JPH0420412B2 - - Google Patents
Info
- Publication number
- JPH0420412B2 JPH0420412B2 JP20052786A JP20052786A JPH0420412B2 JP H0420412 B2 JPH0420412 B2 JP H0420412B2 JP 20052786 A JP20052786 A JP 20052786A JP 20052786 A JP20052786 A JP 20052786A JP H0420412 B2 JPH0420412 B2 JP H0420412B2
- Authority
- JP
- Japan
- Prior art keywords
- naphthalene
- aluminum chloride
- anhydrous aluminum
- distilled
- distillation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 claims description 100
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 claims description 42
- 238000000034 method Methods 0.000 claims description 24
- CXWXQJXEFPUFDZ-UHFFFAOYSA-N tetralin Chemical compound C1=CC=C2CCCCC2=C1 CXWXQJXEFPUFDZ-UHFFFAOYSA-N 0.000 claims description 21
- FCEHBMOGCRZNNI-UHFFFAOYSA-N 1-benzothiophene Chemical compound C1=CC=C2SC=CC2=C1 FCEHBMOGCRZNNI-UHFFFAOYSA-N 0.000 claims description 20
- 238000004821 distillation Methods 0.000 claims description 15
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 10
- YJUFGFXVASPYFQ-UHFFFAOYSA-N 2,3-dihydro-1-benzothiophene Chemical compound C1=CC=C2SCCC2=C1 YJUFGFXVASPYFQ-UHFFFAOYSA-N 0.000 claims description 9
- 239000012535 impurity Substances 0.000 claims description 8
- 238000006477 desulfuration reaction Methods 0.000 claims description 7
- 230000023556 desulfurization Effects 0.000 claims description 7
- 238000010992 reflux Methods 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 238000005292 vacuum distillation Methods 0.000 claims 1
- 229910052717 sulfur Inorganic materials 0.000 description 7
- 239000011593 sulfur Substances 0.000 description 7
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 230000007423 decrease Effects 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 150000003464 sulfur compounds Chemical class 0.000 description 4
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 238000009835 boiling Methods 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- QPUYECUOLPXSFR-UHFFFAOYSA-N 1-methylnaphthalene Chemical compound C1=CC=C2C(C)=CC=CC2=C1 QPUYECUOLPXSFR-UHFFFAOYSA-N 0.000 description 2
- YNQLUTRBYVCPMQ-UHFFFAOYSA-N Ethylbenzene Chemical compound CCC1=CC=CC=C1 YNQLUTRBYVCPMQ-UHFFFAOYSA-N 0.000 description 2
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 239000011280 coal tar Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000001640 fractional crystallisation Methods 0.000 description 2
- 238000005984 hydrogenation reaction Methods 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- LGRFSURHDFAFJT-UHFFFAOYSA-N Phthalic anhydride Natural products C1=CC=C2C(=O)OC(=O)C2=C1 LGRFSURHDFAFJT-UHFFFAOYSA-N 0.000 description 1
- WETWJCDKMRHUPV-UHFFFAOYSA-N acetyl chloride Chemical compound CC(Cl)=O WETWJCDKMRHUPV-UHFFFAOYSA-N 0.000 description 1
- 239000012346 acetyl chloride Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- PYKYMHQGRFAEBM-UHFFFAOYSA-N anthraquinone Natural products CCC(=O)c1c(O)c2C(=O)C3C(C=CC=C3O)C(=O)c2cc1CC(=O)OC PYKYMHQGRFAEBM-UHFFFAOYSA-N 0.000 description 1
- 150000004056 anthraquinones Chemical class 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- JHIWVOJDXOSYLW-UHFFFAOYSA-N butyl 2,2-difluorocyclopropane-1-carboxylate Chemical compound CCCCOC(=O)C1CC1(F)F JHIWVOJDXOSYLW-UHFFFAOYSA-N 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005443 coulometric titration Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000012452 mother liquor Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000011269 tar Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Description
<産業上の利用分野>
この発明は、コールタールを蒸留して得たナフ
タレン油、中油等から回収したベンゾチオフエン
を含む一般に95%ナフタレンといわれているナフ
タレンを精製する方法に関する。
<従来の技術>
ナフタレンは、医薬、染料、無水フタル酸、ア
ントラキノン等の原料として重要な物質である。
コールタールを蒸留して得たナフタレン油や中
油からのナフタレンの回収方法としては、自然冷
却または強制冷却により結晶を析出させて遠心分
離する方法と蒸留のみによる方法があるが主流は
蒸留法になつている(昭和53年12月、社団法人日
本芳香族工業会発行「芳香族及びタール工業ハン
ドブツク」第76〜77頁)。
しかし得られるナフタレンは、通常純度95%程
度で一般に95%ナフタレンといわれている。95%
ナフタレンには、微量のメチルナフタレン等の中
性成分、キノリン等の塩基性成分、フエノール誘
導体等の酸性成分、さらにベンゾチオフエン等の
硫黄化合物など各種の不純物が含有されている。
これらの不純物を除去して精製ナフタレンを製
造する方法としては、水素添加法(特開昭53−
119856号公報、特開昭54−144349号公報)、メタ
ノールによる再結晶法(特公昭47−47020号公
報)、無水塩化アルミニウム添加による不純物除
去法(特公昭47−47021公報)、分別結晶と白土処
理併用法(特公昭47−47023号公報)、シユウ酸添
加法(特開昭53−144557号公報)、無水酢酸添加
法(特公昭60−3051号公報)、金属または金属酸
化物触媒添加法(特開昭54−81247号公報、特開
昭53−147048号公報)等が知られている。
上記従来法のうち、工業的規模で実施されてい
る水素添加法は、ナフタレンの一部が水素添加さ
れて生成するテトラリンおよびベンゾチオフエン
の分解生成物であるエチルベンゼンの除去工程を
付加する必要があり、製品歩留が低下する。また
同じく分別結晶法は、硫黄化合物であるベンゾチ
オフエンの除去が不十分なため、低硫黄品が必要
なときは、脱流工程を付加する必要があり、さら
に分別母液とともにナフタレンがロスし、製品歩
留が低下する。無水塩化アルミニウム添加による
不純物除去法は、不純物を重合または分解させて
精製ナフタレンを得るものであるが、必ずしも脱
硫率が良くない(koks i Khimiya No.10第39
〜40頁[1977])ため、最近では塩化アセチルの
存在下に処理する方法が提案されている(Chem.
lnd 1985 第338〜339頁)がコスト的に高い欠点
がある。その他の従来法も、装置の耐蝕性、製品
歩留、硫黄化合物除去率のいずれかに問題を有し
ており、十分満足できるものでない。
特に95%ナフタレンに含有される硫黄化合物を
ほぼ完全に除去することは難しく、さらに多工程
で複雑な設備を設置しなければならず、大規模生
産でないコスト的に高くつく欠点がある。
<解決しようとする問題点>
この発明は、上記無水塩化アルミニウム添加に
よる不純物除去法の欠点を解消し、高脱硫率で経
済的に高純度の精製ナフタレンを製造する方法を
提供するものである。
<発明の詳細>
本発明者等は、無水塩化アルミニウム添加によ
るナフタレンの精製法において、脱硫率が向上し
ない原因を種々研究検討の結果、95%ナフタレン
中に含まれるベンゾチオフエンの一部が水素添加
されてジヒドロベンゾチオフエンに転化し、この
ジヒドロベンゾチオフエンの沸点(220〜222℃が
ナフタレンの沸点(218℃)に近いため、蒸留に
よつて分離できず、脱硫率の低下を招いているこ
と、また、ナフタレンも一部水素添加されてテト
ラリンに転化し、蒸留時ナフタレン中に残留して
純度低下の原因となつていることを究明した。無
水塩化アルミニウム処理によつてナフタレンの一
部がテトラリンに転化することはナフタレンの溶
融塩処理では見い出されている(日本化学会誌
1979−第1210〜1215頁)が、基本的に反応系の異
なる脱硫反応で生成することは従来知られていな
い事実である。また、無水塩化アルミニウム処理
によつてベンゾチオフエンが一部ジヒドロベンゾ
チオフエンに転化することも全く知られていなか
つた事実である。
そこで、ジヒドロベンゾチオフエンの除去につ
いてさらに鋭意研究の結果、ナフタレンとジヒド
ロベンゾチオフエンは、通常のナフタレン精製で
行われる常圧蒸留では沸点差がほとんどないため
分離できないが、減圧下での蒸留によつて分離で
きることを見い出し、この発明に到達した。
すなわちこの発明は、不純物としてベンゾチオ
フエンを含むナフタレンを無水塩化アルミニウム
処理し、ついで塩酸水溶液等を用いて無水塩化ア
ルミニウムを抽出したのち蒸留するナフタレンの
脱硫方法において、蒸留を減圧下に行い、ナフタ
レンを留分として回収し、ジヒドロベンゾチオフ
エンを残渣として分離することを特徴とする精製
ナフタレンの製造方法である。
ナフタレンとジヒドロベンゾチオフエンの比揮
発度が蒸留圧(したがつて蒸留温度)によつてど
のように変化するのか定量的には明確化されてい
ないが、工業的にナフタレンとジヒドロベンゾチ
オフエンを分離する条件としては、蒸留圧力500
mmHg以下、理論段数20段以上の蒸留塔を用い、
還流比1以上が凡その目安である。なお、この条
件は発明者等が実験的に求めた値である。
ナフタレンを無水塩化アルミニウムで処理し、
塩酸等で塩化アルミニウムを抽出したのち、上記
条件で蒸留すれば、硫黄分を殆ど含まない(0.01
%以下)精製ナフタレンが得られる。しかし、こ
の精製ナフタレン中にはテトラリンが約0.2〜0.5
%程度混入してくるので、純度99.8%以上の精製
ナフタレンを得る必要のある場合は、テトラリン
を常圧ないしは減圧下で蒸留分離したのち、ジヒ
ドロベンゾチオフエンを分離する。
無水塩化アルミニウム処理によつてベンゾチオ
フエンやナフタレンが水素添加される理由は明ら
かではないが、ナフタレンが無水塩化アルミニウ
ムにより一部重合する際に生成する水素が原因と
考えられる。
無水塩化アルミニウムの添加量は、ナフタレン
中の全硫黄分に対し、モル比で0.01〜5.0倍、好
ましくは0.25〜2.0倍である。反応温度は50〜120
℃が適当で、反応温度が低いと無水塩化アルミニ
ウムの溶解に時間がかかり、反応温度が高いと副
反応による重合や軽質化等が発生する。反応時間
は、無水塩化アルミニウムの溶解後15分前後で十
分である。溶解時間を入れても60分あればよい。
無水塩化アルミニウムの除去は、水または塩酸
硫酸等の水溶液を用いる公知の方法でよい。
<実施例>
ベンゾチオフエン2.4%(全硫黄約0.57%)を
含む95%ナフタレン(純度96.4%)2109gを100
℃に加熱し、無水塩化アルミニウム51.3gを添加
して撹裄しながら2時間処理した。そして濃度5
%の塩酸210gを添加して塩化アルミニウムを抽
出分離したのち、さらに濃度10%の水酸化ナトリ
ウム105gで洗浄し、油層2100gを回収した。こ
の油を三分割し、その700gを理論段数50段、直
径15mmの蒸留塔を用い、還流比5で常圧蒸留し、
前留分として27.7g、ナフタレン留分として
633.7gを分取した(従来法)。
また、残りの1400gのうち700gを同じ蒸留塔
を用い、還流比5で減圧(200mmHg)蒸留し、前
