JPH03213127A - Method for separating isotope and heat diffusion tower therefor - Google Patents
Method for separating isotope and heat diffusion tower thereforInfo
- Publication number
- JPH03213127A JPH03213127A JP576290A JP576290A JPH03213127A JP H03213127 A JPH03213127 A JP H03213127A JP 576290 A JP576290 A JP 576290A JP 576290 A JP576290 A JP 576290A JP H03213127 A JPH03213127 A JP H03213127A
- Authority
- JP
- Japan
- Prior art keywords
- cryogen
- wall
- temperature
- gas
- reaction vessel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 6
- 238000009792 diffusion process Methods 0.000 title claims description 17
- 238000000926 separation method Methods 0.000 claims abstract description 14
- 239000000463 material Substances 0.000 claims abstract description 5
- 238000010438 heat treatment Methods 0.000 claims description 6
- 238000001816 cooling Methods 0.000 claims description 4
- 239000007789 gas Substances 0.000 abstract description 21
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 abstract description 17
- YZCKVEUIGOORGS-NJFSPNSNSA-N Tritium Chemical compound [3H] YZCKVEUIGOORGS-NJFSPNSNSA-N 0.000 abstract description 16
- 229910052722 tritium Inorganic materials 0.000 abstract description 16
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 abstract description 12
- 239000007788 liquid Substances 0.000 abstract description 8
- 229910052757 nitrogen Inorganic materials 0.000 abstract description 6
- 229910052739 hydrogen Inorganic materials 0.000 abstract description 4
- 239000001257 hydrogen Substances 0.000 abstract description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 abstract description 2
- 238000005372 isotope separation Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 125000006850 spacer group Chemical group 0.000 description 3
- 238000009826 distribution Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000003507 refrigerant Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 230000000155 isotopic effect Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910001120 nichrome Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は水素中のトリチウム等の同位体の分離に関し、
特に対向配置された温壁と冷壁を利用した同位体分離(
濃縮)の方法とそれを実施するための熱拡散塔に関する
。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to the separation of isotopes such as tritium in hydrogen;
In particular, isotope separation using hot and cold walls arranged opposite each other (
Concentration method) and a thermal diffusion column for carrying out the method.
[従来の技術]
ガス分子(原子を含む)は有@温度において熱運動をし
ている。運動エネルギEkはEk=(1/ 2 ) m
v 2と表わせる。ここで、mは分子の質量、■は分
子の速さである。トリチウム(T)を含む水素ガスの場
合、水素分子H2の質量m1は約2であるのに対し、ト
リチウムと水素からなる分子HTの質量m2は約4 <
1+3=4)となる。[Prior Art] Gas molecules (including atoms) are in thermal motion at a certain temperature. The kinetic energy Ek is Ek=(1/2) m
It can be expressed as v 2. Here, m is the mass of the molecule, and ■ is the speed of the molecule. In the case of hydrogen gas containing tritium (T), the mass m1 of the hydrogen molecule H2 is approximately 2, whereas the mass m2 of the molecule HT consisting of tritium and hydrogen is approximately 4 <
1+3=4).
このため、同一温度におけるH2分子とHT分子の持つ
熱運動の平均速度は大きく異なる。また、温度が変わる
と平均速度も変化する。このため、温度勾配を形成する
と、質量の異なるガス分子の分布は異なるものとなる。Therefore, the average speed of thermal motion of H2 molecules and HT molecules at the same temperature is significantly different. Also, as the temperature changes, the average speed also changes. Therefore, when a temperature gradient is formed, gas molecules with different masses will have different distributions.
この現象を利用して同位体を分#([WI)することが
可能である。Using this phenomenon, it is possible to separate isotopes ([WI).
以上述べた同位体分!4iを行うものとして熱拡散塔が
ある。The isotopic content mentioned above! A thermal diffusion tower is a device that performs 4i.
