JPH03212127A - Charging and discharging circuit - Google Patents

Charging and discharging circuit

Info

Publication number
JPH03212127A
JPH03212127A JP497490A JP497490A JPH03212127A JP H03212127 A JPH03212127 A JP H03212127A JP 497490 A JP497490 A JP 497490A JP 497490 A JP497490 A JP 497490A JP H03212127 A JPH03212127 A JP H03212127A
Authority
JP
Japan
Prior art keywords
voltage
light emitting
lithium secondary
charging
main power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP497490A
Other languages
Japanese (ja)
Inventor
Kenichi Takada
高田 堅一
Nobuharu Koshiba
信晴 小柴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP497490A priority Critical patent/JPH03212127A/en
Publication of JPH03212127A publication Critical patent/JPH03212127A/en
Pending legal-status Critical Current

Links

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PURPOSE:To prevent over- and under-charging voltage by connecting two circuits, each consisting of a series connection of a light emitting diode and a lithium secondary battery mutually reversed in their connection order, in parallel with a load and connecting a light emitting diode at the midpoint between the two series circuits. CONSTITUTION:Two series circuits consisting of light emitting diodes D1 and D2 and lithium secondary batteries B1 and B2 connected in series and reversed order are connected in parallel with a load L connected to DC main power supply DCS and 0V. In addition, a light emitting diode D3 is connected between the light emitting diodes D1 and D2. It is set so that the sum of a voltage V0 to start current flowing through the light emitting diodes D1-D3 and the maximum permissible voltage of the lithium secondary battery approximately corresponds to the voltage of DC main power supply. For example, when the DC main power supply voltage is 5V, the light emitting diodes D1-D3 with the voltage V0 of about 1.7V are used. The charging is made between the voltages of 3V and 3.3V. When the DC main power supply is switched off, the load L is energized with 4V average. This enables charging with a suitable voltage and maintains a memory back-up voltage not less than 3V.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は充放電可能なバックアップ電源が用いられる機
器、たとえばマイコン搭載機器などにおけるバックアッ
プ電源用の充放電回路に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a charging/discharging circuit for a backup power source in equipment in which a rechargeable/dischargeable backup power source is used, such as equipment equipped with a microcomputer.

従来の技術 近年、マイコンを搭載した電子機器が急増する傾向にあ
るが、電源オフ時など、大切なメモリーが消去しないよ
うに種々のメモリーバックアップ電源が用いられている
BACKGROUND OF THE INVENTION In recent years, there has been a rapid increase in the number of electronic devices equipped with microcomputers, and various memory backup power supplies are used to prevent important memory from being erased when the power is turned off.

バックアップ電源としては、リチウム−次電池、乾電池
などの充電できない一次電池、及びNi −Cd電池、
リチウム二次電池などの充電可能な二次電池やキャパシ
タがある。
As a backup power source, lithium secondary batteries, non-rechargeable primary batteries such as dry batteries, Ni-Cd batteries,
There are rechargeable secondary batteries such as lithium secondary batteries and capacitors.

このうち、リチウム二次電池はN1−(j11電池、キ
ャパシタに比べ電池電圧が3vと高く、高エネルギー密
度を有し、長期保存における劣化も非常に小さいなどの
長期信頼性に優れるため、最近、メモリバックアップ電
源として注目をあびている。
Among these, lithium secondary batteries have a high battery voltage of 3V compared to N1-(j11 batteries and capacitors), have high energy density, and have excellent long-term reliability such as very little deterioration during long-term storage. It is attracting attention as a memory backup power source.

そして、IC回路のメモリーをバックアップするために
必要な電圧が3v以上であると、Nニーcd電池、キャ
パシタの場合、3個以上直列接続しなければならないが
、3v級のリチウム二次電池では2個直列接続するだけ
でバックアップが可能となる。しかし、主電源電圧が6
vの場合、リチウム二次電池の適正な充電電圧は1個当
93V付近であるため、2個を第4図に示すように直列
接続しただけでは、2個のリチウム電池を充電すること
はできなかった。このため、回路上の工夫が要求されて
いた。
If the voltage required to back up the memory of an IC circuit is 3V or more, three or more N-needle CD batteries and capacitors must be connected in series, but a 3V class lithium secondary battery requires two or more. Backup is possible simply by connecting them in series. However, the main power voltage is 6
In the case of V, the appropriate charging voltage for a lithium secondary battery is around 93V, so it is not possible to charge two lithium batteries by simply connecting two batteries in series as shown in Figure 4. There wasn't. For this reason, circuit improvements have been required.

発明が解決しようとする課題 リチウム二次電池を2個で対応する場合、適正な充電電
圧は1個あたり3v附近にあるのに対し、主電源電圧の
多くは5vであるので、単純に2個を直列接続しただけ
では、充電することができない問題があった。
Problem to be Solved by the Invention When dealing with two lithium secondary batteries, the appropriate charging voltage is around 3V per battery, whereas most main power supply voltages are 5V, so simply two batteries are required. There was a problem in that it was not possible to charge the batteries simply by connecting them in series.

本発明では、回路上の工夫を施し、2個のリチウム二次
電池を適正な充電電圧で充電でき、メモリーバックアッ
プに必要な電圧が得られるようにすることを目的とした
The present invention aims to make it possible to charge two lithium secondary batteries at an appropriate charging voltage and obtain the voltage necessary for memory backup by making improvements to the circuit.

課題を解決するだめの手段 この問題点を解決するために、種々検討した結果、本発
明は、直流主電源の両極間に第1のリチウム二次電池と
第1の発光ダイオードを直列接続するとともに、第2の
りチウム二次電池を第1の発光ダイオードに、第2の発
光ダイオードを第1のリチウム二次電池にそれぞれ並列
接続し、第1と第2のリチウム二次電池及び第1と第2
の発光ダイオードの間に第3の発光ダイオードを接続し
たものである。
Means for Solving the Problem In order to solve this problem, as a result of various studies, the present invention has been developed by connecting a first lithium secondary battery and a first light emitting diode in series between the two poles of a DC main power supply, and , the second lithium secondary battery is connected in parallel to the first light emitting diode, the second light emitting diode is connected in parallel to the first lithium secondary battery, and the first and second lithium secondary batteries and the first and first lithium secondary batteries are connected in parallel. 2
A third light emitting diode is connected between the two light emitting diodes.

作用 発光ダイオードの電圧−電流特性は、第2図に示す如く
であるが、順方向には電流がvOよυ急激に立ち上がる
性質を有している。
The voltage-current characteristics of the active light emitting diode are as shown in FIG. 2, and in the forward direction the current has a property of rapidly rising to vO.

この素子を用い、第1図aの充電回路とした場合、第1
の発光ダイオードの電圧vOと第1のリチウム二次電池
の最大許容電圧の合計が、また第2の発光ダイオードの
電圧vOと第2のリチウム二次電池の最大許容電圧の合
計が、直流主電源の電圧とほぼ一致するような組み合わ
せにするわけである。そうすることにより、第1および
第2のリチウム二次電池が充電される電圧領域では(最
大許容電圧よシ低い電圧)、第1および第2の発光ダイ
オードの電圧voよシ少し高い位置にあるので、充電電
流はよく流れ、充電が完了すると第1および第2のリチ
ウム二次電池電源の電圧が上昇し、第1および第2の発
光ダイオードの電圧はvOまで下がり、充電電流はほと
んど流れなくなってしまう。そして、第1および第2の
リチウム二次電池の電圧は、共に許容電圧内でホールド
され、平衡状態となシ、リチウム二次電池をそれぞれ充
電することができる。
When this element is used to create the charging circuit shown in Figure 1a, the first
The sum of the voltage vO of the light emitting diode and the maximum allowable voltage of the first lithium secondary battery, and the sum of the voltage vO of the second light emitting diode and the maximum allowable voltage of the second lithium secondary battery are the DC main power supply. The combination is made so that the voltage almost matches that of . By doing so, in the voltage range in which the first and second lithium secondary batteries are charged (voltage lower than the maximum allowable voltage), the voltage vo of the first and second light emitting diodes is slightly higher. Therefore, the charging current flows well, and when charging is completed, the voltage of the first and second lithium secondary battery power sources increases, the voltage of the first and second light emitting diodes decreases to vO, and almost no charging current flows. It ends up. Then, the voltages of the first and second lithium secondary batteries are both held within the allowable voltage range, and the lithium secondary batteries can be charged respectively in a balanced state.

さらに第1.第3の発光ダイオードのvOの和が第2の
リチウム二次電池の放電電圧以上に、また第2.第3の
発光ダイオードのvoの和が第1のリチウム二次電池の
放電電圧以上になるように、かつ第1.第2.第3の発
光ダイオードのvoの和が、直流電源電圧以上になるよ
うに第3の発光ダイオードを接続するわけである。
Furthermore, the first. The sum of vO of the third light emitting diodes is higher than the discharge voltage of the second lithium secondary battery, and the sum of the vO of the third light emitting diodes is higher than the discharge voltage of the second lithium secondary battery. such that the sum of vo of the third light emitting diodes is equal to or higher than the discharge voltage of the first lithium secondary battery, and the first. Second. The third light emitting diodes are connected so that the sum of vo of the third light emitting diodes is equal to or higher than the DC power supply voltage.

そうすることにより、リチウム二次電池は、発光ダイオ
ードを経由しての放電損失がなく、がっ、充電時、充電
電流が3個の発光ダイオードを経由して流れることなく
効率よく充電することができる。
By doing so, the lithium secondary battery has no discharge loss through the light emitting diodes, and when charging, the charging current does not flow through the three light emitting diodes, making it possible to charge efficiently. can.

またリチウム二次電池に充電電流の御限がある場合、電
流制限用の保護抵抗を第1図すのように直列接続すれば
よいわけである。
Furthermore, if the lithium secondary battery has a charging current limit, it is sufficient to connect a protective resistor for current limiting in series as shown in Figure 1.

実施例 実施例1 直流主電源の電圧を6vとし、第1および第2のリチウ
ム二次電池B1. B2として正極に五酸化バナジウム
、負極にリチウムアルミニウム合金ヲ用いたバナジウム
/リチウム二次電池を用い、Dl、 D2. D3の3
個の発光ダイオードを使用して6v出力の直流主電源D
O8につないで第1図aに示す充放電回路を構成した。
Examples Example 1 The voltage of the DC main power source was 6V, and the first and second lithium secondary batteries B1. A vanadium/lithium secondary battery using vanadium pentoxide as a positive electrode and a lithium aluminum alloy as a negative electrode was used as B2, and Dl, D2. D3 no 3
DC main power supply D with 6V output using light emitting diodes
By connecting it to O8, a charging/discharging circuit shown in FIG. 1a was constructed.

Lは負荷である。L is the load.

ここでのバナジウム/リチウム二次電池は、3vの電圧
を有し、20111Ahの電気容量を有している。
The vanadium/lithium secondary battery here has a voltage of 3V and an electric capacity of 20111Ah.

その充放電特性は第3図に示したが、充電は、大体3v
から3.3vの間で行なわれ、その後電圧が急赦に立ち
上がる。しかし、充電電圧を約3.7v以内にホールド
すれば、充電状態で安定な均衡を保つ性質を有している
Its charge/discharge characteristics are shown in Figure 3, and charging is approximately 3V.
to 3.3V, and then the voltage suddenly rises. However, if the charging voltage is held within about 3.7V, it has the property of maintaining a stable balance in the charging state.

また、第1.第2.第3の発光ダイオードD、。Also, 1st. Second. A third light emitting diode D,.

D2.D3としてvoが1.7v付近のものをそれぞれ
用いた。2個の放電後のバナジウム/リチウム二次電池
を本発明の回路で充電するとそれぞれ第3図に示すよう
な充電カーブが得られる。そして充電電圧が3.4v付
近でそれぞれ安定した。また、この回路で、直流主電源
DO8をオフ状態にしたところ、負荷にかかる平均電圧
は約4.oV得ることができ、メモリーバックアップ電
圧が3v以上必要なIC回路にも充分対応することがで
きる。
D2. As D3, those with vo around 1.7v were used. When two discharged vanadium/lithium secondary batteries are charged using the circuit of the present invention, charging curves as shown in FIG. 3 are obtained. Then, the charging voltage became stable around 3.4V. Also, in this circuit, when the DC main power supply DO8 is turned off, the average voltage applied to the load is approximately 4. OV can be obtained, and it can be fully used for IC circuits that require a memory backup voltage of 3V or more.

実施例2 実施例1で、さらに第1図すのように、300Ωの保護
抵抗R,、R2を直列に接続し、実施例1と同じように
、充放電試験をしてみたが、充電電流が2mム以内に制
限され、充電完了時の電圧及び主電源オフ時の負荷にか
かる電圧は実施例1と同じ結果であった。このことより
、充電時の電流を制限するための保護抵抗を接続するこ
とも可能である。
Example 2 In Example 1, as shown in Figure 1, 300Ω protective resistors R, R2 were connected in series, and a charge/discharge test was conducted in the same manner as in Example 1. was limited to within 2 mm, and the voltage applied to the load when charging was completed and the voltage applied to the load when the main power was turned off were the same as in Example 1. From this, it is also possible to connect a protective resistor to limit the current during charging.

比較例として、Mi−Cd電池、キャパシタなどで用い
られている充放電回路と同じようにリチウム二次電池を
2個直列接続した第4図の回路でテストを行なった。
As a comparative example, a test was conducted using a circuit shown in FIG. 4 in which two lithium secondary batteries were connected in series, similar to the charging/discharging circuit used in Mi-Cd batteries, capacitors, and the like.

充電時、電池電圧はそれぞれ約2.6vまでにしか上が
らず、主電源をオフ状態にすると、負荷にかかる電圧は
2v以下になり、メモリーをバックアップするに必要な
電圧は得られなかった。このように単純に直列接続する
だけでは電池を充電することはできない。
During charging, the battery voltage only rose to about 2.6V, and when the main power was turned off, the voltage applied to the load dropped to less than 2V, making it impossible to obtain the voltage necessary to back up the memory. A battery cannot be charged simply by connecting in series like this.

なお、実施例としては、リチウム二次電池として、バナ
ジウム/リチウム二次電池を上げたが、これは原理的な
ものを示したにすぎず、カーボン/リチウム二次電池、
マンガン/リチウム二次電池、二硫化モリブデン/リチ
ウム二次電池、ボ、す→−/リチウム二次電池など広く
適用することができる。
In addition, as a lithium secondary battery, a vanadium/lithium secondary battery was given as an example, but this only shows the principle, and a carbon/lithium secondary battery, a carbon/lithium secondary battery,
It can be widely applied to manganese/lithium secondary batteries, molybdenum disulfide/lithium secondary batteries, and lithium secondary batteries.

また、直流主電源の電圧はもちろん5vに限定されるも
のではなく、種々の電圧において定電圧素子を適切に選
択することによって自由に使いこなすことができる。
Further, the voltage of the DC main power supply is of course not limited to 5V, and can be freely used at various voltages by appropriately selecting a constant voltage element.

発明の効果 以上から明らかなように本発明の充放電回路は、リチウ
ム二次電池を適正な充電電圧で充電ができ、メモリバッ
クアップに必要な電圧を得ることができる。
Effects of the Invention As is clear from the above, the charging/discharging circuit of the present invention can charge a lithium secondary battery at an appropriate charging voltage and can obtain the voltage necessary for memory backup.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a、bは本発明の充放電回路を示す図、第2図は
発光ダイオードのV−I特性を示す図、第3図はリチウ
ム二次電池の充放電カーブを示す図、第4図は比較例の
充放電回路を示す図である。 ncs・・・・・・直流主電源、B、 、 B2・・・
・・・リチウム二次電池、Dl、 D2. D3・・・
・・・発光ダイオード、L・・・・・・負荷、R1,R
2・・・・・・抵抗。
Figures 1a and b are diagrams showing the charging/discharging circuit of the present invention, Figure 2 is a diagram showing the VI characteristics of a light emitting diode, Figure 3 is a diagram showing the charging/discharging curve of a lithium secondary battery, and Figure 4 is a diagram showing the charging/discharging curve of a lithium secondary battery. The figure is a diagram showing a charging/discharging circuit of a comparative example. ncs...DC main power supply, B, , B2...
...Lithium secondary battery, Dl, D2. D3...
...Light emitting diode, L...Load, R1, R
2...Resistance.

Claims (2)

【特許請求の範囲】[Claims] (1)バックアップ電源が充放電可能なリチウム電池、
及びその充電電源を兼ねた直流主電源とから構成され、
それらが接続された回路において、直流主電源の両極間
に第1のリチウム電池と第1の発光ダイオードを直列接
続し、かつ第2のリチウム電池を第1の発光ダイオード
に、第2の発光ダイオードを第1のリチウム電池にそれ
ぞれ並列接続するとともに、第1と第2のリチウム電池
及び第1と第2の発光ダイオードの間に第3の発光ダイ
オードを接続したことを特徴とする充放電回路。
(1) Backup power source is a lithium battery that can be charged and discharged.
and a DC main power source that also serves as its charging power source,
In the circuit in which they are connected, a first lithium battery and a first light emitting diode are connected in series between both poles of a DC main power supply, and a second lithium battery is connected to the first light emitting diode, and a second light emitting diode is connected to the second lithium battery. are connected in parallel to a first lithium battery, and a third light emitting diode is connected between the first and second lithium batteries and the first and second light emitting diodes.
(2)第1および第2の発光ダイオードにそれぞれ直列
に過電流防止用抵抗が接続されていることを特徴とする
特許請求の範囲第1項記載の充放電回路。
(2) The charging/discharging circuit according to claim 1, wherein an overcurrent prevention resistor is connected in series with each of the first and second light emitting diodes.
JP497490A 1990-01-12 1990-01-12 Charging and discharging circuit Pending JPH03212127A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP497490A JPH03212127A (en) 1990-01-12 1990-01-12 Charging and discharging circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP497490A JPH03212127A (en) 1990-01-12 1990-01-12 Charging and discharging circuit

Publications (1)

Publication Number Publication Date
JPH03212127A true JPH03212127A (en) 1991-09-17

Family

ID=11598572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP497490A Pending JPH03212127A (en) 1990-01-12 1990-01-12 Charging and discharging circuit

Country Status (1)

Country Link
JP (1) JPH03212127A (en)

Similar Documents

Publication Publication Date Title
US6417646B1 (en) Circuit for monitoring cells of a multi-cell battery during charge
WO2006108020A1 (en) Energy storage apparatus and related method
US5173652A (en) Battery chargers for secondary cells of batteries, which control the thermo response of the charge acceptor
JPH03212127A (en) Charging and discharging circuit
JP3100248U (en) Secondary battery storage and power supply device and secondary battery pack using the same
JPH0322837A (en) Charge/discharge circuit
JPH02299173A (en) Charging/discharging circuit
EP0854556A2 (en) Charger and charging method for non-aqueous electrolyte secondary batteries
JPH0322838A (en) Charge/discharge circuit
US20220365141A1 (en) Voltage sensing circuit, battery pack, and battery system
JPS59148539A (en) Circuit for charging storage battery by current supplied from solar battery
JP2841470B2 (en) Charge / discharge circuit
JP2500878Y2 (en) Power supply circuit
KR102491116B1 (en) Protection Circuit Module for Super capacitor
JPH04151581A (en) Combined battery
JPH09247851A (en) Charger for series-connected electrochemical element
JPH0992342A (en) Battery device
Takehara et al. Energy Storage System with Intelligent Hot-plug Switch (IHS) Combined Use of Different Types of Batteries
RU2017277C1 (en) Device for element by element afterdischarge of two storage batteries
JP2584243Y2 (en) Solar cell application equipment
JPS61269618A (en) Charge protection circuit
JPS59156124A (en) Power source backup circuit
JPH038040Y2 (en)
JPH06113472A (en) Battery charger
JPH09180764A (en) Battery pack for secondary battery