留分として26.4g、ナフタレン留分として637.2
gを得た(実施例1)。
最後の700gを同じ蒸留塔を用い、前留分につ
いては還流比50の常圧で、ナフタレン留分につい
ては還流比5で減圧(200mmHg)蒸留し、前留分
として27.7g、ナフタレン留分として638.6gを
得た(実施例2)。
そして得られた各留分について、その組成をガ
スクロマトグラフイーにより測定した。その結果
を第1表に示す。なお、各留分の全硫黄の測定は
三菱化成工業株式会社製の微量硫黄分析計を用い
て燃焼−電量滴定法により測定した。
<Industrial Application Field> The present invention relates to a method for refining naphthalene, which is generally referred to as 95% naphthalene, containing benzothiophene recovered from naphthalene oil, middle oil, etc. obtained by distilling coal tar. <Prior Art> Naphthalene is an important substance as a raw material for medicines, dyes, phthalic anhydride, anthraquinone, and the like. Methods for recovering naphthalene from naphthalene oil and medium oil obtained by distilling coal tar include methods of precipitating crystals by natural cooling or forced cooling and centrifugal separation, and methods using only distillation, but the mainstream method is the distillation method. (December 1973, pages 76-77 of "Aromatic and Tar Industry Handbook" published by the Japan Aromatic Industry Association). However, the naphthalene obtained usually has a purity of about 95% and is generally referred to as 95% naphthalene. 95%
Naphthalene contains various impurities such as trace amounts of neutral components such as methylnaphthalene, basic components such as quinoline, acidic components such as phenol derivatives, and sulfur compounds such as benzothiophene. As a method to remove these impurities and produce purified naphthalene, the hydrogenation method
119856, JP 54-144349), methanol recrystallization method (JP 47-47020), impurity removal method by adding anhydrous aluminum chloride (JP 47-47021), fractional crystallization and white clay Combined treatment method (Japanese Patent Publication No. 47-47023), oxalic acid addition method (Japanese Patent Publication No. 53-144557), acetic anhydride addition method (Japanese Patent Publication No. 60-3051), metal or metal oxide catalyst addition method (Japanese Patent Application Laid-open No. 54-81247, Japanese Patent Application Laid-Open No. 53-147048), etc. are known. Among the conventional methods mentioned above, the hydrogenation method that is carried out on an industrial scale requires the addition of a step for removing ethylbenzene, which is a decomposition product of tetralin and benzothiophene, which are produced by hydrogenating a part of naphthalene. Product yield decreases. Similarly, with the fractional crystallization method, the removal of benzothiophene, a sulfur compound, is insufficient, so when low-sulfur products are required, it is necessary to add a deflow step, and naphthalene is lost along with the fractionated mother liquor, resulting in a loss of product quality. Retention decreases. The impurity removal method by adding anhydrous aluminum chloride polymerizes or decomposes impurities to obtain purified naphthalene, but the desulfurization rate is not necessarily good (koks i Khimiya No. 10 No. 39).
40 [1977]), a method of treatment in the presence of acetyl chloride has recently been proposed (Chem.
lnd 1985, pp. 338-339), but has the drawback of high cost. Other conventional methods also have problems in equipment corrosion resistance, product yield, and sulfur compound removal rate, and are not fully satisfactory. In particular, it is difficult to almost completely remove the sulfur compounds contained in 95% naphthalene, and it also requires multiple steps and the installation of complex equipment, which has the disadvantage of being expensive without large-scale production. <Problems to be Solved> The present invention eliminates the drawbacks of the impurity removal method by adding anhydrous aluminum chloride, and provides a method for economically producing purified naphthalene with a high desulfurization rate and high purity. <Details of the invention> As a result of various studies and examinations of the reasons why the desulfurization rate does not improve in the naphthalene purification method by adding anhydrous aluminum chloride, the present inventors found that a part of the benzothiophene contained in 95% naphthalene is hydrogenated. The boiling point of this dihydrobenzothiophene (220-222°C) is close to the boiling point of naphthalene (218°C), so it cannot be separated by distillation, leading to a decrease in the desulfurization rate. In addition, it was determined that naphthalene was partially hydrogenated and converted to tetralin, which remained in naphthalene during distillation and caused a decrease in purity.Due to anhydrous aluminum chloride treatment, a portion of naphthalene was converted to tetralin. It has been found that the conversion to
1979-pages 1210 to 1215) is a previously unknown fact that is produced by desulfurization reactions with fundamentally different reaction systems. Furthermore, it is a completely unknown fact that benzothiophene is partially converted to dihydrobenzothiophene by anhydrous aluminum chloride treatment. Therefore, as a result of further intensive research into the removal of dihydrobenzothiophene, we found that naphthalene and dihydrobenzothiophene cannot be separated by normal pressure distillation, which is carried out in ordinary naphthalene refining, because there is almost no difference in boiling point. They discovered that they can be separated by twisting, and arrived at this invention. That is, this invention is a naphthalene desulfurization method in which naphthalene containing benzothiophene as an impurity is treated with anhydrous aluminum chloride, then anhydrous aluminum chloride is extracted using an aqueous hydrochloric acid solution, and then distilled. This is a method for producing purified naphthalene, which is characterized by recovering the naphthalene as a fraction and separating dihydrobenzothiophene as a residue. Although it has not been quantitatively clarified how the specific volatility of naphthalene and dihydrobenzothiophene changes with distillation pressure (therefore, distillation temperature), naphthalene and dihydrobenzothiophene are used industrially. The conditions for separation are a distillation pressure of 500
mmHg or less, using a distillation column with 20 or more theoretical plates,
A rough guideline is a reflux ratio of 1 or more. Note that this condition is a value experimentally determined by the inventors. Treat naphthalene with anhydrous aluminum chloride,
If aluminum chloride is extracted with hydrochloric acid or the like and then distilled under the above conditions, it will contain almost no sulfur (0.01
% or less) purified naphthalene is obtained. However, this purified naphthalene contains approximately 0.2 to 0.5 tetralin.
If it is necessary to obtain purified naphthalene with a purity of 99.8% or higher, tetralin is separated by distillation under normal pressure or reduced pressure, and then dihydrobenzothiophene is separated. The reason why benzothiophene and naphthalene are hydrogenated by anhydrous aluminum chloride treatment is not clear, but it is thought that hydrogen generated when naphthalene is partially polymerized with anhydrous aluminum chloride is the cause. The amount of anhydrous aluminum chloride added is 0.01 to 5.0 times, preferably 0.25 to 2.0 times, in molar ratio to the total sulfur content in naphthalene. Reaction temperature is 50-120
℃ is appropriate; if the reaction temperature is low, it will take time to dissolve anhydrous aluminum chloride, and if the reaction temperature is high, polymerization or lightening will occur due to side reactions. A sufficient reaction time is about 15 minutes after dissolving the anhydrous aluminum chloride. Even including the dissolution time, 60 minutes is sufficient. Anhydrous aluminum chloride may be removed by a known method using water or an aqueous solution such as hydrochloric acid and sulfuric acid. <Example> 2109 g of 95% naphthalene (purity 96.4%) containing 2.4% benzothiophene (total sulfur approximately 0.57%) was
The mixture was heated to .degree. C., 51.3 g of anhydrous aluminum chloride was added, and the mixture was treated for 2 hours with stirring. and concentration 5
After extracting and separating aluminum chloride by adding 210 g of 10% hydrochloric acid, the mixture was further washed with 105 g of 10% sodium hydroxide to recover 2100 g of an oil layer. This oil was divided into three parts, and 700 g of it was distilled at atmospheric pressure at a reflux ratio of 5 using a distillation column with 50 theoretical plates and a diameter of 15 mm.
27.7g as pre-distillate, as naphthalene fraction
633.7g was collected (conventional method). In addition, 700g of the remaining 1400g was distilled under reduced pressure (200mmHg) at a reflux ratio of 5 using the same distillation column, resulting in 26.4g as a pre-distillate and 637.2g as a naphthalene fraction.
g (Example 1). Using the same distillation column, the last 700 g was distilled at normal pressure with a reflux ratio of 50 for the pre-distillate, and under reduced pressure (200 mmHg) with a reflux ratio of 5 for the naphthalene fraction, resulting in 27.7 g as the pre-distillate and 27.7 g as the naphthalene fraction. 638.6g was obtained (Example 2). The composition of each fraction obtained was measured by gas chromatography. The results are shown in Table 1. The total sulfur in each fraction was measured by combustion-coulometric titration using a trace sulfur analyzer manufactured by Mitsubishi Chemical Industries, Ltd.
【表】
第1表に示すとおり、無水塩化アルミニウムで
処理したのち、減圧蒸留することにより極めて低
硫黄の精製ナフタレンが取得でき、さらに前留分
でテトラリンを除くことによつて純度99.9%とい
う高純度の精製ナフタレンが得られた。[Table] As shown in Table 1, purified naphthalene with extremely low sulfur content can be obtained by treating it with anhydrous aluminum chloride and then distilling it under reduced pressure. Furthermore, by removing tetralin in the pre-distillate, it is possible to obtain purified naphthalene with a purity of 99.9%. Purified naphthalene of high purity was obtained.
Claims (1)
レンを無水塩化アルミニウム処理し、ついで塩酸
水溶液等を用いて無水塩化アルミニウムを抽出し
たのち蒸留するナフタレンの脱硫方法において、
蒸留を減圧下に行い、ナフタレンを留分として回
収し、ジヒドロベンゾチオフエンを残渣として分
離することを特徴とする精製ナフタレンの製造方
法。 2 減圧蒸留を理論段数20段以上の蒸留塔を用
い、還流比1以上、圧力500mmHg以下で行なうこ
とを特徴とする特許請求の範囲第1項に記載の精
製ナフタレンの製造方法。 3 前留分として、テトラリンを常圧ないし減圧
下に留去したのち、減圧蒸留することを特徴とす
る特許請求の範囲第1項および第2項記載の精製
ナフタレンの製造方法。[Scope of Claims] 1. A naphthalene desulfurization method in which naphthalene containing benzothiophene as an impurity is treated with anhydrous aluminum chloride, and then the anhydrous aluminum chloride is extracted using an aqueous hydrochloric acid solution and then distilled,
A method for producing purified naphthalene, which comprises performing distillation under reduced pressure, recovering naphthalene as a fraction, and separating dihydrobenzothiophene as a residue. 2. The method for producing purified naphthalene according to claim 1, wherein the vacuum distillation is carried out using a distillation column having 20 or more theoretical plates, a reflux ratio of 1 or more, and a pressure of 500 mmHg or less. 3. The method for producing purified naphthalene according to claims 1 and 2, characterized in that tetralin is distilled off as a pre-distillate under normal pressure to reduced pressure and then distilled under reduced pressure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20052786A JPS6357539A (en) | 1986-08-27 | 1986-08-27 | Purification of naphthalene |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20052786A JPS6357539A (en) | 1986-08-27 | 1986-08-27 | Purification of naphthalene |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6357539A JPS6357539A (en) | 1988-03-12 |
JPH0420412B2 true JPH0420412B2 (en) | 1992-04-02 |
Family
ID=16425792
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20052786A Granted JPS6357539A (en) | 1986-08-27 | 1986-08-27 | Purification of naphthalene |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6357539A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2130071B1 (en) * | 1997-05-06 | 2000-03-01 | Nalon Quimica Sa | PROCEDURE FOR THE OBTAINING OF REFINED NAFTALINE. |
-
1986
- 1986-08-27 JP JP20052786A patent/JPS6357539A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6357539A (en) | 1988-03-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR910003253B1 (en) | Process for preparing 2,2-bis(4-hydroxyphinyl)propane of high purity | |
JPS59231033A (en) | Purification of bisphenol a | |
US5264624A (en) | Process for the recovery of adipic acid | |
JP3110459B2 (en) | Purification of p-aminophenol composition and direct conversion to N-acetyl-p-aminophenol | |
JPH0420412B2 (en) | ||
JP3901218B2 (en) | Purification method of 2,6-dialkylphenol | |
JPS6256442A (en) | Purification of naphthalene | |
JPH06104635B2 (en) | Method for purifying methylnaphthalene | |
JP2697054B2 (en) | Method for producing p-hydroxybenzaldehyde | |
US3658905A (en) | Process for the purification of p-aminophenol | |
JP2000143633A (en) | Purification of isoquinoline | |
JPH0446253B2 (en) | ||
US4165328A (en) | Process for separating 11-cyanoundecanoic acid, cyclohexanone and ε- | |
JP3657635B2 (en) | Method for producing methylnaphthalene | |
US4145353A (en) | Process for removing 1,4-naphthoquinone from phthalic anhydride | |
JP2532010B2 (en) | Method for producing purified phenol and method for cleaning crystal adduct of bisphenol A and phenol | |
JP2590412B2 (en) | Method for recovering 2,6-diisopropylnaphthalene | |
JP3173732B2 (en) | Method for producing bisphenol A with excellent hue | |
JPH01268678A (en) | Purification of quinaldine | |
JPH0637411B2 (en) | Method for producing melt crystallization of 1,6-hexanediol | |
JPH0542419B2 (en) | ||
JPH06104634B2 (en) | Method for purifying methylnaphthalene | |
JPH03264541A (en) | Recovery of purified naphthalene from naphthol-production process or the like | |
JP2000239257A (en) | Production of 2,2,6,6-tetramethyl-4-piperidone | |
JPS62209030A (en) | Separation of durene |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |