JP2000111690A - Self-temperature control type uninstrumental material irradiator - Google Patents

Self-temperature control type uninstrumental material irradiator

Info

Publication number
JP2000111690A
JP2000111690A JP10285152A JP28515298A JP2000111690A JP 2000111690 A JP2000111690 A JP 2000111690A JP 10285152 A JP10285152 A JP 10285152A JP 28515298 A JP28515298 A JP 28515298A JP 2000111690 A JP2000111690 A JP 2000111690A
Authority
JP
Japan
Prior art keywords
irradiation
container
irradiating
temperature
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10285152A
Other languages
Japanese (ja)
Other versions
JP2954210B1 (en
Inventor
Yuichi Sawahata
雄一 澤畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Nuclear Cycle Development Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Nuclear Cycle Development Institute filed Critical Japan Nuclear Cycle Development Institute
Priority to JP10285152A priority Critical patent/JP2954210B1/en
Application granted granted Critical
Publication of JP2954210B1 publication Critical patent/JP2954210B1/en
Publication of JP2000111690A publication Critical patent/JP2000111690A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PROBLEM TO BE SOLVED: To perform an irradiating test on a large number of irradiating samples at the same temperature under a constant temperature condition by providing a self-temperature control function while being an uninstrumental type, reducing a shaft directional temperature gradient, and restraining a temperature change in the irradiating samples caused by an output change in a nuclear reactor. SOLUTION: A structure is provided with an irradiating vessel 30 having a double wall structure and having a space formed as a heat insulating gas layer 32, a heat pipe 40 having the residual part inserted inside the irradiating vessel 30 except for one end part exposed outside the irradiating vessel 30 and plural sample holders 44 dispersively arranged inside the irradiating vessel 30 by housing irradiating samples 46 to house liquid sodium 50 and inert gas in the irradiating vessel 30. The sodium in the irradiating vessel 30 is put in to a degree of completely soaking a sample holder 44. This device is normally loaded in a nuclear reactor, and a coolant of the nuclear reactor flows outside the irradiating vessel 30.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、無計装であるにも
かかわらず、断熱ガス層を有する照射用容器内に液体を
満たし、ヒートパイプを利用して照射試料の温度をほぼ
一定に制御できるようにした材料照射装置に関するもの
である。この装置は、原子炉など、特に温度勾配や温度
変動のある照射場での材料照射試験に有用である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an irradiation container having a heat-insulating gas layer filled with a liquid, and the temperature of an irradiation sample is controlled to be substantially constant by using a heat pipe. The present invention relates to a material irradiating device that can be used. This apparatus is useful for material irradiation tests in an irradiation field having a temperature gradient or temperature fluctuation, particularly in a nuclear reactor.

【0002】[0002]

【従来の技術】原子炉材料や核燃料の研究開発などのた
めに、それら材料試験片などの試料を原子炉内に配置し
て放射線の作用下に曝す照射試験が行われている。この
種の材料照射試験装置は、大別すると、無計装タイプと
計装タイプとがある。
2. Description of the Related Art For the purpose of research and development of reactor materials and nuclear fuels, irradiation tests in which samples such as material test pieces are placed in a nuclear reactor and exposed to the action of radiation have been performed. This type of material irradiation test apparatus is roughly classified into a non-instrumentation type and an instrumentation type.

【0003】従来、高速炉で用いられている無計装材料
照射装置としては、例えば図2に示すような構造があ
る。図2において、Aは縦断面図、Bは横断面図であ
る。六角筒状のラッパ管10の内部に、複数本の円筒状
の照射用容器12を配設する。キャプセル14内に試料
16を装荷し、He(ヘリウム)/Ar(アルゴン)混
合ガスを封入して、前記各照射容器12内に多段に装填
した構成とする。図2では明瞭ではないが、高速炉内に
おいて、冷却材ナトリウムは照射用容器12の内部も流
れるようになっている。
Conventionally, as a non-instrumented material irradiation apparatus used in a fast reactor, there is a structure as shown in FIG. 2, for example. In FIG. 2, A is a longitudinal sectional view, and B is a transverse sectional view. A plurality of cylindrical irradiation containers 12 are disposed inside a hexagonal tubular wrapper tube 10. The sample 16 is loaded in the capsule 14, a mixed gas of He (helium) / Ar (argon) is sealed, and the irradiation containers 12 are loaded in multiple stages. Although it is not clear in FIG. 2, the coolant sodium flows inside the irradiation vessel 12 in the fast reactor.

【0004】ここで試料16の照射温度は、キャプセル
14内に封入したHe/Ar混合ガスの混合比により調
整している。HeとArとではHeの方が熱伝導度が高
いため、Arの比率が高いほど断熱効果があり、このた
め、試料温度を高く設定する場合にはArの比率を高
め、試料温度を低く設定する場合にはHeの比率を高め
るのである。このHe/Ar混合ガスの混合比は、原子
炉出力が一定で運転されることを前提条件として、所定
の値に設定されている。
Here, the irradiation temperature of the sample 16 is adjusted by the mixing ratio of the He / Ar mixed gas sealed in the capsule 14. Since He has a higher thermal conductivity between He and Ar, the higher the ratio of Ar, the better the heat insulating effect. Therefore, when the sample temperature is set to be high, the ratio of Ar is set to be high and the sample temperature is set to be low. In this case, the ratio of He is increased. The mixture ratio of the He / Ar mixed gas is set to a predetermined value on condition that the reactor is operated at a constant power.

【0005】[0005]

【発明が解決しようとする課題】このように従来の無計
装材料照射装置では、温度を制御する機能が無く、He
/Ar混合ガスの混合比は原子炉出力が一定で運転され
ることを条件に、所定の値に設定されているために、原
子炉出力が変動すると、キャプセル内の試料温度が変動
する。例えば、試料温度が700℃の場合には20℃程
度の温度変動が生じる。また、試料温度は中性子による
γ発熱や冷却材温度などに依存しているために、中性子
束が密で冷却材温度が高い中心部分は高温になるのに対
し、中性子束が疎で冷却材温度が低い下部位置では低温
になり、材料照射装置の温度も変化する。このような軸
方向の温度勾配(温度差)は、同じく試料温度が約70
0℃の場合、30℃程度である。但し、試料温度が低け
れば、この温度変動あるいは温度勾配は小さくなる。
As described above, the conventional non-instrumented material irradiation apparatus has no function of controlling the temperature,
Since the mixing ratio of the / Ar mixed gas is set to a predetermined value on condition that the reactor power is operated at a constant value, when the reactor power fluctuates, the sample temperature in the capsule fluctuates. For example, when the sample temperature is 700 ° C., a temperature fluctuation of about 20 ° C. occurs. In addition, since the sample temperature depends on the γ heat generated by neutrons and the coolant temperature, the central part where the neutron flux is dense and the coolant temperature is high becomes high temperature, whereas the neutron flux is sparse and the coolant temperature becomes high. In the lower position where the temperature is low, the temperature becomes low, and the temperature of the material irradiation device also changes. Such an axial temperature gradient (temperature difference) is similar when the sample temperature is about 70 degrees.
In the case of 0 ° C., it is about 30 ° C. However, if the sample temperature is low, this temperature fluctuation or temperature gradient becomes small.

【0006】これに対して計装タイプの材料照射装置が
ある。これは、原子炉容器外部から温度を制御する方式
である。図示するのを省略するが、例えば、2重壁のキ
ャプセルに熱電対及びHe/Ar混合ガスを置換するた
めのパイプを挿入し、原子炉出力が変動した場合に、キ
ャプセル内の温度変動に応じて混合比を変えたHe/A
r混合ガスで置換することで、温度変動を抑制する構成
である。
On the other hand, there is an instrumentation type material irradiation apparatus. This is a method of controlling the temperature from outside the reactor vessel. Although illustration is omitted, for example, a thermocouple and a pipe for replacing a He / Ar mixed gas are inserted into a double-walled capsule, and when the reactor power fluctuates, the temperature is changed according to the temperature fluctuation in the capsule. He / A with different mixing ratio
This is a configuration in which temperature fluctuation is suppressed by substituting with an r mixed gas.

【0007】しかし、このような計装タイプの材料照射
装置は、構造が複雑化するために高価であり、製作に多
大の日数を要する欠点がある。更に、計装線取り回しス
ペースのために照射スペースが制限されるし、計装線等
を原子炉容器外に取り出すために照射位置が限定されて
しまうなどの問題がもある。
[0007] However, such an instrumentation type material irradiation apparatus is disadvantageous in that it is expensive due to its complicated structure and requires a large number of days for production. Further, there are problems that the irradiation space is limited due to the instrumentation wire routing space, and the irradiation position is limited in order to take out the instrumentation wire and the like outside the reactor vessel.

【0008】本発明の目的は、無計装タイプでありなが
ら自己温度制御機能を有し、軸方向の温度勾配を低減す
ると共に、原子炉の出力変動などに伴う照射試料の温度
変動を抑え、それによって多数の照射試料を同一温度且
つ一定温度条件下で照射試験を実施できるような材料照
射装置を提供することである。
An object of the present invention is to provide a self-temperature control function in spite of being a non-instrumentation type, to reduce a temperature gradient in an axial direction, and to suppress a temperature fluctuation of an irradiation sample accompanying a fluctuation in power of a nuclear reactor. Accordingly, it is an object of the present invention to provide a material irradiation apparatus capable of performing an irradiation test on a large number of irradiation samples under the same temperature and a constant temperature condition.

【0009】[0009]

【課題を解決するための手段】本発明は、2重壁構造で
間が断熱ガス層になっている照射用容器と、該照射用容
器の外部に露出する一端部を除いて残余の部分が照射用
容器の内部に挿入されるヒートパイプと、照射用の試料
を収納し前記照射用容器の内部に分散配設される複数の
試料ホルダとを具備し、前記照射用容器内に液体が入れ
られている構造の自己温度制御型無計装材料照射装置で
ある。照射用容器内には、原子炉の冷却材と同種の液体
を、試料ホルダが完全に浸漬する程度に入れる。
According to the present invention, there is provided an irradiation container having a double-walled structure and a heat insulating gas layer between them, and the remaining portion excluding one end exposed to the outside of the irradiation container. A heat pipe inserted into the irradiation container, and a plurality of sample holders that store the irradiation sample and are dispersed and disposed inside the irradiation container, wherein the liquid is placed in the irradiation container. This is a self-temperature-controllable non-instrumented material irradiation apparatus having a structure as described above. In the irradiation container, a liquid of the same kind as the coolant of the nuclear reactor is placed so that the sample holder is completely immersed.

【0010】本発明装置は、特に高速炉用の材料照射装
置として好適である。その場合、燃料交換機で取り扱う
ことができるように、燃料集合体と同様の六角筒状のラ
ッパ管を用いる。ラッパ管と、該ラッパ管の内部に間隙
をもって収納される形状であって2重壁構造で間が断熱
ガス層になっている照射用容器と、該照射用容器の上部
と下部にそれぞれ突設したラッパ管への取付け部と、照
射用容器の外部に露出する一端部を除いて残余の部分が
前記照射用容器の内部に挿入されていて内部に液体ナト
リウムと不活性ガスとが封入されたヒートパイプと、照
射用の試料を収納し前記照射用容器の内部に分散配設さ
れる複数の試料ホルダとを具備し、前記照射用容器内が
液体ナトリウムと不活性ガスで満たされ、前記ラッパ管
内部で照射用容器の外側を冷却材ナトリウムが流動する
ように構成する。照射用容器内の液体ナトリウムは、試
料ホルダが完全に浸漬する程度まで満たし、その上部空
間にはHeなどの不活性ガスを封入する。
The apparatus of the present invention is particularly suitable as a material irradiation apparatus for a fast reactor. In this case, a hexagonal tubular trumpet tube similar to the fuel assembly is used so that it can be handled by the refueling machine. A wrapper tube, an irradiation container shaped to be housed with a gap inside the wrapper tube and having a double-walled structure and a heat insulating gas layer between the wrapper tube, and projecting from upper and lower portions of the irradiation container, respectively Except for the attached portion to the wrapper tube and the one end exposed to the outside of the irradiation container, the remaining portion was inserted into the irradiation container, and liquid sodium and an inert gas were sealed therein. A heat pipe, and a plurality of sample holders for storing a sample for irradiation and dispersed inside the container for irradiation, wherein the container for irradiation is filled with liquid sodium and an inert gas; It is configured so that the coolant sodium flows outside the irradiation container inside the tube. Liquid sodium in the irradiation container is filled to the extent that the sample holder is completely immersed, and an inert gas such as He is sealed in the upper space.

【0011】この場合、照射用容器も六角筒形状をな
し、ヒートパイプは照射用容器の上部で露出する上端部
を除いて残余の部分が前記照射用容器の中心軸に沿って
内底部まで挿入され、複数の試料ホルダは前記ヒートパ
イプの周囲に円周状に均等配設する構成が好ましい。照
射用容器の断熱ガス層としては、He/Ar混合ガスを
使用し、その混合比を適切に設定することで照射用容器
内のナトリウム温度を調整する。そして、ヒートパイプ
によって照射用容器内のナトリウム温度をほぼ一定に保
つ。これによって、軸方向の温度勾配を低減すると共
に、原子炉の出力変動などに伴う照射試料の温度変動を
抑制する。
In this case, the irradiation container also has a hexagonal cylindrical shape, and the heat pipe has the remaining portion inserted along the central axis of the irradiation container to the inner bottom except for the upper end exposed at the top of the irradiation container. It is preferable that a plurality of sample holders are equally arranged circumferentially around the heat pipe. As the heat insulating gas layer of the irradiation container, a He / Ar mixed gas is used, and the temperature of sodium in the irradiation container is adjusted by appropriately setting the mixture ratio. Then, the sodium temperature in the irradiation container is kept almost constant by the heat pipe. Thereby, the temperature gradient in the axial direction is reduced, and the temperature fluctuation of the irradiated sample due to the fluctuation of the output of the reactor is suppressed.

【0012】[0012]

【実施例】図1は本発明に係る自己温度制御型無計装材
料照射装置の一実施例を示す説明図である。図1におい
て、Aは縦断面図であり、Bは横断面図である。これ
は、ナトリウムを冷却材とする高速炉で使用する材料照
射装置である。通常の燃料集合体と同様の六角筒状のラ
ッパ管20を用いる。ラッパ管本体22の下部にはエン
トランスノズル24を設け、上部にはハンドリングヘッ
ド26を取り付けて、燃料交換機によって高速炉の炉容
器(図示せず)内に装荷できるようにし、ラッパ管20
の内部を冷却材ナトリウムが矢印のように流通する構造
とする。
FIG. 1 is an explanatory view showing one embodiment of a self-temperature control type non-instrumented material irradiation apparatus according to the present invention. In FIG. 1, A is a longitudinal sectional view, and B is a transverse sectional view. This is a material irradiation device used in a fast furnace using sodium as a coolant. A hexagonal tubular trumpet tube 20 similar to a normal fuel assembly is used. An entrance nozzle 24 is provided at a lower portion of the wrapper tube main body 22, and a handling head 26 is attached at an upper portion thereof so that a fuel exchanger can be loaded into a furnace vessel (not shown) of the fast reactor.
Has a structure in which sodium coolant flows as shown by the arrow.

【0013】ラッパ管20の内部に照射用容器30を収
容する。照射用容器30は、ラッパ管20と同様の六角
筒状で且つ横断面がやや小さな形状であり、そのためラ
ッパ管20との間に冷却材ナトリウムが流通する間隙を
有する。照射用容器30は、側面が2重壁構造であっ
て、間が断熱ガス層32になっており、適切な混合比の
He/Ar混合ガスが充填されている。更に、照射用容
器30の下部には、先端が下方に棒状に突出してエント
ランスノズル24の上方の支持板25の穴に嵌合する下
部取付け部34を設け、上部には空間を開けて先端が上
方に突出してハンドリングヘッド26の下方の支持板2
7の穴に嵌合する上部取付け部36を設ける。下部取付
け部34は中実構造であるが、上部取付け部36は枠構
造を有し側面及び上面に穴が設けられていて、それらの
穴を冷却材ナトリウムが自由に流通できるようになって
いる。
The irradiation container 30 is accommodated in the wrapper tube 20. The irradiation container 30 has the same hexagonal tubular shape as the trumpet tube 20 and has a slightly smaller cross section, and thus has a gap between the trumpet tube 20 and the coolant sodium. The irradiation container 30 has a double wall structure on the side surface and a heat insulating gas layer 32 between the sides, and is filled with a He / Ar mixed gas having an appropriate mixing ratio. Further, a lower mounting portion 34 is provided at a lower portion of the irradiation container 30 so that a tip projects downward in a rod shape and fits into a hole of the support plate 25 above the entrance nozzle 24. The support plate 2 projecting upward and below the handling head 26
An upper mounting portion 36 that fits into the hole 7 is provided. The lower mounting portion 34 has a solid structure, while the upper mounting portion 36 has a frame structure and is provided with holes on the side surface and the upper surface, so that the coolant sodium can freely flow through those holes. .

【0014】照射用容器30の内部中心軸に沿ってヒー
トパイプ40を上方から挿入する。即ち、照射用容器3
0の外部に露出する上端部を除いて、残余の部分を下端
が前記照射用容器30の内底部に達するように組み込
む。ヒートパイプ40は、内部に液体ナトリウム42と
不活性ガス(例えばAr)を封入したものである。照射
用容器30の内部で前記ヒートパイプ40を取り囲むよ
うに円周状に複数本(ここでは6本)の試料ホルダ44
を配設する。各試料ホルダ44は気密構造であって、内
部に試料(材料試験片)46を収納する。ここでは複数
の試料46を縦方向に積み重ねた状態を示しているが、
実際には上下方向の位置で照射量が異なるために、試験
条件等に応じて位置を固定するための部材を設けて各試
料を所定の軸方向位置に固定することになる。そして照
射用容器30の内部を、液体ナトリウムと不活性ガスで
満たす。液体ナトリウム50の量は、各試料ホルダ44
が完全に浸漬する程度とし、その上部空間52に不活性
ガス(例えば、He)を封入する。
A heat pipe 40 is inserted from above along the inner central axis of the irradiation container 30. That is, the irradiation container 3
Except for the upper end exposed to the outside, the remaining part is assembled so that the lower end reaches the inner bottom of the irradiation container 30. The heat pipe 40 has liquid sodium 42 and an inert gas (for example, Ar) sealed therein. A plurality of (in this case, six) sample holders 44 are arranged circumferentially so as to surround the heat pipe 40 inside the irradiation container 30.
Is arranged. Each sample holder 44 has an airtight structure and stores a sample (material test piece) 46 therein. Here, a state in which a plurality of samples 46 are stacked in the vertical direction is shown,
Actually, since the irradiation amount differs at the vertical position, a member for fixing the position is provided according to the test conditions and the like, and each sample is fixed at a predetermined axial position. Then, the inside of the irradiation container 30 is filled with liquid sodium and an inert gas. The amount of liquid sodium 50 depends on each sample holder 44
Is completely immersed, and the upper space 52 is filled with an inert gas (for example, He).

【0015】この材料照射装置では、照射用容器30内
に熱伝導率及び流動性の良好なナトリウムを封入してい
るため、内部温度が均一化する。また照射用容器30の
側面はHe/Ar混合ガスの断熱ガス層32で囲まれて
いるために、原子炉出力の変動による温度変動が抑制さ
れる。更に、中心に位置するヒートパイプ40は、照射
用容器30内のナトリウム温度が上昇すると、それによ
ってヒートパイプ40内のナトリウムが蒸発し、その潜
熱によって照射用容器30内のナトリウムの温度上昇を
抑える。またヒートパイプ40の内部で蒸発したナトリ
ウムは、上方に移動して、ラッパ管20の内部を流通す
る冷却材ナトリウムによって冷却されて凝縮する。液体
となったナトリウムは、ヒートパイプ40の下方に移動
する。このようにして、照射用容器30の内部の軸方向
の温度勾配も低減する。
In this material irradiation apparatus, since the irradiation container 30 is filled with sodium having good thermal conductivity and fluidity, the internal temperature becomes uniform. Further, since the side surface of the irradiation container 30 is surrounded by the heat-insulating gas layer 32 of the He / Ar mixed gas, the temperature fluctuation due to the fluctuation of the reactor power is suppressed. Furthermore, when the sodium temperature in the irradiation container 30 rises, the sodium in the heat pipe 40 evaporates, and the latent heat of the heat pipe 40 at the center suppresses the temperature rise of sodium in the irradiation container 30. . The sodium evaporated inside the heat pipe 40 moves upward, and is cooled and condensed by the coolant sodium flowing through the inside of the trumpet tube 20. The liquid sodium moves below the heat pipe 40. In this way, the temperature gradient in the axial direction inside the irradiation container 30 is also reduced.

【0016】ここで、照射用容器30の内部のナトリウ
ム温度は次のようにして設定する。 ヒートパイプ40内のナトリウムの蒸発温度を、Ar
ガスの封入圧力で調整する。 照射用容器30内のナトリウム温度は、断熱ガス層3
2のHe/Ar混合ガスの混合比で調整する。前述した
ように、HeとArではHeの方が熱伝導率が高いた
め、Arの比率が大きいほど断熱効果が大きい。そこ
で、高温照射ではArの比率を高め、低温照射ではHe
の比率を高める。
Here, the sodium temperature inside the irradiation container 30 is set as follows. The evaporation temperature of sodium in the heat pipe 40 is set to Ar
Adjust with the gas filling pressure. The temperature of sodium in the irradiation container 30 depends on the heat insulating gas layer 3.
It is adjusted by the mixing ratio of He / Ar mixed gas of 2. As described above, since He has a higher thermal conductivity between He and Ar, the larger the ratio of Ar, the greater the heat insulating effect. Therefore, the ratio of Ar is increased in high-temperature irradiation, and He is increased in low-temperature irradiation.
Increase the ratio.

【0017】本発明装置は、原理的には軽水炉などでの
照射試験にも適用可能である。しかし、その場合、熱伝
導度がナトリウムに比較して遙に小さいために、あまり
効率はよくない。従って、本発明は、特に液体金属を冷
却材として使用する原子炉における材料照射試験に有用
な技術である。
The device of the present invention can also be applied in principle to an irradiation test in a light water reactor or the like. However, in that case, the efficiency is not very high because the thermal conductivity is much smaller than that of sodium. Therefore, the present invention is a technique that is particularly useful for a material irradiation test in a nuclear reactor using liquid metal as a coolant.

【0018】[0018]

【発明の効果】本発明に係る材料照射装置は上記のよう
に、断熱ガス層を有する2重壁構造の照射用容器に液体
を入れ、ヒートパイプを挿入した構造であるから、断熱
性と内部液体の循環及び熱伝導とヒートパイプによる自
己温度制御機能により、軸方向・径方向に配置する各試
料の温度が均一化され、同一温度で多数の試料の照射試
験が可能となる。
As described above, the material irradiation apparatus according to the present invention has a structure in which a liquid is placed in a double-walled irradiation container having a heat insulating gas layer and a heat pipe is inserted, so that the heat insulating property and the internal The temperature of each sample arranged in the axial direction and the radial direction is made uniform by the liquid circulation, heat conduction, and the self-temperature control function by the heat pipe, so that irradiation tests of many samples can be performed at the same temperature.

【0019】本発明の材料照射装置は、計装設備が不要
のため、原子炉への装荷位置が限定されず、任意の位置
での照射が可能である。
Since the material irradiation apparatus of the present invention does not require an instrumentation facility, the loading position on the nuclear reactor is not limited, and irradiation can be performed at an arbitrary position.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る自己温度制御型無計装材料照射装
置の一実施例を示す説明図。
FIG. 1 is an explanatory view showing one embodiment of a self-temperature control type non-instrumented material irradiation apparatus according to the present invention.

【図2】従来の無計装材料照射装置の一例を示す説明
図。
FIG. 2 is an explanatory view showing an example of a conventional non-instrumented material irradiation apparatus.

【符号の説明】[Explanation of symbols]

20 ラッパ管 30 照射用容器 32 断熱ガス層 34 下部取付け部 36 上部取付け部 40 ヒートパイプ 44 試料ホルダ 46 試料 50 ナトリウム DESCRIPTION OF SYMBOLS 20 Wrapper tube 30 Irradiation container 32 Thermal insulation gas layer 34 Lower mounting part 36 Upper mounting part 40 Heat pipe 44 Sample holder 46 Sample 50 Sodium

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 2重壁構造で間が断熱ガス層になってい
る照射用容器と、該照射用容器の外部に露出する一端部
を除いて残余の部分が照射用容器の内部に挿入されるヒ
ートパイプと、照射用の試料を収納し前記照射用容器の
内部に分散配設される複数の試料ホルダとを具備し、前
記照射用容器内に液体が入れられている自己温度制御型
無計装材料照射装置。
1. An irradiation container having a double-walled structure and a heat insulating gas layer therebetween, and the remaining portion excluding one end exposed to the outside of the irradiation container is inserted into the irradiation container. A self-temperature-controllable heat pipe, comprising: a heat pipe; and a plurality of sample holders, each containing a sample for irradiation and dispersed and disposed inside the container for irradiation, wherein a liquid is contained in the container for irradiation. Instrumentation material irradiation device.
【請求項2】 六角筒状のラッパ管と、該ラッパ管の内
部に間隙をもって収容される形状であって2重壁構造で
間が断熱ガス層になっている照射用容器と、該照射用容
器の上部と下部にそれぞれ突設したラッパ管への取付け
部と、照射用容器の外部に露出する一端部を除いて残余
の部分が前記照射用容器の内部に挿入されていて内部に
液体ナトリウムと不活性ガスとが封入されたヒートパイ
プと、照射用の試料を収納し前記照射用容器の内部に分
散配設される複数の試料ホルダとを具備し、前記照射用
容器内が液体ナトリウムと不活性ガスで満たされ、前記
ラッパ管内部で照射用容器の外側を冷却材ナトリウムが
流動する自己温度制御型無計装材料照射装置。
2. A hexagonal tubular wrapper tube, an irradiation container having a double-walled structure and a heat insulating gas layer formed between the wrapper tubes and having a gap therebetween, Except for an attachment part to the trumpet pipe protruding from the upper part and the lower part of the container, respectively, and the other part excluding one end exposed to the outside of the irradiation container, the remaining part is inserted into the irradiation container, and liquid sodium is contained therein. And a heat pipe filled with an inert gas, and a plurality of sample holders containing a sample for irradiation and dispersed and disposed inside the container for irradiation, wherein the irradiation container contains liquid sodium and A self-temperature-controllable non-instrumented material irradiation apparatus filled with an inert gas and in which sodium coolant flows outside the irradiation container inside the wrapper tube.
【請求項3】 照射用容器も六角筒形状をなし、その断
熱ガス層にはHe/Ar混合ガスを充填し、ヒートパイ
プは照射用容器の上部で露出する上端部を除いて残余の
部分が前記照射用容器の中心軸に沿って内底部まで挿入
され、複数の試料ホルダは前記ヒートパイプの周囲に円
周状に均等配設されている請求項2記載の自己温度制御
型無計装材料照射装置。
3. The irradiation container also has a hexagonal cylindrical shape, the heat-insulating gas layer is filled with a mixed gas of He / Ar, and the heat pipe has the remaining portion excluding the upper end exposed at the upper part of the irradiation container. 3. The self-temperature-controlled non-instrumented material according to claim 2, wherein the sample holder is inserted to the inner bottom along the central axis of the irradiation container, and the plurality of sample holders are evenly arranged circumferentially around the heat pipe. Irradiation device.
JP10285152A 1998-10-07 1998-10-07 Self-temperature control type non-instrumented material irradiation equipment Expired - Fee Related JP2954210B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10285152A JP2954210B1 (en) 1998-10-07 1998-10-07 Self-temperature control type non-instrumented material irradiation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10285152A JP2954210B1 (en) 1998-10-07 1998-10-07 Self-temperature control type non-instrumented material irradiation equipment

Publications (2)

Publication Number Publication Date
JP2954210B1 JP2954210B1 (en) 1999-09-27
JP2000111690A true JP2000111690A (en) 2000-04-21

Family

ID=17687772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10285152A Expired - Fee Related JP2954210B1 (en) 1998-10-07 1998-10-07 Self-temperature control type non-instrumented material irradiation equipment

Country Status (1)

Country Link
JP (1) JP2954210B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1233425A1 (en) * 2001-02-16 2002-08-21 Framatome ANP GmbH Nuclear reactor, in particular research or test reactor
KR101358927B1 (en) 2012-06-21 2014-02-06 한국원자력연구원 Irradiation capsule for an improved temperature control by using a liquid and solid thermal media
RU2524683C1 (en) * 2013-01-09 2014-08-10 Открытое акционерное общество "Государственный научный центр Научно-исследовательский институт атомных реакторов" Device for testing materials in nuclear reactor
FR3016726A1 (en) * 2014-01-22 2015-07-24 Commissariat Energie Atomique DEVICE FOR THE IRRADIATION OF SAMPLES IN THE HEART OR PERIPHERY OF THE HEART OF A REACTOR
RU2560919C1 (en) * 2014-03-28 2015-08-20 Открытое акционерное общество "Государственный научный центр Научно-исследовательский институт атомных реакторов" Testing device for nuclear fuel of fast neutron reactors

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107481775B (en) * 2017-08-18 2019-04-09 中国工程物理研究院核物理与化学研究所 A kind of reactor sample irradiation device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1233425A1 (en) * 2001-02-16 2002-08-21 Framatome ANP GmbH Nuclear reactor, in particular research or test reactor
KR101358927B1 (en) 2012-06-21 2014-02-06 한국원자력연구원 Irradiation capsule for an improved temperature control by using a liquid and solid thermal media
RU2524683C1 (en) * 2013-01-09 2014-08-10 Открытое акционерное общество "Государственный научный центр Научно-исследовательский институт атомных реакторов" Device for testing materials in nuclear reactor
FR3016726A1 (en) * 2014-01-22 2015-07-24 Commissariat Energie Atomique DEVICE FOR THE IRRADIATION OF SAMPLES IN THE HEART OR PERIPHERY OF THE HEART OF A REACTOR
EP2899724A1 (en) * 2014-01-22 2015-07-29 Commissariat à l'Énergie Atomique et aux Énergies Alternatives Device for irradiating samples in the core or periphery of the core of a reactor
RU2560919C1 (en) * 2014-03-28 2015-08-20 Открытое акционерное общество "Государственный научный центр Научно-исследовательский институт атомных реакторов" Testing device for nuclear fuel of fast neutron reactors

Also Published As

Publication number Publication date
JP2954210B1 (en) 1999-09-27

Similar Documents

Publication Publication Date Title
US2879216A (en) Neutronic reactor
US3894403A (en) Vibration-free refrigeration transfer
US3243613A (en) Pancake reactor
JP2954210B1 (en) Self-temperature control type non-instrumented material irradiation equipment
GB2452836A (en) A temperature measuring device
JP6124367B2 (en) Low temperature comparative calibration system
KR101071416B1 (en) Capsule for high-temperature irradiation
KR20100100800A (en) Ex-reactor two-phase transient nuclear calorimeter
KR101358927B1 (en) Irradiation capsule for an improved temperature control by using a liquid and solid thermal media
US5329566A (en) Plenum spring and getter assembly
GB877418A (en) Improvements in fuel arrangements for use in nuclear reactors having vertical channels
JP2007183107A (en) Radiation irradiation testing machine for use in nuclear reactor
JPH10132994A (en) Graphie deceleration reactor for thermoelectric power generation
US3252868A (en) Fuel element for use in nuclear reactors
KR101480379B1 (en) Inspection apparatus for thermometer and hygrometer based on phase transition and method for controlling and inspecting thereof
JPH10213695A (en) Reactor irradiation capsule and its temperature control method
KR101048095B1 (en) Low temperature irradiation test capsule and low temperature irradiation test device having the same
Nucciotti et al. Status of the cryogen-free cryogenic system for the CUORE experiment
CN216212375U (en) Irradiation device and reactor
JPS6165137A (en) Testing device of high temperature corrosion
Dillon et al. High Temperature‐High Pressure Cell for Measuring Densities of Metals by Radiation Counting Technique
Lee Thermophysical property measurements at high temperatures for liquid metal alloys and gadolinium oxide-doped uranium dioxide samples
JP2994998B2 (en) Temperature flattening method for irradiated sample and capsule for storing irradiated sample
US3644173A (en) Nuclear reactor of the metal hydride control type
CN113990551A (en) Irradiation device and reactor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees