JPH0647256A - Heat diffusion column to be used for separating isotope - Google Patents
Heat diffusion column to be used for separating isotopeInfo
- Publication number
- JPH0647256A JPH0647256A JP9954991A JP9954991A JPH0647256A JP H0647256 A JPH0647256 A JP H0647256A JP 9954991 A JP9954991 A JP 9954991A JP 9954991 A JP9954991 A JP 9954991A JP H0647256 A JPH0647256 A JP H0647256A
- Authority
- JP
- Japan
- Prior art keywords
- heat diffusion
- heating element
- wall
- reactor
- isotope
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は熱拡散を利用した同位体
分離の実施に用いる熱拡散塔に関し、特に熱拡散塔の反
応容器構成部材の材質(物理特性)を最適化することに
よって、熱効率の向上を図り、省エネルギー化を達成す
ることができる熱拡散塔に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat diffusion tower used for carrying out isotope separation utilizing heat diffusion, and in particular, by optimizing the material (physical characteristics) of the reaction vessel constituent members of the heat diffusion tower, the thermal efficiency is improved. The present invention relates to a heat diffusion tower capable of improving energy efficiency and achieving energy saving.
【0002】[0002]
【従来の技術】従来の熱拡散を利用した同位体分離は熱
線を中心軸上に備えた熱拡散塔によって行っている。熱
拡散塔の外壁は温度上昇を防ぐために水冷ジャケットに
よって覆われる。このような熱拡散塔において,中央の
熱線を600℃〜1000℃に加熱すると半径方向に大
きな温度勾配が形成される。こうして熱拡散塔内に大き
な温度勾配を形成し,そこに例えば(H2+D2)混合
ガスを導入すると、質量の異なるガス分子は温度勾配に
沿って異なる分布を示すことになり、相対的に質量の大
きいガス分子は低温側に、質量の小さいガス分子は高温
側に濃縮される。さらに熱拡散塔内には対流が生じ、熱
線周囲の高温ガスは上に上昇し、水冷壁近傍の低温ガス
は下へ下降する。このようにして,熱拡散塔の底部から
D2を濃縮したガスが,熱拡散塔頂部からはH2を濃縮
したガスが得られる。2. Description of the Related Art Isotope separation using conventional thermal diffusion is carried out by a thermal diffusion tower having a heat ray on its central axis. The outer wall of the heat diffusion tower is covered with a water cooling jacket to prevent temperature rise. In such a heat diffusion tower, when the central heating wire is heated to 600 ° C to 1000 ° C, a large temperature gradient is formed in the radial direction. In this way, when a large temperature gradient is formed in the heat diffusion tower and, for example, (H2 + D2) mixed gas is introduced therein, gas molecules having different masses have different distributions along the temperature gradient, and thus the mass having a relatively large mass. Gas molecules are concentrated on the low temperature side, and gas molecules with a small mass are concentrated on the high temperature side. Further, convection occurs in the heat diffusion tower, the high-temperature gas around the heat wire rises upward, and the low-temperature gas near the water cooling wall descends downward. In this way, a gas enriched with D2 is obtained from the bottom of the thermal diffusion tower, and a gas enriched with H2 is obtained from the top of the thermal diffusion tower.
【0003】従来の熱拡散塔の容器壁材は、例えばSU
S304.316等のステンレス鋼で製作されていた。
また、熱拡散塔の長さ方向の中心部に設置された白金、
タングステン等の発熱体を1000℃程度に昇温させ,
熱拡散塔の壁面はその外側から冷却水で冷却して熱拡散
塔の容器半径方向に所定の温度勾配を設けている。ここ
で、熱拡散塔の外壁面は冷却水と熱平衡の状態にあると
考えていた。A conventional vessel wall material for a heat diffusion tower is, for example, SU.
It was made of stainless steel such as S304.316.
Also, platinum installed in the central portion of the length of the heat diffusion tower,
Heat a heating element such as tungsten to about 1000 ° C,
The wall surface of the heat diffusion tower is cooled with cooling water from the outside, and a predetermined temperature gradient is provided in the radial direction of the container of the heat diffusion tower. Here, it was considered that the outer wall surface of the heat diffusion tower was in thermal equilibrium with the cooling water.
【0004】また、本出願人は先に寒剤を用いて冷壁を
常温以下に冷却し、温壁の温度を比較的低く設定出来る
熱拡散塔を提案した(特願平2─5762,2─420
49)。ここでも冷壁は寒剤と熱平衡にあると考えてい
た。Further, the present applicant has previously proposed a heat diffusion tower in which the cold wall is cooled to a temperature lower than room temperature by using a cryogen, and the temperature of the hot wall can be set relatively low (Japanese Patent Application No. 2-5762,2- 420
49). Again, I thought the cold wall was in thermal equilibrium with the cryogen.
【0005】[0005]
【発明が解決しようとする課題】従来の熱拡散塔では大
きな温度勾配をとるために必要な発熱体への投入エネル
ギーが大きく、発熱量の関係から寿命となりやすい発熱
体の取替えが煩雑であった。必要な投入エネルギーは少
なければ少ないほどコストが低減し、発熱体の寿命も向
上する。In the conventional heat diffusion tower, the energy input to the heating element required to have a large temperature gradient is large, and it is complicated to replace the heating element which tends to reach the end of its life due to the calorific value. . The lower the input energy required, the lower the cost and the longer the life of the heating element.
【0006】この発明は、熱拡散塔の構成を新たな観点
から考察し、熱拡散塔容器内の温度勾配が大きく取れて
同位体の分離効率が向上するとともに,熱拡散塔の中心
の発熱体に負荷する電気的エネルギーが少なくて発熱体
の寿命も伸び、装置全体としての省エネルギー化の図れ
る熱拡散塔を提供することを目的とする。The present invention considers the structure of the heat diffusion tower from a new point of view, the temperature gradient in the heat diffusion tower container can be made large to improve the isotope separation efficiency, and the heating element at the center of the heat diffusion tower can be improved. It is an object of the present invention to provide a heat diffusion tower in which the electrical energy applied to the device is small, the life of the heating element is extended, and the energy of the entire device can be saved.
【0007】[0007]
【課題を解決するための手段】本発明の同位体分離に用
いる熱拡散塔では,アルミニュウムで形成された外壁を
有し、ガスを気密収容することのできる鉛直方向に長い
反応器と、反応器の中央部に鉛直に配置された抵抗加熱
体と、反応器の外壁を冷却する冷却手段とを有するもの
である。In a thermal diffusion column used for isotope separation of the present invention, a vertically long reactor having an outer wall formed of aluminum and capable of hermetically containing gas, and a reactor A resistance heating element vertically arranged in the center of the reactor and a cooling means for cooling the outer wall of the reactor.
【0008】[0008]
【作用】従来のステンレス鋼と比較して輻射率の高いア
ルミニュウム材を熱拡散塔の壁材として用いることで、
放熱を増大させる。壁材の昇温を低く抑えることができ
るために温度勾配を形成する中心の発熱体に負荷する電
気エネルギーが少なくてすみ、壁材を冷却する液体窒素
等の使用量(蒸発量)も少なく抑えられる。[Operation] By using an aluminum material, which has a higher emissivity than that of conventional stainless steel, as the wall material of the heat diffusion tower,
Increase heat dissipation. Since the temperature rise of the wall material can be kept low, less electric energy is applied to the central heating element that forms the temperature gradient, and the amount of liquid nitrogen used to cool the wall material (evaporation amount) is also kept small. To be
【0009】[0009]
【実施例】以下、図示するこの発明の実施例に基づいて
説明する。図1は、この発明の同位体分離に用いる熱拡
散塔の実施例を示す図である。この図1の構成におい
て、熱拡散塔の反応容器1はアルミニュウムで構成され
た気密管状容器である。この反応容器1の形状は、例え
ば内径約30mm、長さ約92cmの寸法に形成され
る。反応容器1は鉛直に立てられ、その外壁は寒剤ジャ
ケット3に覆われている。寒剤ジャケット3は反応容器
1と同様にアルミニュウムでも良いが、より好ましくは
熱伝導率の低いステンレスで構成され、反応容器1の外
壁との間に寒剤を収容するジャケットを形成する。な
お、破損等の心配がない場合等には寒剤ジャケット3を
ガラス等で形成してもよい。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of the present invention will be described below. FIG. 1 is a diagram showing an embodiment of a thermal diffusion tower used for isotope separation of the present invention. In the configuration of FIG. 1, the reaction vessel 1 of the heat diffusion tower is an airtight tubular vessel made of aluminum. The shape of the reaction vessel 1 is, for example, an inner diameter of about 30 mm and a length of about 92 cm. The reaction container 1 is erected vertically, and the outer wall of the reaction container 1 is covered with a cryogen jacket 3. The cryogen jacket 3 may be made of aluminum as in the reaction vessel 1, but is preferably made of stainless steel having a low thermal conductivity, and forms a jacket for accommodating the cryogen with the outer wall of the reaction vessel 1. The cryogen jacket 3 may be formed of glass or the like when there is no concern about breakage.
【0010】寒剤としては、たとえば、液体窒素、液体
空気、液体水素、フレオン等の0℃以下で作動する液体
または気体を用いる。すなわち、反応容器1の外壁は常
温以上に昇温するのを防止するために水冷するのではな
く、常温以下好ましくは0℃以下に冷却するために寒剤
で冷却する。As the cryogen, for example, liquid nitrogen, liquid air, liquid hydrogen, freon or other liquid or gas that operates at 0 ° C. or lower is used. That is, the outer wall of the reaction vessel 1 is not cooled with water in order to prevent the temperature from rising above room temperature, but is cooled with a cryogen to cool below room temperature, preferably below 0 ° C.
【0011】寒剤ジャケット3の下端には寒剤入口7が
設けられており、寒剤源6に接続されている。また、寒
剤ジャケット3の上端には寒剤出口8が設けられてお
り、反応容器1の外壁で熱せられた寒剤の排出口を形成
する。必要に応じて、寒剤出口8を寒剤源6に寒剤循環
路11で接続すれば、寒剤を循環、再使用することがで
きる。複数の同位体を含む処理ガスは、処理ガス出入口
10から導入、導出される。A cryogen inlet 7 is provided at the lower end of the cryogen jacket 3 and is connected to a cryogen source 6. A freezing agent outlet 8 is provided at the upper end of the freezing agent jacket 3 to form an outlet for the freezing agent heated by the outer wall of the reaction vessel 1. If necessary, if the cryogen outlet 8 is connected to the cryogen source 6 by the cryogen circulation path 11, the cryogen can be circulated and reused. The processing gas containing a plurality of isotopes is introduced and discharged from the processing gas inlet / outlet 10.
【0012】反応容器1内においては、中央軸に沿って
熱線2が配置されている。この熱線2は下端に重り5が
接続さており,熱線2は重りの作用により鉛直に張った
状態で保持される。In the reaction vessel 1, a heating wire 2 is arranged along the central axis. A weight 5 is connected to the lower end of the heat wire 2, and the heat wire 2 is held in a vertically stretched state by the action of the weight.
【0013】熱線2は電流を流すことによって加熱され
るヒータであるが、加熱される温度は水素同位体を分離
する場合、同位体平衡反応を抑圧するためには200℃
以下が好ましい。寒剤として液体窒素等を用いればこの
ように低い温壁温度が可能である。この程度の温度に昇
温することのできるヒータ材料は、タングステン他ステ
ンレス等の広い範囲から選択することができる。ただ
し、熱線2として、触媒作用な顕著なパラジウム、白
金、ないしそれらの合金は用いない。熱線2は、たとえ
ば半径150μmのワイヤで形成される。The heating wire 2 is a heater which is heated by passing an electric current, and the heating temperature is 200 ° C. in order to suppress the isotope equilibrium reaction when hydrogen isotopes are separated.
The following are preferred. If liquid nitrogen or the like is used as the cryogen, such a low hot wall temperature is possible. The heater material that can raise the temperature to this level can be selected from a wide range such as tungsten and stainless steel. However, as the heat ray 2, palladium, platinum, or their alloys having a remarkable catalytic action is not used. The heating wire 2 is formed of a wire having a radius of 150 μm, for example.
【0014】熱線2の途中には、複数個のスペーサ9が
設けられており、熱線2と反応容器1の内壁との距離を
均等に保つ。このスペーサ9は、反応容器1内での気体
の流れを妨げないように、たとえば十字形等に設計され
る。熱線2はヒータ電極4に接続され、図示しないもう
一方の電極との間に電流を流すことによって、抵抗加熱
で発熱する。A plurality of spacers 9 are provided in the middle of the heating wire 2 to keep the distance between the heating wire 2 and the inner wall of the reaction vessel 1 uniform. The spacer 9 is designed, for example, in a cross shape so as not to hinder the flow of gas in the reaction vessel 1. The heating wire 2 is connected to the heater electrode 4 and generates heat by resistance heating by passing an electric current between the heating wire 2 and the other electrode (not shown).
【0015】なお、冷壁を寒剤で冷却する場合を説明し
たが、冷壁を水冷等することもできる。冷壁が常温の場
合熱線は高温に加熱する。Although the case where the cold wall is cooled with a cooling agent has been described, the cold wall may be water-cooled. When the cold wall is at room temperature, the heating wire is heated to a high temperature.
【0016】ここで、図2に示した壁材のちがいによる
反応容器1の外表面温度特性図について説明する。この
図2では,壁材を従来のステンレス鋼を使った場合と、
アルミニュウム材を使った場合の反応容器1の外表面の
時間経過に伴う温度上昇特性を測定したものである。双
方の場合とも発熱体である熱線2としては白金を用い、
通電量は一定値とし、壁材の板厚はそれぞれ2mm、真
空度は0.01Torrとした。すなわち、壁材以外は
同一条件とした。この結果、反応容器1の中心部である
熱線2の温度を一定にしたにもかかわらず,従来のステ
ンレス鋼の場合の温度上昇に比べて本発明のアルミニュ
ウム材を採用した壁材では温度上昇が極めて低く抑えら
れるとが確認された。これはステンレスとアルミニュウ
ムの輻射率の差によるものと考えられる。Here, the outer surface temperature characteristic diagram of the reaction container 1 due to the difference in the wall material shown in FIG. 2 will be described. In this Fig. 2, the case of using the conventional stainless steel wall material,
The temperature rise characteristics of the outer surface of the reaction container 1 with time are measured when an aluminum material is used. In both cases, platinum is used as the heating wire 2, which is a heating element,
The energization amount was a constant value, the thickness of the wall material was 2 mm, and the degree of vacuum was 0.01 Torr. That is, the conditions were the same except for the wall material. As a result, even if the temperature of the heating wire 2 which is the central portion of the reaction vessel 1 is kept constant, the temperature rise of the wall material employing the aluminum material of the present invention is higher than that of the conventional stainless steel. It was confirmed that it could be kept extremely low. This is considered to be due to the difference in emissivity between stainless steel and aluminum.
【0017】この様に、アルミニュウム材を反応容器の
壁材として採用した熱拡散塔では,従来と同じ熱線源を
使用して当該熱線源と反応容器の壁材との間の温度勾配
を大きくとることができて同位体の分離効率が向上す
る。また、時間経過に伴う反応容器の壁面の温度上昇が
少ないために中心の発熱体に負荷するエネルギーが少な
くてすみ、省エネルギー化が図れる。As described above, in the heat diffusion tower in which the aluminum material is used as the wall material of the reaction vessel, the same heat ray source as in the conventional case is used, and the temperature gradient between the heat ray source and the wall material of the reaction vessel is made large. It is possible to improve the isotope separation efficiency. In addition, since the temperature of the wall surface of the reaction vessel does not rise with time, the amount of energy applied to the central heating element is small, and energy can be saved.
【0018】さらに、アルミニュウムを反応容器の壁面
材料として用いた場合、壁面を液体窒素で冷却しながら
同位体の分離効率を向上する方法を用いる場合には,従
来のステンレス鋼を使用する場合と比べて液体窒素の使
用量(蒸発量)が少なく抑えられる。Further, when aluminum is used as the wall material of the reaction vessel, when the method of improving the isotope separation efficiency while cooling the wall with liquid nitrogen is used, compared with the case of using conventional stainless steel. As a result, the amount of liquid nitrogen used (evaporation amount) can be reduced.
【0019】反応容器は必ずしも全体をアルミニュウム
で形成しなくてもよい。アルミニュウムで形成された外
壁面があればアルミニュウムの高い輻射率を利用するこ
とができるものと考えられる。The reaction vessel does not necessarily have to be entirely made of aluminum. It is considered that the high emissivity of aluminum can be utilized if there is an outer wall surface formed of aluminum.
【0020】以上、実施例に沿って本発明を説明した
が、本発明はこれらに制限されるものではない。たとえ
ば、種々の変更、改良、組み合わせ等が可能なことは当
業者に自明であろう。Although the present invention has been described with reference to the embodiments, the present invention is not limited to these. For example, it will be apparent to those skilled in the art that various modifications, improvements, combinations, and the like can be made.
【0021】[0021]
【発明の効果】この発明による熱拡散を利用した同位体
分離の実施に用いる熱拡散塔によれば、熱拡散塔の壁材
として輻射率の高い壁材を用いることで、熱拡散塔容器
内の温度勾配が大きく取れて同位体の分離効率が向上す
るとともに,熱拡散塔の中心の発熱体に負荷する電気的
エネルギーが少なくて発熱体の寿命も伸び、装置全体と
しての省エネルギー化の図れる熱拡散塔を提供すること
ができる。According to the heat diffusion tower used for carrying out the isotope separation utilizing heat diffusion according to the present invention, by using a wall material having a high emissivity as the wall material of the heat diffusion tower, The temperature gradient of the isotherm is large and the separation efficiency of isotopes is improved, and the electrical energy applied to the heating element at the center of the heat diffusion tower is small, the life of the heating element is extended, and the energy saving of the entire device can be achieved. A diffusion tower can be provided.
【図1】本発明の実施例による同位体分離の実施に用い
る熱拡散塔の構成図である。FIG. 1 is a configuration diagram of a thermal diffusion tower used for performing isotope separation according to an embodiment of the present invention.
【図2】本発明の実施例によるアルミニュウム壁材を用
いた熱拡散塔と、従来のステンレス鋼を壁材に用いた熱
拡散塔との時間経過に対する温度上昇特性例のグラフで
ある。FIG. 2 is a graph showing an example of temperature rise characteristics with respect to time of a heat diffusion tower using an aluminum wall material according to an embodiment of the present invention and a heat diffusion tower using a conventional stainless steel wall material.
1 反応容器 2 熱線 3 寒剤ジャケット 4 ヒータ電極 5 おもり 6 寒剤源 7 寒剤入口 8 寒剤出口 9 スペーサ 10 処理ガス出入口 11 寒剤循環路 DESCRIPTION OF SYMBOLS 1 Reaction vessel 2 Heat ray 3 Cryogen jacket 4 Heater electrode 5 Weight 6 Cryogen source 7 Cryogen inlet 8 Cryogen outlet 9 Spacer 10 Processing gas inlet / outlet 11 Cryogen circulation path
Claims (1)
熱拡散塔であって、 アルミニュウムで形成された外壁を有し、ガスを気密収
容することのできる鉛直方向に長い反応容器と、 前記反応容器の中央部に鉛直に配置された抵抗加熱体
と、 前記反応器の外壁を冷却する冷却手段とを有する熱拡散
塔。1. A thermal diffusion tower for concentrating / separating a gas containing an isotope, the reaction vessel having an outer wall formed of aluminum and capable of hermetically containing the gas, and a vertically long reaction container. A thermal diffusion tower comprising a resistance heating element vertically arranged in the center of the reaction vessel, and a cooling means for cooling the outer wall of the reactor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9954991A JPH0647256A (en) | 1991-04-04 | 1991-04-04 | Heat diffusion column to be used for separating isotope |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9954991A JPH0647256A (en) | 1991-04-04 | 1991-04-04 | Heat diffusion column to be used for separating isotope |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0647256A true JPH0647256A (en) | 1994-02-22 |
Family
ID=14250264
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9954991A Withdrawn JPH0647256A (en) | 1991-04-04 | 1991-04-04 | Heat diffusion column to be used for separating isotope |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0647256A (en) |
-
1991
- 1991-04-04 JP JP9954991A patent/JPH0647256A/en not_active Withdrawn
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100385818B1 (en) | Vertical type heat treatment device | |
US5915283A (en) | Metallic sheet insulation system | |
US5128515A (en) | Heating apparatus | |
US5048800A (en) | Vertical heat treatment apparatus | |
JP2947604B2 (en) | Heat treatment furnace | |
JPH09139352A (en) | Wafer boat for vertical furnace | |
JPH11195616A (en) | Heat treatment device and heat treatment | |
US6432174B1 (en) | Induced natural convection thermal cycling device | |
JP2000290096A (en) | Crystal silicon production device | |
JP2004304096A (en) | Heat-treatment method and apparatus | |
JP2601927B2 (en) | Isotope separation method and thermal diffusion tower used for the method | |
JPS6142388B2 (en) | ||
JPH0647256A (en) | Heat diffusion column to be used for separating isotope | |
JP3023963B2 (en) | Hydrogen isotope separation method and thermal diffusion column therefor | |
JPS5925142B2 (en) | heat treatment equipment | |
JP2756566B2 (en) | Vertical heat treatment equipment | |
JPS63278227A (en) | Heat treatment equipment | |
JP2843307B2 (en) | Ozone concentration apparatus and ozone concentration method | |
JP2000111690A (en) | Self-temperature control type uninstrumental material irradiator | |
JP2716859B2 (en) | Thermal diffusion tower | |
JP2716860B2 (en) | Isotope separation method and thermal diffusion tower used for the method | |
JP2563981Y2 (en) | Vertical heat treatment equipment | |
JP3112672B1 (en) | Vertical heating device | |
JPH09251959A (en) | Heating device | |
JP3641193B2 (en) | Vertical heat treatment apparatus, heat treatment method, and heat insulation unit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19980711 |