JP2017213513A - Method for separating water containing hydrogen isotope - Google Patents

Method for separating water containing hydrogen isotope Download PDF

Info

Publication number
JP2017213513A
JP2017213513A JP2016109028A JP2016109028A JP2017213513A JP 2017213513 A JP2017213513 A JP 2017213513A JP 2016109028 A JP2016109028 A JP 2016109028A JP 2016109028 A JP2016109028 A JP 2016109028A JP 2017213513 A JP2017213513 A JP 2017213513A
Authority
JP
Japan
Prior art keywords
water containing
hydrogen isotope
water
facing surface
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016109028A
Other languages
Japanese (ja)
Other versions
JP6967255B2 (en
Inventor
理王 喜多
Rio Kita
理王 喜多
啓志 木村
Keishi Kimura
啓志 木村
和 諸星
Kazu Moroboshi
和 諸星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai University
Original Assignee
Tokai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai University filed Critical Tokai University
Priority to JP2016109028A priority Critical patent/JP6967255B2/en
Publication of JP2017213513A publication Critical patent/JP2017213513A/en
Application granted granted Critical
Publication of JP6967255B2 publication Critical patent/JP6967255B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To practically enable separation of water from liquid containing hydrogen isotope.SOLUTION: A method for separating water containing hydrogen isotope includes: introducing water (specimen 14) containing hydrogen isotope between a pair of facing surface members (copper plates 11, 12) facing each other; and holding a temperature difference between the copper plates 11, 12 to separate water with a relatively high-concentration of hydrogen isotope from water with a relatively low-concentration.SELECTED DRAWING: Figure 1

Description

本発明は、重水やトリチウム水などの水素同位体を含む水の分離方法に関するものである。   The present invention relates to a method for separating water containing hydrogen isotopes such as heavy water and tritium water.

原子炉などによって生成される重水素やトリチウムが外部環境に放出されるのを抑制するため、これらの水素同位体や、これらを含む重水を除去する技術が必要となる。そのための技術としては、例えば、選択透過性を有する膜を用いる技術が知られている。具体的には、部分的にジチオカーバメート化したポリ塩化ビニルをアクリロニトリル−ブタジエンゴム(NBR)とブレンドし、不均質系で光臭素化を行って得られた気体分離膜を用いて、トリチウム、重水素と軽水素とを分離する技術が提案されている(例えば、特許文献1参照。)。   In order to suppress deuterium and tritium generated by a nuclear reactor or the like from being released to the external environment, a technique for removing these hydrogen isotopes and heavy water containing them is required. As a technique for that purpose, for example, a technique using a selectively permeable membrane is known. Specifically, tritiated, heavy, and polytrichlorinated polyvinyl chloride is blended with acrylonitrile-butadiene rubber (NBR) and gas brominated in a heterogeneous system. A technique for separating hydrogen and light hydrogen has been proposed (see, for example, Patent Document 1).

特開平6−121915号公報JP-A-6-121915

しかしながら、上記のような分離膜を用いる手法は、トリチウム、重水素や軽水素などの気体の分離に適用することは容易であるが、水素同位体を含む液体状態の水の分離に適用することはできない。   However, the method using the separation membrane as described above can be easily applied to separation of gases such as tritium, deuterium, and light hydrogen, but it should be applied to separation of liquid water containing hydrogen isotopes. I can't.

本発明は、上記の点に鑑みてなされたものであり、水素同位体を含む液体状態の水の分離を実用的に可能にすることを目的としている。   The present invention has been made in view of the above points, and has an object to make it possible to practically separate liquid water containing hydrogen isotopes.

第1の発明は、
互いに対向する1対の対向面部材の間に水素同位体を含む水を導入するとともに、上記対向面部材の間に温度差を保たせて、水素同位体を含む水の濃度が相対的に高い水と、低い水とを分離することを特徴とする。
The first invention is
Water containing hydrogen isotopes is introduced between a pair of opposed surface members facing each other, and a temperature difference is maintained between the opposed surface members, so that the concentration of water containing hydrogen isotopes is relatively high. It is characterized by separating water from low water.