細長い塔を重力場の中で鉛直に立て、塔中心に熱線を張
り、高温に加熱すると共に塔壁は水冷して常温付近の温
度に保つ、このようにして、半径方向に温度勾配を形成
してガス分子の熱拡散と対流を生じさせる。半径方向の
温度勾配下での熱拡散によって、軽い分子であるH2の
分布と比較して、重い分子であるHTは高温部で欠乏し
て平均濃度以下になり、低温部で集中して平均濃度以上
になる。すなわち、塔中央はHTの濃度が低く、塔壁付
近はHTの濃度が高くなる。塔中央の高温ガスは上方へ
、塔壁付近の比較的低温のガスは下方へと対流を起こし
て移動する。そこで、下方でガスを回収すると、HTの
濃度が高いガスが得られ、上方で回収したガスにはHT
の濃度が低い。A long, slender tower is erected vertically in a gravitational field, and a hot wire is placed in the center of the tower to heat it to a high temperature, while the tower wall is water-cooled to maintain a temperature around room temperature.In this way, a temperature gradient is created in the radial direction. This causes thermal diffusion and convection of gas molecules. Due to thermal diffusion under a radial temperature gradient, compared to the distribution of H2, a light molecule, HT, a heavy molecule, is depleted in high temperature areas and becomes below the average concentration, and concentrated in low temperature areas, reducing the average concentration. That's all. That is, the concentration of HT is low in the center of the tower, and the concentration of HT is high near the tower wall. High-temperature gas in the center of the tower moves upwards, and relatively low-temperature gas near the tower walls moves downwards through convection. Therefore, if the gas is collected from below, a gas with a high concentration of HT will be obtained, and the gas collected from above will contain HT.
concentration is low.
[発明が解決しようとする課題]
温度勾配を利用した同位体の分離技術において、同位体
分離の効率を向上させることが期待されている。[Problems to be Solved by the Invention] Improving the efficiency of isotope separation is expected in isotope separation technology that utilizes a temperature gradient.
本発明の目的は、同位体の分離効率を向上させた同位体
分離方法を提供することである。An object of the present invention is to provide an isotope separation method with improved isotope separation efficiency.
本発明の他の目的は、同位体分離効率を向上させること
のできる熱拡散塔を提供することである。Another object of the present invention is to provide a thermal diffusion column that can improve isotope separation efficiency.
[課題を解決するための手段]
従来は、熱線を利用して温度勾配を形成し、外壁の温度
が上昇するのを防止するために水冷を行って常温付近に
維持していた。[Means for Solving the Problems] Conventionally, hot wires were used to form a temperature gradient, and in order to prevent the temperature of the outer wall from rising, water cooling was performed to maintain it at around room temperature.
本発明は、温壁を加熱によって常温以上の高温にすると
共に、冷壁を寒剤によって常温以下に冷却する。In the present invention, the hot wall is heated to a high temperature above normal temperature, and the cold wall is cooled to below normal temperature using a cryogen.
熱拡散塔の中央部に抵抗加熱体を配置し、周囲を反応容
器で囲み、反応容器の外側に寒剤通路を形成し、寒剤源
から寒剤通路に寒剤を供給する構成とする6
[作用]
従来の熱拡散塔の温度勾配は、加熱によって形成されて
いた。A resistance heating element is placed in the center of the thermal diffusion tower, surrounded by a reaction vessel, a cryogen passage is formed outside the reaction vessel, and a cryogen is supplied from a cryogen source to the cryogen passage.6 [Function] Conventional The temperature gradient in the thermal diffusion column was created by heating.
温度勾配を加熱と冷却の両方によって形成することによ
り、温度差が大きく、低温の温度が低い温度勾配を形成
することができる0分#係数の近似式において、冷壁の
温度は指数関数の分母に入り、温度差は分子に入る。従
って、冷壁の温度が低くなると、同じ温度差であっても
その効果は著しく増大する。By forming a temperature gradient by both heating and cooling, a temperature gradient with a large temperature difference and a low temperature can be formed. The temperature difference enters the molecules. Therefore, as the temperature of the cold wall decreases, the effect increases significantly even with the same temperature difference.
[実施例] 第1図に本発明の実施例による熱拡散塔を示す。[Example] FIG. 1 shows a thermal diffusion tower according to an embodiment of the present invention.
熱拡散塔は、鉛直方法に配置された紺長い反応容器1を
有する。たとえば、反応容器1は、直径が約1.5CI
で長さが150CIの寸法を有する0反応容器1は、硬
質ガラス、石英ガラス、ステンレス、!!酸素鋼等の材
料で作られた気密管状容器である0反応容器1の中実軸
に沿って、熱線が配置されている。この熱線は、反応容
器1の土壁および下壁上に設けられな上部電極4および
下部電極5に電気的に接続されている。なお、熱fIi
12の下端には重り6が取り付けられ、p!%R2が熱
膨張をした時にも、熱線2を張った状態に維持する。ま
た、重り6の下には銅コイル等のスプリング7が設けら
れており、熱線2が熱伸縮することによる沖び縮みを吸
収する。熱fi2は、たとえばタングステンミ白金、ニ
クロム等の抵抗附で形成されたワイヤであり、1000
℃以上に加熱できるように設計されている。ワイヤはた
とえば半径150μmの寸法である。The thermal diffusion column has a dark blue long reaction vessel 1 arranged in a vertical manner. For example, reaction vessel 1 has a diameter of approximately 1.5 CI
0 reaction vessel 1 having dimensions of 150 CI in length is made of hard glass, quartz glass, stainless steel,! ! A hot wire is arranged along the solid axis of the zero reaction vessel 1, which is an airtight tubular vessel made of a material such as oxygen steel. This hot wire is electrically connected to an upper electrode 4 and a lower electrode 5 provided on the earthen wall and the lower wall of the reaction vessel 1. In addition, the heat fIi
A weight 6 is attached to the lower end of p! Even when %R2 undergoes thermal expansion, the hot wire 2 is maintained in a stretched state. Further, a spring 7 such as a copper coil is provided under the weight 6 to absorb the shrinkage caused by the thermal expansion and contraction of the hot wire 2. Thermal fi2 is a wire made of tungsten, platinum, nichrome, etc. with a resistor, and has a resistance of 1000
It is designed to be heated above ℃. The wire has dimensions of, for example, a radius of 150 μm.
また、熱線2を反応容器1の中央部に配置するために、
熱線2の全長の途中にスペーサ12が設けられ、反応容
器Iの壁と熱線2との距離を均等に保つようにしている
。このスペーサ12は反応容器l内での気体の流れを妨
げないように、たとえば十字型等に設計される。In addition, in order to arrange the hot wire 2 in the center of the reaction vessel 1,
A spacer 12 is provided along the entire length of the hot wire 2 to keep the distance between the wall of the reaction vessel I and the hot wire 2 equal. This spacer 12 is designed, for example, in the shape of a cross so as not to obstruct the flow of gas within the reaction vessel 1.
また、この熱線2と反応容器1の接続部には絶縁材料、
碑子等が設けられており、反応容器1が金属製であって
も、熱線2がら電気的に分離されている、寒剤ジャケッ
ト3は反応容器1と同様の材料で形成されており、反応
容器1の外壁との間に寒剤を収容するジャケットを形成
する。寒剤としては、たとえば液体窒素、液体空気、フ
レオン等の0℃以下で作動する液体または気体を用いる
。In addition, an insulating material is used at the connection between the hot wire 2 and the reaction vessel 1.
Even if the reaction vessel 1 is made of metal, the cryogen jacket 3 is made of the same material as the reaction vessel 1 and is electrically isolated from the hot wire 2. A jacket is formed between the outer wall of No. 1 and the outer wall of No. 1 to accommodate the cryogen. As the cryogen, a liquid or gas that operates at 0° C. or lower, such as liquid nitrogen, liquid air, or Freon, is used.
寒剤ジャケット3の下端には寒剤入り口9が設けられて
おり、寒剤源8に接続されている。また。A cryogen inlet 9 is provided at the lower end of the cryogen jacket 3 and is connected to a cryogen source 8. Also.
寒剤ジャケット3の上端には寒剤出口10か設けられて
おり、反応容器1の外壁で熱せられた寒剤の排出口を形
成する。また、必要に応じて寒剤出口10を寒剤源8に
寒剤循環路16で結び、寒剤を循環再使用する。A cryogen outlet 10 is provided at the upper end of the cryogen jacket 3, forming an outlet for the cryogen heated by the outer wall of the reaction vessel 1. Further, if necessary, the cryogen outlet 10 is connected to the cryogen source 8 by a cryogen circulation path 16 to circulate and reuse the cryogen.
反応容器1には処理ガス出入口14が設けられており、
トリチウムを含む水素等の処理ガスか、この処理ガス出
入口14を介して反応容器1内に供給回収される。The reaction vessel 1 is provided with a processing gas inlet/outlet 14,
A processing gas such as hydrogen containing tritium is supplied and recovered into the reaction vessel 1 through the processing gas inlet/outlet 14 .
本実施例による熱拡散塔を用いて、トリチウムを含む水
素ガスの分離を行う場合を以下に説明する。The case where tritium-containing hydrogen gas is separated using the thermal diffusion column according to this embodiment will be described below.
