JPH032128B2 - - Google Patents

Info

Publication number
JPH032128B2
JPH032128B2 JP19668785A JP19668785A JPH032128B2 JP H032128 B2 JPH032128 B2 JP H032128B2 JP 19668785 A JP19668785 A JP 19668785A JP 19668785 A JP19668785 A JP 19668785A JP H032128 B2 JPH032128 B2 JP H032128B2
Authority
JP
Japan
Prior art keywords
naphthalene
monoethanolamine
distillation
present
boiling point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19668785A
Other languages
Japanese (ja)
Other versions
JPS6256442A (en
Inventor
Kenji Kageyama
Shoji Takeya
Takenori Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumikin Kako KK
Original Assignee
Sumikin Kako KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumikin Kako KK filed Critical Sumikin Kako KK
Priority to JP19668785A priority Critical patent/JPS6256442A/en
Publication of JPS6256442A publication Critical patent/JPS6256442A/en
Publication of JPH032128B2 publication Critical patent/JPH032128B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明はコールタール分留油中の中油、ナフタ
レン油より得られ、95%ナフタレンと通称せられ
る粗製ナフタレンの精製法に関する。 従来の技術 ナフタレンは、医薬、染料その他有機合成原料
として重要な物質であるが、それら用途に供用す
るためには、十分精製することが必要とされる。
それ程の高純度の要求されない防虫剤向けの場合
であつても、着色着臭していると商品価値が低い
ので、その意味からも精製が望まれる。 これが為、従来から幾多の精製法が提案されて
いる。例えば、水素添加法(特開昭53−119856
号、特開昭54−144349号)、メタノールからの晶
析法(特公昭47−47020号)、塩化アルミニウム添
加による不純物除去法(特公昭47−47021号)、分
別結晶と白土処理併用法(特公昭47−47023号)、
無水酢酸添加法(特公昭60−3051号)、シユウ酸
添加法(特開昭53−144557号)、金属または金属
酸化物触媒添加法(特開昭54−81247号、特開昭
53−147048号)等が知られている。 上記従来法のうち、工業的規模で実施されてい
る水素添加法においては、ナフタレンの一部が水
素添加されて生成するテトラリンおよびチオナフ
テンの分解生成物であるエチルベンゼンの除去工
程を付加する必要があり、製品歩留も低下する。
また、同じく分別結晶法においては、硫黄化合物
のチオナフテン除去が不十分なため、脱硫工程を
付加する必要があり、分別母液と共にナフタレン
がロスし、製品歩留が低下する。 その他の従来法も、装置の耐蝕性、製品歩留、
硫黄化合物除去率の点のいずれかに問題を有して
おり、十分満足できるものではない。 発明が解決しようとする問題点 この発明は、上記従来技術に代わる簡易で、し
かもナフタレン誘導体合成反応および製品品質等
を阻害する硫黄化合物を除去し得ると共に、製品
歩留りの高いナフタレンの精製方法を提供するも
のである。 問題を解決するための手段 本発明者等は、従来法に拘束されない別途の視
野に立ち、広く効率的な精製法を探索した結果、
粗製ナフタレンに、モノエタノールアミンを添加
して蒸留に付し、該アミンの沸点以下の留分を留
取することによつて、容易にチオナフテンをほゞ
完全に含むことのないナフタレンが高収率で取得
できることを見出した。 本発明方法が適用されるナフタレンは、従来の
粗製ナフタレンと特に変らない。本発明方法によ
れば不純物、なかんずくイオウ化合物が除去でき
るところからコールタール系粗ナフタレンに対し
てきわめて効果的である。 本発明方法において、ナフタレンに対するモノ
エタノールアミンの使用量は、4倍モル(重量で
2倍量)以上が適当とされる。 適用される蒸留塔にも格別な限定はない。棚段
式・充填塔式あるいは泡鐘式のいずれでもよく、
またバツチ式および連続式のいずれの工程も採り
うる。 蒸留温度は最高常圧下モノエタノールアミンの
沸点温度たる約171℃である。この温度はモノエ
タノールアミンの使用量と共に実験的に求められ
た値である。 作 用 本発明方法の理論は未だ必ずしも完全には解明
されてはいない。しかし実験事実から見て、本発
明方法は一種の共沸蒸留と見て差えない。 というのは、ナフタレンの沸点は約218℃、不
純物の代表であるチオナフテンのそれは約221℃
であるが、本発明方法の適用により、目的とする
ナフタレンは、その沸点より遥かに低い171℃以
下という温度においてモノエタノールアミンと共
に塔頂部より留出し、チオナフテンはいわゆる釜
残として留去せられてしまうからである。 換言すれば、モノエタノールアミンは、被蒸留
組成分の比揮発度を大きく変化させ、つまりナフ
タリンのそれを大に、チオナフテンのそれを小さ
くする役割を果すのであつて、共沸蒸留にいう共
沸剤そのものと同じ役割を果し、留出過程でナフ
タレンを選択的に共沸しているのではないかと考
えられる。 さきに連続蒸留が可能であると述べたのは、共
沸蒸留の常法に従つて共沸モノエタノールアミン
を連続的に塔頂部分に供給しつつ蒸留することが
できるからである。 なお、モノエタノールアミンに代えて同族であ
るヂエタノールアミンその他アルコールアミン、
ないし異種の極性物質の使用が可能であると予測
される。 実施例 第1表所載の粗製ナフタレン155.3gに、モノ
エタノールアミン291.9gを混合し、常圧下前記
アミンの沸点171℃以下の留分を留取した。使用
した蒸留装置は、50段のヘリパツク充填式であつ
て還流比は20:1とした。 留取した留分は、ナフタレンとモノエタノール
アミンとの混合物であつて、その総量は411.0g
である。これを室温迄冷却後、遠心分離に付して
結晶物136.4gを取得した。 この結晶物には、なお共沸剤たるモノエタノー
ルアミンが付着しているので、常温で水洗除去
し、乾燥して、白色のナフタレン結晶134.4gを
得た。その物性ならびに化学組成は、第3表本発
明製品欄に示した通りであつて、収率は90.3%で
ある。
INDUSTRIAL APPLICATION FIELD The present invention relates to a method for purifying crude naphthalene, commonly referred to as 95% naphthalene, obtained from naphthalene oil, a medium oil in coal tar fraction oil. Prior Art Naphthalene is an important substance as a raw material for medicines, dyes, and other organic synthesis, but in order to use it for these purposes, it must be sufficiently purified.
Even in the case of insect repellent products that do not require such high purity, if they are colored and odorized, their commercial value will be low, so refining is desirable for that reason as well. For this reason, many purification methods have been proposed so far. For example, hydrogenation method (JP-A-53-119856
(Japanese Patent Publication No. 54-144349), crystallization method from methanol (Japanese Patent Publication No. 47-47020), impurity removal method by adding aluminum chloride (Japanese Patent Publication No. 47-47021), combined method of fractional crystallization and white clay treatment (Japanese Patent Publication No. 47-47021) Special Publication No. 47-47023),
Acetic anhydride addition method (Japanese Patent Publication No. 60-3051), oxalic acid addition method (Japanese Patent Publication No. 53-144557), metal or metal oxide catalyst addition method (Japanese Patent Publication No. 54-81247,
53-147048) etc. are known. Among the conventional methods mentioned above, in the hydrogenation method implemented on an industrial scale, it is necessary to add a step to remove ethylbenzene, which is a decomposition product of tetralin and thionaphthene, which are produced by hydrogenating a portion of naphthalene. , product yield also decreases.
Furthermore, in the same fractional crystallization method, since removal of the sulfur compound thionaphthene is insufficient, a desulfurization step must be added, and naphthalene is lost together with the fractionated mother liquor, resulting in a decrease in product yield. Other conventional methods also improve equipment corrosion resistance, product yield,
It has a problem in one of the sulfur compound removal rates and is not fully satisfactory. Problems to be Solved by the Invention The present invention provides a simple naphthalene purification method that replaces the above-mentioned conventional techniques, can remove sulfur compounds that inhibit the naphthalene derivative synthesis reaction and product quality, and has a high product yield. It is something to do. Means to Solve the Problem The inventors of the present invention have searched for a wide range of efficient purification methods from a different perspective that is not constrained by conventional methods.
By adding monoethanolamine to crude naphthalene and subjecting it to distillation, and distilling off the fraction below the boiling point of the amine, naphthalene that is almost completely free of thionaphthene can be easily produced in high yield. I found out that it can be obtained with The naphthalene to which the method of the present invention is applied is not particularly different from conventional crude naphthalene. The method of the present invention is extremely effective for coal tar-based crude naphthalene because impurities, especially sulfur compounds, can be removed. In the method of the present invention, the appropriate amount of monoethanolamine to be used is 4 times mole or more (twice the amount by weight) relative to naphthalene. There are no particular limitations on the applicable distillation column. Either tray type, packed column type or bubble bell type is acceptable.
Moreover, either a batch process or a continuous process can be adopted. The maximum distillation temperature is approximately 171°C, which is the boiling point temperature of monoethanolamine under normal pressure. This temperature was determined experimentally along with the amount of monoethanolamine used. Effect The theory of the method of the present invention has not yet been completely elucidated. However, from the experimental facts, the method of the present invention can be regarded as a type of azeotropic distillation. This is because the boiling point of naphthalene is approximately 218℃, and that of thionaphthene, a typical impurity, is approximately 221℃.
However, by applying the method of the present invention, the target naphthalene is distilled out from the top of the column together with monoethanolamine at a temperature of 171°C or lower, which is far lower than its boiling point, and thionaphthene is distilled off as a so-called bottom residue. This is because it will be put away. In other words, monoethanolamine plays the role of greatly changing the specific volatility of the components to be distilled, that is, increasing the specific volatility of naphthalene and decreasing that of thionaphthene. It is thought that it plays the same role as the agent itself and selectively azeotropes naphthalene during the distillation process. The reason why it was mentioned above that continuous distillation is possible is that it is possible to distill azeotropic monoethanolamine while continuously feeding it to the top of the column according to the conventional method of azeotropic distillation. In addition, in place of monoethanolamine, diethanolamine and other alcohol amines which are homologous,
It is anticipated that it will be possible to use different types of polar substances. Example 155.3 g of the crude naphthalene shown in Table 1 was mixed with 291.9 g of monoethanolamine, and a fraction having a boiling point of 171° C. or less of the amine was distilled off under normal pressure. The distillation apparatus used was a 50-stage helipack type, and the reflux ratio was 20:1. The distilled fraction is a mixture of naphthalene and monoethanolamine, and its total amount is 411.0g.
It is. After cooling this to room temperature, it was centrifuged to obtain 136.4 g of crystalline material. Since monoethanolamine, which is an azeotropic agent, was still attached to this crystal, it was removed by washing with water at room temperature and dried to obtain 134.4 g of white naphthalene crystals. Its physical properties and chemical composition are as shown in the product column of the present invention in Table 3, and the yield is 90.3%.

【表】 ナフタレンについての物質収支、ならびに分析
結果を一括表示すると第2表の通りである。
[Table] Table 2 shows the material balance and analysis results for naphthalene.

【表】 析値
前述した171℃以下の留分を遠心分離したのち、
水洗乾燥した本発明製品の品質を従来の水素添加
法および分別結晶法の製品と比較すると第3表に
示す通りであつた。
[Table] Analytical values After centrifuging the fraction below 171℃ mentioned above,
The quality of the washed and dried product of the present invention was compared with that of the conventional hydrogenation method and fractional crystallization method, as shown in Table 3.

【表】 発明の効果 本発明方法は、上述の通り、モノエタノールア
ミンを添加して蒸留し、冷却後晶析する結晶物を
分離、水洗乾燥するというだけの簡易な手段であ
り乍ら、その精製効率は至つて優秀で、第3表に
対比せられる通り、従来最も除去困難とされてい
たチオナフテン等の有機硫黄化合物は完全に除去
され、また製品歩留りは大巾に向上しているので
ある。したがつて有機合成原料に供用すべきナフ
タレンの精製法として最適な方法ということがで
きる。
[Table] Effects of the Invention As mentioned above, the method of the present invention is a simple method of adding monoethanolamine, distilling it, separating the crystallized substance after cooling, and washing and drying it with water. The purification efficiency is extremely excellent, and as compared in Table 3, organic sulfur compounds such as thionaphthene, which were conventionally considered the most difficult to remove, have been completely removed, and the product yield has been greatly improved. . Therefore, it can be said that this is the most suitable method for purifying naphthalene to be used as a raw material for organic synthesis.

Claims (1)

【特許請求の範囲】 1 粗製ナフタレンに、モノエタノールアミンを
添加して蒸留に付し、該アミンの沸点以下の留分
を留取し、これを冷却して析出してくるナフタレ
ン結晶を分離することを特徴とする粗製ナフタレ
ンの精製方法。 2 留取留分は常圧下沸点約171℃である特許請
求の範囲1記載の精製方法。
[Scope of Claims] 1. Monoethanolamine is added to crude naphthalene and subjected to distillation, a fraction below the boiling point of the amine is distilled off, and this is cooled to separate precipitated naphthalene crystals. A method for purifying crude naphthalene, characterized by: 2. The purification method according to claim 1, wherein the distilled fraction has a boiling point of about 171°C under normal pressure.
JP19668785A 1985-09-05 1985-09-05 Purification of naphthalene Granted JPS6256442A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19668785A JPS6256442A (en) 1985-09-05 1985-09-05 Purification of naphthalene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19668785A JPS6256442A (en) 1985-09-05 1985-09-05 Purification of naphthalene

Publications (2)

Publication Number Publication Date
JPS6256442A JPS6256442A (en) 1987-03-12
JPH032128B2 true JPH032128B2 (en) 1991-01-14

Family

ID=16361924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19668785A Granted JPS6256442A (en) 1985-09-05 1985-09-05 Purification of naphthalene

Country Status (1)

Country Link
JP (1) JPS6256442A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58207633A (en) * 1982-05-28 1983-12-03 Fujitsu Ltd Defect detection system
JPS60203803A (en) * 1984-02-29 1985-10-15 Fujitsu Ltd Inspection of pattern
US6664433B1 (en) 1999-04-28 2003-12-16 Nippon Steel Chemical Co., Ltd. Process for the purification of aromatic hydrocarbons and process for the preparation of high-purity aromatic hydrocarbons
KR100503349B1 (en) * 2000-12-22 2005-07-26 재단법인 포항산업과학연구원 Apparatus for removing Naphthalene from Coke oven use light oil and ethanol
CN111170823B (en) * 2020-02-20 2022-03-18 青岛科技大学 Method for simultaneously extracting phenol and naphthalene from tar

Also Published As

Publication number Publication date
JPS6256442A (en) 1987-03-12

Similar Documents

Publication Publication Date Title
US1940065A (en) Separatrion and purification of ortho, meta and para xylene
US4308110A (en) Process for separation and purification of dihydric phenols
JPH032128B2 (en)
US7605296B2 (en) Method for separating and purifying 2,6-dimethylnaphthalene
US4551208A (en) Recovery of formic acid by distillation
US2802777A (en) Process of purifying crude 2-pyrrolidone
US5358608A (en) Separation of 1-propanol from 2-butanol by extractive distillation
US4276126A (en) Separation of ethylene glycol from N-methylpyrrolidone
US2514430A (en) Production of diphenylamine
JPS6238344B2 (en)
JPH04270249A (en) Purification of dimethyl carbonate
US6175049B1 (en) Process for the production of 1, 2-butadiene
KR0129753B1 (en) Process for the purification of 2-(4-isobutylpohencyl)-propionic acid
JP3550059B2 (en) Isoquinoline purification method
US2166584A (en) Purification of ketones
JPH0331693B2 (en)
EP0127128A1 (en) Process for the conversion of the E isomer of 1,2-diphenyl-1-(4-(2-dimethylaminoethoxy)-phenyl)-1-butene to tamoxifen HCl
US5599979A (en) Separation of formic acid from acetic acid by extractive distillation
US2758071A (en) Naphthenic acid purification process
JPS5941973B2 (en) Terphenyl separation and purification method
EP0000302B1 (en) Novel method for the preparation of quinidine.
SU1084248A1 (en) Method for purifying aluminium chloride
SU759502A1 (en) Method of purifying syntetic camphor
JPH0420412B2 (en)
JPS6220172B2 (en)

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term