOJからは余剰の酸素が放出され、内表面Zr中に
浸入してゆき、Zr表面の酸素の濃度は次第に上昇する
。Zr中の酸素濃度が約30at%に達するとZrO2
が形成される。ZrO□中の酸素の拡散係数はZr中の
それと比較して数桁小さいので、被覆管内表面への酸素
の流入速度は飽和値に達する。被覆管内表面に一様にZ
rO,の皮膜が形成されるようになると余剰酸素は種々
の他のFPと反応して、わずかに酸素は上昇する。第2
図の22は、上記のような、酸素ポテンシャルと燃焼度
の関係を示す曲線である。
を密封した被覆管内の酸素ポテンシャル(kJ/mol
)の燃焼度(GWd/l)依存性について観測した結果
につき説明する。燃焼開始期(0〜5GWd/l)では
、不純物として混入した酸素ガスのために酸素ポテンシ
ャルは若干高いが、被覆管の内表面に露出している活性
の純ジルコニウムに向って急速に拡散しくZr中の酸素
の拡散係数は大きい(約10−” cnf/s) )
、燃焼度5 (GWd/l)で酸素ポテンシャルは極小
値を示す。Uの核分裂と共にUが消滅するので酸化物燃
料UOJからは余剰の酸素が放出され、内表面Zr中に
浸入してゆき、Zr表面の酸素の濃度は次第に上昇する
。Zr中の酸素濃度が約30at%に達するとZrO2
が形成される。ZrO□中の酸素の拡散係数はZr中の
それと比較して数桁小さいので、被覆管内表面への酸素
の流入速度は飽和値に達する。被覆管内表面に一様にZ
rO,の皮膜が形成されるようになると余剰酸素は種々
の他のFPと反応して、わずかに酸素は上昇する。第2
図の22は、上記のような、酸素ポテンシャルと燃焼度
の関係を示す曲線である。
核分裂生成物のうち、Cdはジルコニウムおよびジルコ
ニウム合金を著しく脆化させる元素である。この脆化現
象は、Cd蒸気が被覆管のクラック先端の金属結合力を
弱めるために生ずると解釈されており、従って脆化発生
のしきい条件はCd蒸気圧に依存する。Cdが燃料被覆
管内で金属の状態で存在する場合にはCd蒸気圧は高<
(400℃で約160Ps ) 、被覆管を脆化する
が、Cdが酸化物(Cd O)として存在すると被覆管
を脆化しないことが分かった。Cdを形成する反応:2
Cd +o2→2CdOにおける600にの酸素ポテ
ンシャルは約−400kl/matと計算される。被覆
管内表面部の酸素ポテンシャルが約−400kJ/mo
lより高いとCdはCdOとして存在することになり、
被覆管を脆化させにくいのでこの値を臨界値として2点
鎖線で示した。
ニウム合金を著しく脆化させる元素である。この脆化現
象は、Cd蒸気が被覆管のクラック先端の金属結合力を
弱めるために生ずると解釈されており、従って脆化発生
のしきい条件はCd蒸気圧に依存する。Cdが燃料被覆
管内で金属の状態で存在する場合にはCd蒸気圧は高<
(400℃で約160Ps ) 、被覆管を脆化する
が、Cdが酸化物(Cd O)として存在すると被覆管
を脆化しないことが分かった。Cdを形成する反応:2
Cd +o2→2CdOにおける600にの酸素ポテ
ンシャルは約−400kl/matと計算される。被覆
管内表面部の酸素ポテンシャルが約−400kJ/mo
lより高いとCdはCdOとして存在することになり、
被覆管を脆化させにくいのでこの値を臨界値として2点
鎖線で示した。
さて、第2図において、燃焼度領域約20〜30 G
W d / (では、(1)FP放出率(21)の面か
らみると、被覆管にFPが供給される状態であり、(2
)酸素ポテンシャル(32)の面から見ると、被覆管内
の酸素ポテンシャルが低い状態である。すなわち、この
領域では、被覆管内表面がCdによる脆化を受けやすい
ことになる。
W d / (では、(1)FP放出率(21)の面か
らみると、被覆管にFPが供給される状態であり、(2
)酸素ポテンシャル(32)の面から見ると、被覆管内
の酸素ポテンシャルが低い状態である。すなわち、この
領域では、被覆管内表面がCdによる脆化を受けやすい
ことになる。
そこで本発明では、この領域における酸素ポテンシャル
が臨界値を下回らないように酸素ポテンシャル調整材を
被覆管内に配置することを意図している。その方法とし
て被覆管内表面に金属をメツキし、該金属の表面を酸化
処理して該金属の酸化を形成させるようにしたものであ
る。上記金属としでは銅が好ましい。被覆管内壁のジル
コニウムライナ層に銅メツキし、その一部が酸化し、C
u2Oを形成する。閉じた系内でCuとCu2Oとが存
在しているときの反応+ 2 Cu +02→2Cu2
0における6(IGKの酸素ポテンシャルは、約f30
kj/molと計算される。第2図中の23は酸素ポテ
ンシャルの目標値を示すものであるが、上記のような金
属メツキ処理により被覆管内の酸素ポテンシャルは上昇
し、Cdによる脆化を生じにくくさせることができる。
が臨界値を下回らないように酸素ポテンシャル調整材を
被覆管内に配置することを意図している。その方法とし
て被覆管内表面に金属をメツキし、該金属の表面を酸化
処理して該金属の酸化を形成させるようにしたものであ
る。上記金属としでは銅が好ましい。被覆管内壁のジル
コニウムライナ層に銅メツキし、その一部が酸化し、C
u2Oを形成する。閉じた系内でCuとCu2Oとが存
在しているときの反応+ 2 Cu +02→2Cu2
0における6(IGKの酸素ポテンシャルは、約f30
kj/molと計算される。第2図中の23は酸素ポテ
ンシャルの目標値を示すものであるが、上記のような金
属メツキ処理により被覆管内の酸素ポテンシャルは上昇
し、Cdによる脆化を生じにくくさせることができる。
なお、以上の説明はジルコニウムライチで内張すされた
被覆管について行ったが、ジルカロイのみからなる被覆
管についても同様である。
被覆管について行ったが、ジルカロイのみからなる被覆
管についても同様である。
[実施例]
以下、本発明に係る実施例を第1図を用いて説明する。
第1図は本発明の核燃料要素の構成を示すための横断図
の一部拡大図である。1はジルカロイ−2製核燃料被覆
管、2はジルコニウムライナ層、3はライナ層上の酸化
膜、4は酸化膜上にメツキした銅、5は上記鋼の表面を
酸化させた領域、6は核燃料ペレットである。さらに詳
しく説明すると、まず被覆管1の外径は12.27in
、肉厚は約0.8m+wである。上記の被覆管内表面上
に厚さ約80μmのジルコニウム2を内張すし、300
℃の大気中で約10時間加熱し、約1μmの酸化膜3を
形成させた。次に被覆管内に銅メツキ液を充てんし、無
電解メツキ法によって厚さ約8μmの銅層を設けた。管
を水洗後、350℃の大気中で約24時間加熱し、銅メ
ツキの表面に酸化された領域5と酸化されない部分4が
得られた。
の一部拡大図である。1はジルカロイ−2製核燃料被覆
管、2はジルコニウムライナ層、3はライナ層上の酸化
膜、4は酸化膜上にメツキした銅、5は上記鋼の表面を
酸化させた領域、6は核燃料ペレットである。さらに詳
しく説明すると、まず被覆管1の外径は12.27in
、肉厚は約0.8m+wである。上記の被覆管内表面上
に厚さ約80μmのジルコニウム2を内張すし、300
℃の大気中で約10時間加熱し、約1μmの酸化膜3を
形成させた。次に被覆管内に銅メツキ液を充てんし、無
電解メツキ法によって厚さ約8μmの銅層を設けた。管
を水洗後、350℃の大気中で約24時間加熱し、銅メ
ツキの表面に酸化された領域5と酸化されない部分4が
得られた。
この実施例で得られた被覆管と従来のジルコニウムライ
ナ彼覆管とについて次のような試験を行い、それぞれの
圧縮強度を調べた。
ナ彼覆管とについて次のような試験を行い、それぞれの
圧縮強度を調べた。
まず、従来型のジルコニウムライナ層内にCdとCsを
それぞれ10■/ an ’入れ、Heガス中で密封溶
接して試験体とした。この試験体を複数個作り、それぞ
れについて350℃で1000時間加熱した。つぎに、
上記実施例で得た被覆管も同様に管内にLong/an
’のCdとCsを入れ、Heガス中で密封溶接して複数
個の試験体を作り、350℃で1000時間加熱した。
それぞれ10■/ an ’入れ、Heガス中で密封溶
接して試験体とした。この試験体を複数個作り、それぞ
れについて350℃で1000時間加熱した。つぎに、
上記実施例で得た被覆管も同様に管内にLong/an
’のCdとCsを入れ、Heガス中で密封溶接して複数
個の試験体を作り、350℃で1000時間加熱した。
上記の2種類の試験体を用いて、周方向の圧縮試験を実
施した。すなわち、上記各試験体を圧縮試験機に長袖が
水平方向になるようにし、350’C雰囲気中で圧縮荷
重を加えて、試験片き裂の発生する点の荷重を読取った
。なお、各試験とも複数個の試験片を用い、その標準偏
差と平均値を求めた。
施した。すなわち、上記各試験体を圧縮試験機に長袖が
水平方向になるようにし、350’C雰囲気中で圧縮荷
重を加えて、試験片き裂の発生する点の荷重を読取った
。なお、各試験とも複数個の試験片を用い、その標準偏
差と平均値を求めた。
第3図に試験結果を示す。第3図においてAは、従来例
のジルコニウムライナ層の変形量(圧縮量)の平均値を
示すもので、標準値を1.0としている。Bは本発明の
被覆管の変形量のAに対する比率の平均値を表したもの
である。
のジルコニウムライナ層の変形量(圧縮量)の平均値を
示すもので、標準値を1.0としている。Bは本発明の
被覆管の変形量のAに対する比率の平均値を表したもの
である。
第3図かられかるように、本発明の実施例(B点)は従
来型被覆管(A)に対しき裂発生時の変形量は約1.5
倍となり、き裂発生に対する許容応力が格段と向上して
いることを示している。
来型被覆管(A)に対しき裂発生時の変形量は約1.5
倍となり、き裂発生に対する許容応力が格段と向上して
いることを示している。
[発明の効果コ
本発明は、被覆管内表面に金属とその酸化物を分配配置
したことによって、被覆管内の酸素ポテンシャルを高め
て原子炉運転中におけるFPによる被覆管の脆化を阻止
し、耐応力腐食割れ性を向上せしめる効果がある。した
がって本発明によれば、信頼性の高い核燃料要素を提供
することができる。
したことによって、被覆管内の酸素ポテンシャルを高め
て原子炉運転中におけるFPによる被覆管の脆化を阻止
し、耐応力腐食割れ性を向上せしめる効果がある。した
がって本発明によれば、信頼性の高い核燃料要素を提供
することができる。
第1図は本発明の一実施例を説明するための核燃料要素
の一部横断面拡大図、第2図は原子炉運転中のジルコニ
ウムライチ型被覆管内の核分裂生成物の放出率および酸
素ポテンシャルの各燃焼度依存性を示すグラフ、第3図
は本発明における燃料被覆管と従来の燃料被覆管の圧縮
強度試験の結果を示すグラフである。 1・・・ジルカロイ−2製核燃料被覆管2・・・ジルコ
ニウムライチ層 3・・・ライチ層上の酸化膜 4・・・酸化膜上にメツキした銅 5・・・銅の表面を酸化させた領域 6・・・核燃料ペレット 21・・・核分裂生成物放出率 22・・・酸素ポテンシャルの変動値 23・・・酸素ポテンシャルの目的値 (8733)
の一部横断面拡大図、第2図は原子炉運転中のジルコニ
ウムライチ型被覆管内の核分裂生成物の放出率および酸
素ポテンシャルの各燃焼度依存性を示すグラフ、第3図
は本発明における燃料被覆管と従来の燃料被覆管の圧縮
強度試験の結果を示すグラフである。 1・・・ジルカロイ−2製核燃料被覆管2・・・ジルコ
ニウムライチ層 3・・・ライチ層上の酸化膜 4・・・酸化膜上にメツキした銅 5・・・銅の表面を酸化させた領域 6・・・核燃料ペレット 21・・・核分裂生成物放出率 22・・・酸素ポテンシャルの変動値 23・・・酸素ポテンシャルの目的値 (8733)
Claims (2)
- (1)燃料被覆管の内部に複数個の燃料ペレットを収納
してなる核燃料要素において、燃料被覆管の内表面に金
属と該金属の酸化物とを分散配置してなることを特徴と
する核燃料要素。 - (2)金属と該金属の酸化物が銅と酸化銅である請求項
1記載の核燃料要素。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007211A JPH03214092A (ja) | 1990-01-18 | 1990-01-18 | 核燃料要素 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007211A JPH03214092A (ja) | 1990-01-18 | 1990-01-18 | 核燃料要素 |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03214092A true JPH03214092A (ja) | 1991-09-19 |
Family
ID=11659668
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007211A Pending JPH03214092A (ja) | 1990-01-18 | 1990-01-18 | 核燃料要素 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03214092A (ja) |
-
1990
- 1990-01-18 JP JP2007211A patent/JPH03214092A/ja active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Pahl et al. | Irradiation behavior of metallic fast reactor fuels | |
KR100274767B1 (ko) | 핵 연료봉 피복에 사용되는 내식성 지르코늄 라이너 | |
US3925151A (en) | Nuclear fuel element | |
US6058155A (en) | Corrosion and hydride resistant Nuclear fuel rod | |
EP0651396B1 (en) | Process for improving corrosion resistance of zirconium or zirconium alloy barrier cladding | |
JPH0843568A (ja) | ノジュラ腐食に耐える被覆及び被覆を製造する方法 | |
JPH07301687A (ja) | 被覆管 | |
Johnson et al. | A study of zirconium alloy corrosion parameters in the advanced test reactor | |
GB2119559A (en) | Zirconium alloy barrier having improved corrosion resistance | |
JPH03214092A (ja) | 核燃料要素 | |
JP4318478B2 (ja) | 沸騰水型軽水炉用燃料集合体 | |
JPS5958389A (ja) | 核燃料要素 | |
JP2641736B2 (ja) | 核燃料要素 | |
JP2009145251A (ja) | 燃料棒およびその製造方法 | |
JPH0469592A (ja) | 核燃料要素 | |
Salvaggio | The Properties of Hafnium from a PWR Core I Control Rod After One Seed Life Exposure | |
JPS58165085A (ja) | 核燃料要素 | |
JPH07248391A (ja) | 核燃料被覆管およびその製造方法 | |
JPH04204196A (ja) | 核燃料要素 | |
JPH04124498U (ja) | 核燃料要素 | |
JPS60183584A (ja) | 核燃料要素 | |
JPH0441794B2 (ja) | ||
COOLABILITY | T. SUGIYAMA, T. FUKETA | |
JPS5958387A (ja) | 核燃料要素の被覆管 | |
Jones | THE IRRADIATION OF ALUMINUM-PLUTONIUM ALLOYS IN ZIRCALOY-2 SHEATHING. PART III. POST-IRRADIATION EXAMINATION AND TESTING OF ALUMINUM-PLUTONIUM ALLOYS |