熱線2に上部電極4、下部電極5を介して所望の電流を
流し、熱線2を1000℃以上の温度に加熱する。また
、液体窒素タンク8から液体窒素を圧送し、寒剤ジャケ
ット3の内部を液体窒素で充填する0反応容器1内を排
気した後、トリチウムを含む水素ガスを反応容器1内に
加圧装置を介して所定圧力で供給する0反応容器1内に
充填されたトリチウムを含む水素ガスは、熱線と反応容
器1の外壁との間の温度勾配によって、半径方向に拡散
分離し、熱線2の周囲中央部にトリチウムの少ない水素
ガス、外壁の近傍にトリチウムの多い水素ガスが分離さ
れる。これらの分離されたガスは熱膨張に応じた比重に
よってそれぞれ上下に移動するので、反応容器1上部に
はトリチウムの少ない水素ガスが溜まり、反応容器1の
下部にはトリチウムの濃縮された水素ガスが溜まる。下
部に溜まったガスを回収することにより、トリチウムが
濃縮された水素ガスを回収することができる。A desired current is passed through the hot wire 2 through the upper electrode 4 and the lower electrode 5, and the hot wire 2 is heated to a temperature of 1000° C. or higher. In addition, liquid nitrogen is pumped from the liquid nitrogen tank 8 to fill the inside of the cryogen jacket 3 with liquid nitrogen. After the inside of the reaction vessel 1 is evacuated, hydrogen gas containing tritium is pumped into the reaction vessel 1 via a pressurizing device. The tritium-containing hydrogen gas filled in the reaction vessel 1 is diffused and separated in the radial direction due to the temperature gradient between the hot wire and the outer wall of the reaction vessel 1. Hydrogen gas with less tritium is separated near the outer wall, and hydrogen gas with more tritium is separated near the outer wall. These separated gases move up and down depending on their specific gravity depending on their thermal expansion, so hydrogen gas with less tritium accumulates in the upper part of the reaction vessel 1, and hydrogen gas enriched with tritium accumulates in the lower part of the reaction vessel 1. Accumulate. By recovering the gas accumulated at the bottom, tritium-enriched hydrogen gas can be recovered.
回収したトリチウム濃縮水素ガスを再び拡散分離するこ
とによって、水素ガス中のトリチウム濃度を徐々に濃縮
することができる。By diffusing and separating the recovered tritium-enriched hydrogen gas again, the tritium concentration in the hydrogen gas can be gradually concentrated.
ここで、熱拡散塔の全環流運転で得られる最大分離係数
(αβ) 1maXは、以下の式で表わされる。Here, the maximum separation coefficient (αβ) 1 maX obtained by total reflux operation of the thermal diffusion column is expressed by the following formula.
ここで、熱線の温度をTh、反応容器の外壁の温度をT
Cとすると、
ΔT=Th −Tc
δ==rh/re。Here, the temperature of the hot wire is Th, and the temperature of the outer wall of the reaction vessel is T.
When C, ΔT=Th −Tc δ==rh/re.
rh:熱[2の半径 rC:反応容器1の半径 α■:熱拡散ファクタ (Z)=Z/rc 二規格化した塔高さである。rh: heat [radius of 2 rC: radius of reaction vessel 1 α■: Thermal diffusion factor (Z)=Z/rc is the bistandardized tower height.
すなわち、分離係数αβは ΔT/Tcに指数関数的に
依存している。ここで、Tcか常温であれば、Tcは約
300°にであり、Tcを液体窒素温度(77°K)と
すると、Tcは常温の約1/4となる。That is, the separation coefficient αβ is exponentially dependent on ΔT/Tc. Here, if Tc is at room temperature, Tc is about 300°, and if Tc is the liquid nitrogen temperature (77°K), Tc is about 1/4 of room temperature.
第2図に冷壁温度′rCを77.35” K、温度差を
1000°にとした時のガス圧力に対する分離係数を示
す0分離係数αβとして最大的885の値が得られる。FIG. 2 shows the separation coefficient with respect to gas pressure when the cold wall temperature 'rC is 77.35'' K and the temperature difference is 1000°. A maximum value of 885 is obtained as the zero separation coefficient αβ.
第3図(C)は、比較のための従来の技術による分離係
数を示す、冷壁温度Tcが288.15℃である他は同
一条件である。この時の分離係数は最大的63.4であ
る。すなわち、本実施例の場合、分離係数は1桁以上改
善される0反応容器1の外壁の温度を常温に保ったまま
同等の効果を上げようとすると、上述の簡単化した近似
においては、温度差ΔT=2430°Kが必要となる。FIG. 3(C) shows the separation coefficient according to the conventional technology for comparison, under the same conditions except that the cold wall temperature Tc is 288.15°C. The maximum separation coefficient at this time is 63.4. In other words, in the case of this example, the separation coefficient is improved by more than one order of magnitude.If an attempt is made to achieve the same effect while keeping the temperature of the outer wall of the reaction vessel 1 at room temperature, in the above-mentioned simplified approximation, the temperature A difference ΔT=2430°K is required.
このような高温を実現するには、熱線材料が極めて限定
される他、電源、安全対策等に種々の対策を必要とする
。さらに、実際上はこのような低温を使用しても簡単な
近似から期待される効果は得られない、それは、α■の
値は低温域で小さくなる、αβには冷壁の温度の代りに
温壁と冷壁の温度の平均温度が関係し、温壁の温度を増
大させると、式中の冷壁の温度で表わされた部分も上昇
すること、等による。Achieving such high temperatures requires extremely limited hot wire materials and various measures for power supply, safety measures, etc. Furthermore, in practice, even if such a low temperature is used, the effect expected from a simple approximation cannot be obtained, because the value of α becomes small in the low temperature range, and αβ is used instead of the temperature of the cold wall. This is because the average temperature of the hot wall and cold wall is related, and if the temperature of the hot wall increases, the portion represented by the temperature of the cold wall in the equation also increases.
また、熱拡散塔の最適圧力の冷媒を用いて外壁の温度を
冷却した場合には、低い圧力が最適圧力となるのに対し
、温壁の温度を増大させることによって温度差を設ける
と、fi31m!圧力も高い値となり、構造上高い強度
が必要となってしまう。In addition, when the temperature of the outer wall is cooled using the refrigerant at the optimum pressure of the heat diffusion tower, the lower pressure becomes the optimum pressure, whereas if a temperature difference is created by increasing the temperature of the hot wall, fi31m ! The pressure is also high, and high structural strength is required.
以上説明したように、温壁を高温に加熱すると共に冷壁
を低温に冷却することにより、冷壁を常温付近に保ちつ
つ温壁を高温に加熱する従来の技術では得られなかった
著しい効果が得られる。As explained above, by heating the hot wall to a high temperature and cooling the cold wall to a low temperature, a remarkable effect that could not be obtained with the conventional technology of heating the hot wall to a high temperature while keeping the cold wall near room temperature can be achieved. can get.
以上実施例に沿って本発明を説明したが、本発明はこれ
らに制限されるものではない、たとえば、種々の変更、
改良、組み合わせ等が可能なことは当業者に自明であろ
う。Although the present invention has been described above in accordance with the examples, the present invention is not limited to these examples. For example, various modifications,
It will be obvious to those skilled in the art that improvements, combinations, etc. are possible.
[発明の効果]
以上説明したように、本発明によれば、温度勾配を形成
する低温側温度として常温よりも冷媒によって冷却した
低温を採用することにより、分離係数を著しく増大する
ことができる。[Effects of the Invention] As described above, according to the present invention, the separation coefficient can be significantly increased by employing a low temperature cooled by a refrigerant rather than room temperature as the low temperature side temperature forming the temperature gradient.
また、高い分離係数を実現しつつ熱拡散塔を安全に運転
することが容易になる。Further, it becomes easy to safely operate the thermal diffusion tower while achieving a high separation coefficient.
第1図は本発明の実施例による熱拡散塔を概略的に示す
断面図、
第2図は実施例による分離係数の1例を示すグラフ、
第3図は従来の技術による分離係数の1例を示すグラフ
である。
図において、
1 反応容器
2 熱線
3 寒剤シャケ
4 上部電極
5 下部電極
ット
0
2
4
6
重り
スプリング
寒剤源
寒剤人口
寒荊出日
スペーサ
処理ガス出入口
寒剤循環路
人Fig. 1 is a cross-sectional view schematically showing a thermal diffusion column according to an embodiment of the present invention, Fig. 2 is a graph showing an example of a separation coefficient according to an embodiment, and Fig. 3 is an example of a separation coefficient according to a conventional technique. This is a graph showing. In the figure: 1 Reaction vessel 2 Heat wire 3 Cryogen reservoir 4 Upper electrode 5 Lower electrode 0 2 4 6 Weight Spring Cryogen source Cryogen Population Cold Release Sun Spacer Processing Gas Inlet/Outlet Cryogen Circulation Router
Claims (2)
体を分離する方法において、 温壁に熱を与えて常温以上に加熱すると共に冷壁を寒剤
を用いて常温以下に冷却することを特徴とするガス分離
方法。(1) In the method of separating isotopes by flowing a gas containing isotopes between a cold wall and a hot wall, the hot wall is heated to above room temperature, and the cold wall is cooled to below room temperature using a cryogen. A gas separation method characterized by cooling.
スを気密に収容することができる鉛直方向に長い反応容
器と、 該反応容器の中央部に鉛直に配置された抵抗加熱体と、 該反応容器を囲んで寒剤通路を形成する外壁と、 該寒剤通路に寒剤を供給する寒剤源と を有する熱拡散塔。(2) a vertically long reaction vessel made of a material that can withstand low temperatures and capable of airtightly containing gas; a resistance heating element vertically disposed in the center of the reaction vessel; A thermal diffusion tower having: an outer wall surrounding a reaction vessel to form a cryogen passage; and a cryogen source supplying cryogen to the cryogen passage.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005762A JP3023963B2 (en) | 1990-01-12 | 1990-01-12 | Hydrogen isotope separation method and thermal diffusion column therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005762A JP3023963B2 (en) | 1990-01-12 | 1990-01-12 | Hydrogen isotope separation method and thermal diffusion column therefor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03213127A true JPH03213127A (en) | 1991-09-18 |
JP3023963B2 JP3023963B2 (en) | 2000-03-21 |
Family
ID=11620142
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005762A Expired - Fee Related JP3023963B2 (en) | 1990-01-12 | 1990-01-12 | Hydrogen isotope separation method and thermal diffusion column therefor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3023963B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017213513A (en) * | 2016-05-31 | 2017-12-07 | 学校法人東海大学 | Method for separating water containing hydrogen isotope |
-
1990
- 1990-01-12 JP JP2005762A patent/JP3023963B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017213513A (en) * | 2016-05-31 | 2017-12-07 | 学校法人東海大学 | Method for separating water containing hydrogen isotope |
Also Published As
Publication number | Publication date |
---|---|
JP3023963B2 (en) | 2000-03-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5154550B2 (en) | Reactor with controlled thermal gradient for producing pure hydrogen | |
US6432174B1 (en) | Induced natural convection thermal cycling device | |
Jaeckle et al. | A liquid hydrogen/deuterium target with very thin windows | |
JP2601927B2 (en) | Isotope separation method and thermal diffusion tower used for the method | |
US4696809A (en) | Process and apparatus for thermolytically dissociating water | |
KR101217711B1 (en) | Metal hydride vessels for hydrogen isotope storage with rapid cooling characteristics | |
JPS61133116A (en) | Gas purification apparatus | |
EP0212886A1 (en) | Heat exchanger using hydrogen storage alloy | |
JPH03213127A (en) | Method for separating isotope and heat diffusion tower therefor | |
US5611208A (en) | Modified cryogenic diffusion pump | |
JP2716860B2 (en) | Isotope separation method and thermal diffusion tower used for the method | |
Edelman | A dilution microcryostat-insert | |
Warren | A pressurized helium II-cooled magnet test facility | |
US4014713A (en) | Thermoelectric generator | |
JPH10132994A (en) | Graphie deceleration reactor for thermoelectric power generation | |
CN111578745B (en) | Oil bath pool for spiral separation column in thermal cycle adsorption | |
Bilgen et al. | High temperature solar reactors for hydrogen production | |
Nacher et al. | Nuclear polarization enhancement by distillation of liquid− 4 3 He solutions | |
GB1586113A (en) | Process and apparatus for concentrating corrosive liquid using radiant heat | |
Maiorov et al. | Porous heat exchangers-classification, construction, application | |
JPS61265447A (en) | Hot-water reserving tank | |
JP2716859B2 (en) | Thermal diffusion tower | |
JPH0647256A (en) | Heat diffusion column to be used for separating isotope | |
Mitsuishi et al. | Absorption breakthrough of hydrogen isotopes in inert gas mixture and desorption characteristics with Zr Ni alloy particle bed | |
Heung | Design of metal hydride vessels for processing tritium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080121 Year of fee payment: 8 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080121 Year of fee payment: 8 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
LAPS | Cancellation because of no payment of annual fees | ||
R370 | Written measure of declining of transfer procedure |
Free format text: JAPANESE INTERMEDIATE CODE: R370 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |