JPH0420412B2 - - Google Patents

Info

Publication number
JPH0420412B2
JPH0420412B2 JP20052786A JP20052786A JPH0420412B2 JP H0420412 B2 JPH0420412 B2 JP H0420412B2 JP 20052786 A JP20052786 A JP 20052786A JP 20052786 A JP20052786 A JP 20052786A JP H0420412 B2 JPH0420412 B2 JP H0420412B2
Authority
JP
Japan
Prior art keywords
naphthalene
aluminum chloride
anhydrous aluminum
distilled
distillation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP20052786A
Other languages
Japanese (ja)
Other versions
JPS6357539A (en
Inventor
Toshio Sato
Kyoichi Takeda
Michio Tokita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumikin Kako KK
Original Assignee
Sumikin Kako KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumikin Kako KK filed Critical Sumikin Kako KK
Priority to JP20052786A priority Critical patent/JPS6357539A/en
Publication of JPS6357539A publication Critical patent/JPS6357539A/en
Publication of JPH0420412B2 publication Critical patent/JPH0420412B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

<産業上の利用分野> この発明は、コールタールを蒸留して得たナフ
タレン油、中油等から回収したベンゾチオフエン
を含む一般に95%ナフタレンといわれているナフ
タレンを精製する方法に関する。 <従来の技術> ナフタレンは、医薬、染料、無水フタル酸、ア
ントラキノン等の原料として重要な物質である。 コールタールを蒸留して得たナフタレン油や中
油からのナフタレンの回収方法としては、自然冷
却または強制冷却により結晶を析出させて遠心分
離する方法と蒸留のみによる方法があるが主流は
蒸留法になつている(昭和53年12月、社団法人日
本芳香族工業会発行「芳香族及びタール工業ハン
ドブツク」第76〜77頁)。 しかし得られるナフタレンは、通常純度95%程
度で一般に95%ナフタレンといわれている。95%
ナフタレンには、微量のメチルナフタレン等の中
性成分、キノリン等の塩基性成分、フエノール誘
導体等の酸性成分、さらにベンゾチオフエン等の
硫黄化合物など各種の不純物が含有されている。 これらの不純物を除去して精製ナフタレンを製
造する方法としては、水素添加法(特開昭53−
119856号公報、特開昭54−144349号公報)、メタ
ノールによる再結晶法(特公昭47−47020号公
報)、無水塩化アルミニウム添加による不純物除
去法(特公昭47−47021公報)、分別結晶と白土処
理併用法(特公昭47−47023号公報)、シユウ酸添
加法(特開昭53−144557号公報)、無水酢酸添加
法(特公昭60−3051号公報)、金属または金属酸
化物触媒添加法(特開昭54−81247号公報、特開
昭53−147048号公報)等が知られている。 上記従来法のうち、工業的規模で実施されてい
る水素添加法は、ナフタレンの一部が水素添加さ
れて生成するテトラリンおよびベンゾチオフエン
の分解生成物であるエチルベンゼンの除去工程を
付加する必要があり、製品歩留が低下する。また
同じく分別結晶法は、硫黄化合物であるベンゾチ
オフエンの除去が不十分なため、低硫黄品が必要
なときは、脱流工程を付加する必要があり、さら
に分別母液とともにナフタレンがロスし、製品歩
留が低下する。無水塩化アルミニウム添加による
不純物除去法は、不純物を重合または分解させて
精製ナフタレンを得るものであるが、必ずしも脱
硫率が良くない(koks i Khimiya No.10第39
〜40頁[1977])ため、最近では塩化アセチルの
存在下に処理する方法が提案されている(Chem.
lnd 1985 第338〜339頁)がコスト的に高い欠点
がある。その他の従来法も、装置の耐蝕性、製品
歩留、硫黄化合物除去率のいずれかに問題を有し
ており、十分満足できるものでない。 特に95%ナフタレンに含有される硫黄化合物を
ほぼ完全に除去することは難しく、さらに多工程
で複雑な設備を設置しなければならず、大規模生
産でないコスト的に高くつく欠点がある。 <解決しようとする問題点> この発明は、上記無水塩化アルミニウム添加に
よる不純物除去法の欠点を解消し、高脱硫率で経
済的に高純度の精製ナフタレンを製造する方法を
提供するものである。 <発明の詳細> 本発明者等は、無水塩化アルミニウム添加によ
るナフタレンの精製法において、脱硫率が向上し
ない原因を種々研究検討の結果、95%ナフタレン
中に含まれるベンゾチオフエンの一部が水素添加
されてジヒドロベンゾチオフエンに転化し、この
ジヒドロベンゾチオフエンの沸点(220〜222℃が
ナフタレンの沸点(218℃)に近いため、蒸留に
よつて分離できず、脱硫率の低下を招いているこ
と、また、ナフタレンも一部水素添加されてテト
ラリンに転化し、蒸留時ナフタレン中に残留して
純度低下の原因となつていることを究明した。無
水塩化アルミニウム処理によつてナフタレンの一
部がテトラリンに転化することはナフタレンの溶
融塩処理では見い出されている(日本化学会誌
1979−第1210〜1215頁)が、基本的に反応系の異
なる脱硫反応で生成することは従来知られていな
い事実である。また、無水塩化アルミニウム処理
によつてベンゾチオフエンが一部ジヒドロベンゾ
チオフエンに転化することも全く知られていなか
つた事実である。 そこで、ジヒドロベンゾチオフエンの除去につ
いてさらに鋭意研究の結果、ナフタレンとジヒド
ロベンゾチオフエンは、通常のナフタレン精製で
行われる常圧蒸留では沸点差がほとんどないため
分離できないが、減圧下での蒸留によつて分離で
きることを見い出し、この発明に到達した。 すなわちこの発明は、不純物としてベンゾチオ
フエンを含むナフタレンを無水塩化アルミニウム
処理し、ついで塩酸水溶液等を用いて無水塩化ア
ルミニウムを抽出したのち蒸留するナフタレンの
脱硫方法において、蒸留を減圧下に行い、ナフタ
レンを留分として回収し、ジヒドロベンゾチオフ
エンを残渣として分離することを特徴とする精製
ナフタレンの製造方法である。 ナフタレンとジヒドロベンゾチオフエンの比揮
発度が蒸留圧(したがつて蒸留温度)によつてど
のように変化するのか定量的には明確化されてい
ないが、工業的にナフタレンとジヒドロベンゾチ
オフエンを分離する条件としては、蒸留圧力500
mmHg以下、理論段数20段以上の蒸留塔を用い、
還流比1以上が凡その目安である。なお、この条
件は発明者等が実験的に求めた値である。 ナフタレンを無水塩化アルミニウムで処理し、
塩酸等で塩化アルミニウムを抽出したのち、上記
条件で蒸留すれば、硫黄分を殆ど含まない(0.01
%以下)精製ナフタレンが得られる。しかし、こ
の精製ナフタレン中にはテトラリンが約0.2〜0.5
%程度混入してくるので、純度99.8%以上の精製
ナフタレンを得る必要のある場合は、テトラリン
を常圧ないしは減圧下で蒸留分離したのち、ジヒ
ドロベンゾチオフエンを分離する。 無水塩化アルミニウム処理によつてベンゾチオ
フエンやナフタレンが水素添加される理由は明ら
かではないが、ナフタレンが無水塩化アルミニウ
ムにより一部重合する際に生成する水素が原因と
考えられる。 無水塩化アルミニウムの添加量は、ナフタレン
中の全硫黄分に対し、モル比で0.01〜5.0倍、好
ましくは0.25〜2.0倍である。反応温度は50〜120
℃が適当で、反応温度が低いと無水塩化アルミニ
ウムの溶解に時間がかかり、反応温度が高いと副
反応による重合や軽質化等が発生する。反応時間
は、無水塩化アルミニウムの溶解後15分前後で十
分である。溶解時間を入れても60分あればよい。 無水塩化アルミニウムの除去は、水または塩酸
硫酸等の水溶液を用いる公知の方法でよい。 <実施例> ベンゾチオフエン2.4%(全硫黄約0.57%)を
含む95%ナフタレン(純度96.4%)2109gを100
℃に加熱し、無水塩化アルミニウム51.3gを添加
して撹裄しながら2時間処理した。そして濃度5
%の塩酸210gを添加して塩化アルミニウムを抽
出分離したのち、さらに濃度10%の水酸化ナトリ
ウム105gで洗浄し、油層2100gを回収した。こ
の油を三分割し、その700gを理論段数50段、直
径15mmの蒸留塔を用い、還流比5で常圧蒸留し、
前留分として27.7g、ナフタレン留分として
633.7gを分取した(従来法)。 また、残りの1400gのうち700gを同じ蒸留塔
を用い、還流比5で減圧(200mmHg)蒸留し、前
留分として26.4g、ナフタレン留分として637.2
gを得た(実施例1)。 最後の700gを同じ蒸留塔を用い、前留分につ
いては還流比50の常圧で、ナフタレン留分につい
ては還流比5で減圧(200mmHg)蒸留し、前留分
として27.7g、ナフタレン留分として638.6gを
得た(実施例2)。 そして得られた各留分について、その組成をガ
スクロマトグラフイーにより測定した。その結果
を第1表に示す。なお、各留分の全硫黄の測定は
三菱化成工業株式会社製の微量硫黄分析計を用い
て燃焼−電量滴定法により測定した。
<Industrial Application Field> The present invention relates to a method for refining naphthalene, which is generally referred to as 95% naphthalene, containing benzothiophene recovered from naphthalene oil, middle oil, etc. obtained by distilling coal tar. <Prior Art> Naphthalene is an important substance as a raw material for medicines, dyes, phthalic anhydride, anthraquinone, and the like. Methods for recovering naphthalene from naphthalene oil and medium oil obtained by distilling coal tar include methods of precipitating crystals by natural cooling or forced cooling and centrifugal separation, and methods using only distillation, but the mainstream method is the distillation method. (December 1973, pages 76-77 of "Aromatic and Tar Industry Handbook" published by the Japan Aromatic Industry Association). However, the naphthalene obtained usually has a purity of about 95% and is generally referred to as 95% naphthalene. 95%
Naphthalene contains various impurities such as trace amounts of neutral components such as methylnaphthalene, basic components such as quinoline, acidic components such as phenol derivatives, and sulfur compounds such as benzothiophene. As a method to remove these impurities and produce purified naphthalene, the hydrogenation method
119856, JP 54-144349), methanol recrystallization method (JP 47-47020), impurity removal method by adding anhydrous aluminum chloride (JP 47-47021), fractional crystallization and white clay Combined treatment method (Japanese Patent Publication No. 47-47023), oxalic acid addition method (Japanese Patent Publication No. 53-144557), acetic anhydride addition method (Japanese Patent Publication No. 60-3051), metal or metal oxide catalyst addition method (Japanese Patent Application Laid-open No. 54-81247, Japanese Patent Application Laid-Open No. 53-147048), etc. are known. Among the conventional methods mentioned above, the hydrogenation method that is carried out on an industrial scale requires the addition of a step for removing ethylbenzene, which is a decomposition product of tetralin and benzothiophene, which are produced by hydrogenating a part of naphthalene. Product yield decreases. Similarly, with the fractional crystallization method, the removal of benzothiophene, a sulfur compound, is insufficient, so when low-sulfur products are required, it is necessary to add a deflow step, and naphthalene is lost along with the fractionated mother liquor, resulting in a loss of product quality. Retention decreases. The impurity removal method by adding anhydrous aluminum chloride polymerizes or decomposes impurities to obtain purified naphthalene, but the desulfurization rate is not necessarily good (koks i Khimiya No. 10 No. 39).
40 [1977]), a method of treatment in the presence of acetyl chloride has recently been proposed (Chem.
lnd 1985, pp. 338-339), but has the drawback of high cost. Other conventional methods also have problems in equipment corrosion resistance, product yield, and sulfur compound removal rate, and are not fully satisfactory. In particular, it is difficult to almost completely remove the sulfur compounds contained in 95% naphthalene, and it also requires multiple steps and the installation of complex equipment, which has the disadvantage of being expensive without large-scale production. <Problems to be Solved> The present invention eliminates the drawbacks of the impurity removal method by adding anhydrous aluminum chloride, and provides a method for economically producing purified naphthalene with a high desulfurization rate and high purity. <Details of the invention> As a result of various studies and examinations of the reasons why the desulfurization rate does not improve in the naphthalene purification method by adding anhydrous aluminum chloride, the present inventors found that a part of the benzothiophene contained in 95% naphthalene is hydrogenated. The boiling point of this dihydrobenzothiophene (220-222°C) is close to the boiling point of naphthalene (218°C), so it cannot be separated by distillation, leading to a decrease in the desulfurization rate. In addition, it was determined that naphthalene was partially hydrogenated and converted to tetralin, which remained in naphthalene during distillation and caused a decrease in purity.Due to anhydrous aluminum chloride treatment, a portion of naphthalene was converted to tetralin. It has been found that the conversion to
1979-pages 1210 to 1215) is a previously unknown fact that is produced by desulfurization reactions with fundamentally different reaction systems. Furthermore, it is a completely unknown fact that benzothiophene is partially converted to dihydrobenzothiophene by anhydrous aluminum chloride treatment. Therefore, as a result of further intensive research into the removal of dihydrobenzothiophene, we found that naphthalene and dihydrobenzothiophene cannot be separated by normal pressure distillation, which is carried out in ordinary naphthalene refining, because there is almost no difference in boiling point. They discovered that they can be separated by twisting, and arrived at this invention. That is, this invention is a naphthalene desulfurization method in which naphthalene containing benzothiophene as an impurity is treated with anhydrous aluminum chloride, then anhydrous aluminum chloride is extracted using an aqueous hydrochloric acid solution, and then distilled. This is a method for producing purified naphthalene, which is characterized by recovering the naphthalene as a fraction and separating dihydrobenzothiophene as a residue. Although it has not been quantitatively clarified how the specific volatility of naphthalene and dihydrobenzothiophene changes with distillation pressure (therefore, distillation temperature), naphthalene and dihydrobenzothiophene are used industrially. The conditions for separation are a distillation pressure of 500
mmHg or less, using a distillation column with 20 or more theoretical plates,
A rough guideline is a reflux ratio of 1 or more. Note that this condition is a value experimentally determined by the inventors. Treat naphthalene with anhydrous aluminum chloride,
If aluminum chloride is extracted with hydrochloric acid or the like and then distilled under the above conditions, it will contain almost no sulfur (0.01
% or less) purified naphthalene is obtained. However, this purified naphthalene contains approximately 0.2 to 0.5 tetralin.
If it is necessary to obtain purified naphthalene with a purity of 99.8% or higher, tetralin is separated by distillation under normal pressure or reduced pressure, and then dihydrobenzothiophene is separated. The reason why benzothiophene and naphthalene are hydrogenated by anhydrous aluminum chloride treatment is not clear, but it is thought that hydrogen generated when naphthalene is partially polymerized with anhydrous aluminum chloride is the cause. The amount of anhydrous aluminum chloride added is 0.01 to 5.0 times, preferably 0.25 to 2.0 times, in molar ratio to the total sulfur content in naphthalene. Reaction temperature is 50-120
℃ is appropriate; if the reaction temperature is low, it will take time to dissolve anhydrous aluminum chloride, and if the reaction temperature is high, polymerization or lightening will occur due to side reactions. A sufficient reaction time is about 15 minutes after dissolving the anhydrous aluminum chloride. Even including the dissolution time, 60 minutes is sufficient. Anhydrous aluminum chloride may be removed by a known method using water or an aqueous solution such as hydrochloric acid and sulfuric acid. <Example> 2109 g of 95% naphthalene (purity 96.4%) containing 2.4% benzothiophene (total sulfur approximately 0.57%) was
The mixture was heated to .degree. C., 51.3 g of anhydrous aluminum chloride was added, and the mixture was treated for 2 hours with stirring. and concentration 5
After extracting and separating aluminum chloride by adding 210 g of 10% hydrochloric acid, the mixture was further washed with 105 g of 10% sodium hydroxide to recover 2100 g of an oil layer. This oil was divided into three parts, and 700 g of it was distilled at atmospheric pressure at a reflux ratio of 5 using a distillation column with 50 theoretical plates and a diameter of 15 mm.
27.7g as pre-distillate, as naphthalene fraction
633.7g was collected (conventional method). In addition, 700g of the remaining 1400g was distilled under reduced pressure (200mmHg) at a reflux ratio of 5 using the same distillation column, resulting in 26.4g as a pre-distillate and 637.2g as a naphthalene fraction.
g (Example 1). Using the same distillation column, the last 700 g was distilled at normal pressure with a reflux ratio of 50 for the pre-distillate, and under reduced pressure (200 mmHg) with a reflux ratio of 5 for the naphthalene fraction, resulting in 27.7 g as the pre-distillate and 27.7 g as the naphthalene fraction. 638.6g was obtained (Example 2). The composition of each fraction obtained was measured by gas chromatography. The results are shown in Table 1. The total sulfur in each fraction was measured by combustion-coulometric titration using a trace sulfur analyzer manufactured by Mitsubishi Chemical Industries, Ltd.

【表】 第1表に示すとおり、無水塩化アルミニウムで
処理したのち、減圧蒸留することにより極めて低
硫黄の精製ナフタレンが取得でき、さらに前留分
でテトラリンを除くことによつて純度99.9%とい
う高純度の精製ナフタレンが得られた。
[Table] As shown in Table 1, purified naphthalene with extremely low sulfur content can be obtained by treating it with anhydrous aluminum chloride and then distilling it under reduced pressure. Furthermore, by removing tetralin in the pre-distillate, it is possible to obtain purified naphthalene with a purity of 99.9%. Purified naphthalene of high purity was obtained.

Claims (1)

【特許請求の範囲】 1 不純物としてベンゾチオフエンを含むナフタ
レンを無水塩化アルミニウム処理し、ついで塩酸
水溶液等を用いて無水塩化アルミニウムを抽出し
たのち蒸留するナフタレンの脱硫方法において、
蒸留を減圧下に行い、ナフタレンを留分として回
収し、ジヒドロベンゾチオフエンを残渣として分
離することを特徴とする精製ナフタレンの製造方
法。 2 減圧蒸留を理論段数20段以上の蒸留塔を用
い、還流比1以上、圧力500mmHg以下で行なうこ
とを特徴とする特許請求の範囲第1項に記載の精
製ナフタレンの製造方法。 3 前留分として、テトラリンを常圧ないし減圧
下に留去したのち、減圧蒸留することを特徴とす
る特許請求の範囲第1項および第2項記載の精製
ナフタレンの製造方法。
[Scope of Claims] 1. A naphthalene desulfurization method in which naphthalene containing benzothiophene as an impurity is treated with anhydrous aluminum chloride, and then the anhydrous aluminum chloride is extracted using an aqueous hydrochloric acid solution and then distilled,
A method for producing purified naphthalene, which comprises performing distillation under reduced pressure, recovering naphthalene as a fraction, and separating dihydrobenzothiophene as a residue. 2. The method for producing purified naphthalene according to claim 1, wherein the vacuum distillation is carried out using a distillation column having 20 or more theoretical plates, a reflux ratio of 1 or more, and a pressure of 500 mmHg or less. 3. The method for producing purified naphthalene according to claims 1 and 2, characterized in that tetralin is distilled off as a pre-distillate under normal pressure to reduced pressure and then distilled under reduced pressure.
JP20052786A 1986-08-27 1986-08-27 Purification of naphthalene Granted JPS6357539A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20052786A JPS6357539A (en) 1986-08-27 1986-08-27 Purification of naphthalene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20052786A JPS6357539A (en) 1986-08-27 1986-08-27 Purification of naphthalene

Publications (2)

Publication Number Publication Date
JPS6357539A JPS6357539A (en) 1988-03-12
JPH0420412B2 true JPH0420412B2 (en) 1992-04-02

Family

ID=16425792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20052786A Granted JPS6357539A (en) 1986-08-27 1986-08-27 Purification of naphthalene

Country Status (1)

Country Link
JP (1) JPS6357539A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2130071B1 (en) * 1997-05-06 2000-03-01 Nalon Quimica Sa PROCEDURE FOR THE OBTAINING OF REFINED NAFTALINE.

Also Published As

Publication number Publication date
JPS6357539A (en) 1988-03-12

Similar Documents

Publication Publication Date Title
KR910003253B1 (en) Process for preparing 2,2-bis(4-hydroxyphinyl)propane of high purity
JPS59231033A (en) Purification of bisphenol a
US5264624A (en) Process for the recovery of adipic acid
JP3110459B2 (en) Purification of p-aminophenol composition and direct conversion to N-acetyl-p-aminophenol
JPH0420412B2 (en)
JP3901218B2 (en) Purification method of 2,6-dialkylphenol
JPS6256442A (en) Purification of naphthalene
JPH06104635B2 (en) Method for purifying methylnaphthalene
JP2697054B2 (en) Method for producing p-hydroxybenzaldehyde
US3658905A (en) Process for the purification of p-aminophenol
JP2000143633A (en) Purification of isoquinoline
JPH0446253B2 (en)
US4165328A (en) Process for separating 11-cyanoundecanoic acid, cyclohexanone and ε-
JP3657635B2 (en) Method for producing methylnaphthalene
US4145353A (en) Process for removing 1,4-naphthoquinone from phthalic anhydride
JP2532010B2 (en) Method for producing purified phenol and method for cleaning crystal adduct of bisphenol A and phenol
JP2590412B2 (en) Method for recovering 2,6-diisopropylnaphthalene
JP3173732B2 (en) Method for producing bisphenol A with excellent hue
JPH01268678A (en) Purification of quinaldine
JPH0637411B2 (en) Method for producing melt crystallization of 1,6-hexanediol
JPH0542419B2 (en)
JPH06104634B2 (en) Method for purifying methylnaphthalene
JPH03264541A (en) Recovery of purified naphthalene from naphthol-production process or the like
JP2000239257A (en) Production of 2,2,6,6-tetramethyl-4-piperidone
JPS62209030A (en) Separation of durene

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term