ここで、2種類以上の気体や液体の混合物に温度勾配を持たせると、その混合物の成分に濃度勾配を生じる現象がソレー効果等として知られている。具体的には、例えば「微細流路を用いたソーレ効果ガス分離器の高率化」(芝浦工業大学、機械機能工学科、卒業研究第2回審査会概論、2014年10月24日)と称される論文に記載されているように、「水素と二酸化炭素との系では、軽分子系分子は高温領域に移動し、重分子は低温領域に移動する」現象が確認されている。   Here, when a temperature gradient is given to a mixture of two or more kinds of gases and liquids, a phenomenon in which a concentration gradient is generated in the components of the mixture is known as the Soray effect. Specifically, for example, “Higher efficiency of a sore effect gas separator using a fine channel” (Shibaura Institute of Technology, Department of Mechanical Engineering, Introduction to Graduation Research 2nd Review Meeting, October 24, 2014) As described in this paper, the phenomenon that “in the system of hydrogen and carbon dioxide, light molecular molecules move to a high temperature region and heavy molecules move to a low temperature region” has been confirmed.

しかしながら、上記現象は濃度勾配の計測が容易でない場合が多いことなどから、そのメカニズムや、種々の物質に関する挙動は不明な点が多いのが現状である。特に、水のような液体においては、一般に水素結合が分子の挙動に与える影響等が複雑に関係すると考えられ、さらに水素同位体の検出の難しさから水素同位体を含む水のソレー効果に関する現象は確認されていなかった。   However, since the above-mentioned phenomenon is often not easy to measure the concentration gradient, there are many unclear points regarding the mechanism and behavior of various substances. In particular, in liquids such as water, the effects of hydrogen bonding on molecular behavior are generally considered to be complicated, and the phenomenon related to the Soret effect of water containing hydrogen isotopes due to the difficulty in detecting hydrogen isotopes. Was not confirmed.

これに対して、本願発明者らは種々実験を繰り返した結果、水素同位体を含む水においては、温度勾配に応じて、上記論文とは逆の分子量の大きい水素同位体を含む水が高温側に移動して濃度勾配が生じることを確認し、さらに、その分離効率は、例えば東京電力福島第一原子力発電所の汚染水に含まれるトリチウム濃度を国の規制値濃度まで低下させるのに実用化可能なレベルであり得ることを確認し、本願発明を完成させたものである。   In contrast, the inventors of the present application have repeated various experiments. As a result, in water containing a hydrogen isotope, water containing a hydrogen isotope having a large molecular weight, which is opposite to that in the above paper, is higher on the high temperature side depending on the temperature gradient. In addition, the separation efficiency has been put into practical use to reduce the concentration of tritium contained in the contaminated water of the Tokyo Electric Power Fukushima Daiichi NPS to the national regulation level, for example. The present invention has been completed by confirming that it can be at a possible level.

上記対向面部材は、互いに平行な平板状の対向面を有するようにしてもよい。これによって、例えば水素同位体を含む水が導入される領域の均質化を図り易くすることができる。   The opposing surface member may have a flat opposing surface parallel to each other. As a result, for example, it is possible to easily homogenize a region into which water containing a hydrogen isotope is introduced.

上記のようにして分離された水素同位体を取り出す方法の具体的な例としては、例えば、
上記対向面部材の間に導入された水素同位体を含む水が静止状態に保たれ、かつ、上記対向面部材の温度差が保たれた状態で、高温側対向面部材の近傍における水素同位体を含む水の濃度が相対的に高い水を取り出す一方、上記高温側対向面部材の近傍よりも低温側対向面部材側における水素同位体を含む水の濃度が相対的に低い水を取り出すようにしてもよい。
As a specific example of a method for extracting the hydrogen isotope separated as described above, for example,
Hydrogen isotope in the vicinity of the high temperature side facing surface member in a state where water containing the hydrogen isotope introduced between the facing surface members is kept stationary and the temperature difference of the facing surface member is maintained Water having a relatively high concentration of water containing hydrogen is extracted, while water having a relatively low concentration of water containing a hydrogen isotope on the low temperature side facing surface member side is taken out from the vicinity of the high temperature side facing surface member. May be.

また、
上記対向面部材の間に水素同位体を含む水を連続的に導入し、かつ、下流側における高温側対向面部材の近傍における水素同位体を含む水の濃度が相対的に高い水を取り出す一方、上記高温側対向面部材の近傍よりも低温側対向面部材側における水素同位体を含む水の濃度が相対的に低い水を取り出すようにしてもよい。
Also,
While continuously introducing water containing hydrogen isotopes between the facing surface members, and taking out water having a relatively high concentration of water containing hydrogen isotopes in the vicinity of the high temperature side facing surface member on the downstream side Further, water having a relatively low concentration of water containing a hydrogen isotope on the low temperature side facing surface member side than the vicinity of the high temperature side facing surface member may be taken out.

また、
上記水素同位体を含む水の導入、および取り出しを多段階行うようにしてもよい。これによって、トリチウム水の濃度を大幅に減少させることなどが容易にできる。
Also,
The introduction and extraction of water containing the hydrogen isotope may be performed in multiple stages. Thereby, it is possible to easily reduce the concentration of tritium water.

本発明によれば、水素同位体を含む液体の水の分離を実用的に可能にすることができる。   According to the present invention, separation of liquid water containing hydrogen isotopes can be made practical.

分離装置の構成を模式的に示す縦断面図である。It is a longitudinal cross-sectional view which shows the structure of a separation apparatus typically. 初期濃度および温度差と重量分率の差との関係を示すグラフである。It is a graph which shows the relationship between an initial density | concentration and a temperature difference, and the difference of a weight fraction.

以下、本発明の実施形態を図面に基づいて詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

(分離装置)
水素同位体を含む水を分離する分離装置は、例えば、図1に示すように、互いに平行な平板状の対向面を有する1対の対向面部材である銅板11・12が、透明な部材から成る壁部材13を介して接合されて成っている。上記銅板11・12の間には、上記対向面に平行な面内の形状が寸法D=40mmの矩形で、対向面間の寸法H=1.5mmの分離室が形成され、試料14が導入されるようになっている。また、各銅板11・12の対向面と反対側の表面には、ペルチェ素子15・16が設けられ、銅板11・12の対向面の温度を0〜100℃の範囲などに設定することにより両対向面の温度差ΔTを最大100Kなどに設定し得るようになっている。
(Separator)
As shown in FIG. 1, for example, as shown in FIG. 1, a separation apparatus that separates water containing hydrogen isotopes includes a pair of opposing surface members, copper plates 11 and 12, which are a pair of opposing surface members, from a transparent member. It joins via the wall member 13 which consists of. Between the copper plates 11 and 12, a separation chamber having a dimension D = 40 mm in a plane parallel to the facing surface and a dimension H = 1.5 mm between the facing surfaces is formed, and the sample 14 is introduced. It has come to be. Further, Peltier elements 15 and 16 are provided on the surface opposite to the facing surface of each copper plate 11 and 12, and both are set by setting the temperature of the facing surface of the copper plates 11 and 12 to a range of 0 to 100 ° C. The temperature difference ΔT between the opposing surfaces can be set to a maximum of 100K.

(水素同位体を含む水の分離)
上記銅板11・12間に形成された分離室に、重水(DO)と軽水(HO)とを、重水(DO)の濃度が25mol%、または75mol%となるように混合した試料14を導入し、銅板11・12の対向面の温度差ΔTを10K、または20Kに保つとともに、壁部材13、および試料14にレーザ光を透過させて屈折角を計測し、銅板11・12の各対向面近傍領域の試料14の半重水(DHO)の重量分率差ΔCを求めたところ、ほぼ定常状態となる5時間後には図2に示すようになった(重水の濃度が75mol%、温度差ΔTが10Kの場合については2回計測した結果をプロットしている。)。
(Separation of water containing hydrogen isotopes)
In the separation chamber formed between the copper plates 11 and 12, heavy water (D 2 O) and light water (H 2 O) are mixed so that the concentration of heavy water (D 2 O) is 25 mol% or 75 mol%. The sample 14 is introduced, the temperature difference ΔT between the opposing surfaces of the copper plates 11 and 12 is maintained at 10K or 20K, and the laser beam is transmitted through the wall member 13 and the sample 14 to measure the refraction angle. When the weight fraction difference ΔC of the half-heavy water (DHO) of the sample 14 in the vicinity of each of the 12 opposing surfaces was obtained, it was as shown in FIG. % And the temperature difference ΔT is 10K, the results of the measurement twice are plotted.)

上記計測により、分子量の大きな半重水は高温側の銅板11側に移動し、例えば、初期濃度が75mol%、温度差ΔTが20Kのとき、分離効率は100×[上下の濃度差]/[仕込み濃度]から0.383%と得られる。上記のような分離現象は、水素同位体として重水素に限らずトリチウムを含む場合にも起こる。さらに、水と半重水からなる溶液よりも、水(H2O:分子量18)とトリチウム水(THO:分子量20)から成る溶液の方が水素同位体の分子量の差が大きいため、温度勾配による分離が起こりやすい。   According to the above measurement, the semi-heavy water with a large molecular weight moves to the copper plate 11 side on the high temperature side. Concentration] is 0.383%. Such a separation phenomenon occurs not only when deuterium is used as a hydrogen isotope but also when tritium is included. Furthermore, since the difference in the molecular weight of hydrogen isotopes is greater in a solution composed of water (H 2 O: molecular weight 18) and tritium water (THO: molecular weight 20) than in a solution composed of water and semi-heavy water, the separation due to the temperature gradient is reduced. It is easy to happen.

ここで、初期濃度w0のトリチウム水を分離効率Pでn回繰り返して処理したときの最終濃度wfは、
wf=w0×(1−P)
となる。ここでは、分離効率に濃度依存性がないと仮定している。
Here, the final concentration wf when the tritium water with the initial concentration w0 is repeatedly processed n times with the separation efficiency P is:
wf = w0 × (1-P) n
It becomes. Here, it is assumed that the separation efficiency has no concentration dependency.

そこで、例えば東京電力福島第一原子力発電所の汚染水に含まれるトリチウム濃度(季節変動により0.5×10〜4.2×10Bq/L)のうち最高の濃度の場合に、国の規制値である6×10Bq/Lの濃度に低下させるためには、n=1107回の処理を繰り返せばよく、1回あたりの処理時間が上記のように5時間とすると230日となり、現実的に実用化レベルの分離効率が得られていることになる。また、重水の濃度が25mol%、銅板11・12間の温度差ΔTが10Kの場合などでも、やはり十分に実用化レベルであり、また、後述のような処理時間の短縮も可能である。 Therefore, for example, in the case of the highest concentration of the tritium concentration (0.5 × 10 6 to 4.2 × 10 6 Bq / L due to seasonal variation) contained in the contaminated water of TEPCO Fukushima Daiichi Nuclear Power Station, In order to reduce the concentration to 6 × 10 4 Bq / L, which is the regulation value of n, it is sufficient to repeat n = 1107 times, and if the processing time per time is 5 hours as described above, it becomes 230 days. In practice, separation efficiency at a practical level is obtained. Further, even when the concentration of heavy water is 25 mol% and the temperature difference ΔT between the copper plates 11 and 12 is 10 K, it is still at a practical level, and the processing time can be shortened as described later.

なお、上記のように銅板11・12間に導入されて静止状態に保たれた水を取り出す方法は特に限定されず、例えば、濃度勾配を大きく崩すことなく、銅板11・12間に仕切り壁を徐々に挿入して取り出したり、銅板11・12間の水を仕切り壁で区画された部屋に徐々に押し出して取り出したりしてもよい。   In addition, the method of taking out the water introduced between the copper plates 11 and 12 and kept in a stationary state as described above is not particularly limited. For example, a partition wall is not provided between the copper plates 11 and 12 without greatly breaking the concentration gradient. It may be gradually inserted and taken out, or water between the copper plates 11 and 12 may be gradually pushed out into a room partitioned by a partition wall and taken out.

一方、銅板11・12間に、層流状態を保つような形で水を徐々に導入し、下流側で銅板11側と銅板12側とに分岐させて連続的に取り出し得るようにしたりしてもよい。そのような分離のための装置は、例えばマイクロ流体デバイス技術を用いて作製することも容易にできる。また、そのような連続処理が可能な装置は、複数組み合わせて、上記のような繰り返し処理を可能にすることが特に容易である。   On the other hand, water is gradually introduced between the copper plates 11 and 12 in such a way that a laminar flow state is maintained, and the water is branched into the copper plate 11 side and the copper plate 12 side on the downstream side so that they can be taken out continuously. Also good. An apparatus for such separation can also be easily made using, for example, microfluidic device technology. In addition, it is particularly easy to combine a plurality of apparatuses capable of such continuous processing to enable the above-described repeated processing.

(処理時間の短縮について)
上記処理時間は一例であり、以下のような種々の短縮手法や、これらの組み合わせによって短縮することが容易に可能である。
(About reduction of processing time)
The above processing time is an example, and can be easily shortened by the following various shortening methods and combinations thereof.

まず、上記のような分離過程は、次のような指数関数に従う濃度勾配形成現象であると考えられる。
w(t)=w0 exp(−t/τ)
ここで、
w0:初期濃度
t:経過時間
τ:時定数(例えば1.05h)
である。
First, the separation process as described above is considered to be a concentration gradient formation phenomenon according to the following exponential function.
w (t) = w0 exp (−t / τ)
here,
w0: initial concentration t: elapsed time τ: time constant (for example, 1.05 h)
It is.

そこで、上記のように1回あたりの処理時間を5時間とすると230日要するのに対し、定常状態となるのを待つことなく、1回の処理時間を1時間として繰り返し処理すれば75日、10分とすれば52日で上記と同様の濃度低下を得られることになる。   Therefore, if the processing time per time is 5 hours as described above, it takes 230 days, but without waiting for the steady state to be reached, the processing time of one time is 75 days if it is repeatedly processed. If the time is 10 minutes, the same decrease in density can be obtained in 52 days.

また、銅板11・12間の温度勾配を大きくすれば、より分離効率を高くでき、例えば線形応答の過程が成り立つ範囲では、温度差を2倍にすることによって濃度差を2倍にすることができ、やはり処理時間の短縮が可能となる。   Further, if the temperature gradient between the copper plates 11 and 12 is increased, the separation efficiency can be further increased. For example, in the range where the linear response process is established, the concentration difference can be doubled by doubling the temperature difference. It is possible to shorten the processing time.

また、上記分離過程における時定数τは、銅板11・12の対向面間の寸法Hの2乗に反比例すると考えられるので、上記寸法Hを1/2にすると時定数τは1/4となり、やはり処理時間の短縮が可能となる。   In addition, since the time constant τ in the separation process is considered to be inversely proportional to the square of the dimension H between the opposing surfaces of the copper plates 11 and 12, when the dimension H is halved, the time constant τ becomes ¼. The processing time can also be shortened.

なお、例えばエチレングリコールの場合に重量分率が0.01%以下の溶液で分離の濃度依存性が線形性からずれ、低濃度になるほど分離効率が高くなることが知られている。そこで、トリチウム濃度が非常に低濃度である場合には、分離効率が格段に大きくなって処理日数がより短縮されることも期待される。   For example, in the case of ethylene glycol, it is known that the concentration dependence of separation deviates from linearity in a solution having a weight fraction of 0.01% or less, and the separation efficiency increases as the concentration decreases. Therefore, when the tritium concentration is very low, it is expected that the separation efficiency is remarkably increased and the number of treatment days is further shortened.

(その他の事項)
なお、上記の例では銅板11・12の対向面は互いに平行な平板状である例を示したが、これに限らず、対向面に勾配を持たせて温度勾配を領域によって異ならせるようにしたり、水素同位体を含む水を流通させる場合に流路断面積を変化させて流速を下流側に向けて増減させるようにしたりしてもよい。下流の分離部分には、分離板を設置してもよい。さらに、表面の形状を平板状に限らず、起伏を持たせるようにしたりしてもよい。平板の材料は、熱伝導率が高い材料であれば、銅板でなくてもよい。例えば、銀、アルミニウム、窒化ケイ素セラミックスなどでもよい。
(Other matters)
In the above example, the facing surfaces of the copper plates 11 and 12 are flat plates that are parallel to each other. However, the present invention is not limited to this, and the temperature gradient can be varied depending on the region by providing the facing surfaces with a gradient. In addition, when water containing hydrogen isotopes is circulated, the flow passage cross-sectional area may be changed to increase or decrease the flow velocity toward the downstream side. A separation plate may be installed in the downstream separation portion. Furthermore, the shape of the surface is not limited to a flat plate shape, and may be provided with undulations. The flat plate material may not be a copper plate as long as it has a high thermal conductivity. For example, silver, aluminum, silicon nitride ceramics, etc. may be used.

11 銅板
12 銅板
13 壁部材
14 試料
15 ペルチェ素子
16 ペルチェ素子
11 Copper plate
12 Copper plate
13 Wall members
14 samples
15 Peltier elements
16 Peltier elements

Claims (5)

互いに対向する1対の対向面部材の間に水素同位体を含む水を導入するとともに、上記対向面部材の間に温度差を保たせて、水素同位体を含む水の濃度が相対的に高い水と、低い水とを分離することを特徴とする水素同位体を含む水の分離方法。   Water containing hydrogen isotopes is introduced between a pair of opposed surface members facing each other, and a temperature difference is maintained between the opposed surface members, so that the concentration of water containing hydrogen isotopes is relatively high. A method for separating water containing a hydrogen isotope, characterized by separating water and low water. 請求項1の水素同位体を含む水の分離方法であって、
上記対向面部材は、互いに平行な平板状の対向面を有することを特徴とする水素同位体を含む水の分離方法。
A method for separating water containing a hydrogen isotope according to claim 1,
The method for separating water containing a hydrogen isotope, wherein the facing surface member has flat facing surfaces parallel to each other.
請求項1または請求項2の水素同位体を含む水の分離方法であって、
上記対向面部材の間に導入された水素同位体を含む水が静止状態に保たれ、かつ、上記対向面部材の温度差が保たれた状態で、高温側対向面部材の近傍における水素同位体を含む水の濃度が相対的に高い水を取り出す一方、上記高温側対向面部材の近傍よりも低温側対向面部材側における水素同位体を含む水の濃度が相対的に低い水を取り出すことを特徴とする水素同位体を含む水の分離方法。
A method for separating water containing a hydrogen isotope according to claim 1 or claim 2,
Hydrogen isotope in the vicinity of the high temperature side facing surface member in a state where water containing the hydrogen isotope introduced between the facing surface members is kept stationary and the temperature difference of the facing surface member is maintained Removing water having a relatively high concentration of water containing hydrogen, and taking out water having a relatively low concentration of water containing a hydrogen isotope on the low temperature side facing surface member side than the vicinity of the high temperature side facing surface member. A method for separating water containing hydrogen isotopes.
請求項1または請求項2の水素同位体を含む水の分離方法であって、
上記対向面部材の間に水素同位体を含む水を連続的に導入し、かつ、下流側における高温側対向面部材の近傍における水素同位体を含む水の濃度が相対的に高い水を取り出す一方、上記高温側対向面部材の近傍よりも低温側対向面部材側における水素同位体を含む水の濃度が相対的に低い水を取り出すことを特徴とする水素同位体を含む水の分離方法。
A method for separating water containing a hydrogen isotope according to claim 1 or claim 2,
While continuously introducing water containing hydrogen isotopes between the facing surface members, and taking out water having a relatively high concentration of water containing hydrogen isotopes in the vicinity of the high temperature side facing surface member on the downstream side A method for separating water containing a hydrogen isotope, wherein water having a relatively low concentration of water containing a hydrogen isotope on the low temperature side facing surface member side than the vicinity of the high temperature side facing surface member is taken out.
請求項3または請求項4の水素同位体を含む水の分離方法であって、
上記水素同位体を含む水の導入、および取り出しを多段階行うことを特徴とする水素同位体を含む水の分離方法。
A method for separating water containing a hydrogen isotope according to claim 3 or claim 4,
A method for separating water containing a hydrogen isotope, comprising introducing and removing water containing the hydrogen isotope in multiple stages.
JP2016109028A 2016-05-31 2016-05-31 Method for separating water containing hydrogen isotopes Active JP6967255B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016109028A JP6967255B2 (en) 2016-05-31 2016-05-31 Method for separating water containing hydrogen isotopes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016109028A JP6967255B2 (en) 2016-05-31 2016-05-31 Method for separating water containing hydrogen isotopes

Publications (2)

Publication Number Publication Date
JP2017213513A true JP2017213513A (en) 2017-12-07
JP6967255B2 JP6967255B2 (en) 2021-11-17

Family

ID=60576091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016109028A Active JP6967255B2 (en) 2016-05-31 2016-05-31 Method for separating water containing hydrogen isotopes

Country Status (1)

Country Link
JP (1) JP6967255B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019114506A1 (en) 2018-06-01 2019-12-05 Jtekt Corporation coupling device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03213127A (en) * 1990-01-12 1991-09-18 Kazuyoshi Yamamoto Method for separating isotope and heat diffusion tower therefor
JP2003521362A (en) * 1998-03-25 2003-07-15 エー. パターソン,ジェイムズ Apparatus and method for separating heavy isotope oxides of hydrogen from water
US20070246344A1 (en) * 2006-04-25 2007-10-25 Ge Healthcare Uk Limited Process for tritium removal from light water
WO2016098862A1 (en) * 2014-12-17 2016-06-23 国立研究開発法人産業技術総合研究所 Element array, element, component separation method for fluid, and method for manufacturing element array

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03213127A (en) * 1990-01-12 1991-09-18 Kazuyoshi Yamamoto Method for separating isotope and heat diffusion tower therefor
JP2003521362A (en) * 1998-03-25 2003-07-15 エー. パターソン,ジェイムズ Apparatus and method for separating heavy isotope oxides of hydrogen from water
US20070246344A1 (en) * 2006-04-25 2007-10-25 Ge Healthcare Uk Limited Process for tritium removal from light water
WO2016098862A1 (en) * 2014-12-17 2016-06-23 国立研究開発法人産業技術総合研究所 Element array, element, component separation method for fluid, and method for manufacturing element array

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019114506A1 (en) 2018-06-01 2019-12-05 Jtekt Corporation coupling device

Also Published As

Publication number Publication date
JP6967255B2 (en) 2021-11-17

Similar Documents

Publication Publication Date Title
Janca Field-flow fractionation
Saxena et al. Thermal accommodation and adsorption coefficients of gases
Zhu et al. Dielectrophoretic focusing of particles in a microchannel constriction using DC‐biased AC flectric fields
Eslamian Advances in thermodiffusion and thermophoresis (Soret effect) in liquid mixtures
Kang et al. Pattern formation of three-dimensional electroconvection on a charge selective surface
JP2017213513A (en) Method for separating water containing hydrogen isotope
Baek et al. Dynamics of driftless preconcentration using ion concentration polarization leveraged by convection and diffusion
Khashei et al. Microparticles manipulation and enhancement of their separation in pinched flow fractionation by insulator‐based dielectrophoresis
Huang et al. Microfluidic multi-angle laser scattering system for rapid and label-free detection of waterborne parasites
Bigenwald et al. RBD-specific Th1 responses are associated with vaccine-induced protection against SARS-CoV-2 infection in patients with hematological malignancies
Terray et al. Cascade optical chromatography for sample fractionation
Yu et al. Determination of short-and medium-chain chlorinated paraffins in different components of human blood using gas chromatography-electron capture negative ion-low resolution mass spectrometry
WO2018065985A1 (en) Device and method for isotachophoretic focusing large sample volumes
Bénichou et al. Unbinding transition of probes in single-file systems
Mahajan et al. Effect of rotation on a layer of ferrofluid for a local thermal nonequilibrium model with a heat source: Weakly nonlinear analysis
Unterlander et al. Accelerated SDS depletion from proteins by transmembrane electrophoresis: Impacts of Joule heating
Luitz et al. Facile integration of electronics in glass microfluidic devices for electrochemical synthesis and analysis
Reddy et al. Soret and Dufour Effects on Radiation Absorption Fluid in the Presence of Exponentially Varying Temperature and Concentration in a Conducting Field
JP6425958B2 (en) Electrophoresis apparatus, electrophoresis method and concentration / separation / analysis method using electrophoresis method
Agarwal et al. A review of FACS: fluorescence activated cell sorting system
Oishi et al. An analysis of gaseous diffusion separating unit
Tserkovnikov ON THE CONVECTIVE INSTABILITY OF THE PLASMA
Hershey et al. Soret coefficients for CuSO4, CoSO4, and mixed salt aqueous solutions using an improved design of a Soret cell
Ge et al. Joule Heating Induced Temperature Gradient Focusing for Microfluidic Concentration of Samples
Nooryani Phoretic Phenomena of Colloidal Particles in a Dead-end Pore Microfluidic Channel

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20160705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160705

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200908

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20201109

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210706

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210706

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210715

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211018

R150 Certificate of patent or registration of utility model

Ref document number: 6967255

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350