JPH0322837A - Charge/discharge circuit - Google Patents
Charge/discharge circuitInfo
- Publication number
- JPH0322837A JPH0322837A JP1157781A JP15778189A JPH0322837A JP H0322837 A JPH0322837 A JP H0322837A JP 1157781 A JP1157781 A JP 1157781A JP 15778189 A JP15778189 A JP 15778189A JP H0322837 A JPH0322837 A JP H0322837A
- Authority
- JP
- Japan
- Prior art keywords
- power supply
- voltage
- charging
- power source
- backup
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000007599 discharging Methods 0.000 claims description 12
- 230000002265 prevention Effects 0.000 claims description 11
- 230000000903 blocking effect Effects 0.000 abstract 4
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 15
- 229910052744 lithium Inorganic materials 0.000 description 15
- 229910052720 vanadium Inorganic materials 0.000 description 6
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 6
- 239000003990 capacitor Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 241000556720 Manga Species 0.000 description 1
- 229910003307 Ni-Cd Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- JFBZPFYRPYOZCQ-UHFFFAOYSA-N [Li].[Al] Chemical compound [Li].[Al] JFBZPFYRPYOZCQ-UHFFFAOYSA-N 0.000 description 1
- UFHOUXWTFLKGSR-UHFFFAOYSA-M [O-2].[O-2].[OH-].O.O.O.[V+5] Chemical compound [O-2].[O-2].[OH-].O.O.O.[V+5] UFHOUXWTFLKGSR-UHFFFAOYSA-M 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- DMEJJWCBIYKVSB-UHFFFAOYSA-N lithium vanadium Chemical compound [Li].[V] DMEJJWCBIYKVSB-UHFFFAOYSA-N 0.000 description 1
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 description 1
- 229910052982 molybdenum disulfide Inorganic materials 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Stand-By Power Supply Arrangements (AREA)
- Secondary Cells (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は充放電可能なバックアップ電源が用いられる機
器、たとえばマイコン搭載機器などにおけるバックアッ
プ電源用充放電回路に関するものである。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a charging/discharging circuit for a backup power source in equipment in which a rechargeable/dischargeable backup power source is used, such as equipment equipped with a microcomputer.
従来の技術
近年、マイコンを搭載した電子機器が急増する傾向にあ
るが、電源オフ時などに大切なメモリーが消去しないよ
うに種々のメモリーバックアップ電源が用いられている
。バックアップ電源としては、リチウム一次電池,乾電
池などの充電できない一次電池、キャパシタ,及びNi
− Cd電池,リチウム二次電池などの充電可能な二
次電源がある。BACKGROUND OF THE INVENTION In recent years, there has been a rapid increase in the number of electronic devices equipped with microcomputers, and various memory backup power supplies are used to prevent important memory from being erased when the power is turned off. As a backup power source, non-rechargeable primary batteries such as lithium primary batteries, dry batteries, capacitors, and Ni
- There are rechargeable secondary power sources such as CD batteries and lithium secondary batteries.
本発明は、と〈に、後者の二次電源にか\わるものであ
るが、これ唾では、たとえば主電源が6Vの電圧に対し
、キャパシタの場合、複数個直列接続し、6v対応とし
たり、Ni − Cd電池の場合、電池を2〜3個直列
接続し、さらに、電池と直列に比較的大きな抵抗を接続
して充電々流を制限することによって、電池の内部で充
電々圧が上昇しないような充電方式(トリクル充電)を
とっていた。The present invention relates to the latter secondary power supply, and in this case, for example, when the main power supply has a voltage of 6V, in the case of a capacitor, multiple capacitors are connected in series to make it compatible with 6V. In the case of Ni-Cd batteries, by connecting two or three batteries in series and further connecting a relatively large resistor in series with the batteries to limit the charging current, the charging pressure increases inside the battery. It used a charging method (trickle charging) that would not cause any damage.
これらは、電源を複数個直列接続することによって、コ
ストが増大する難点があるし、トリクル充電の場合、電
池内部で電解液の分解ガスが発生しているため、必ずし
も、長期間使用しにくいという問題点があった。These devices have the drawback of increasing costs due to the series connection of multiple power supplies, and in the case of trickle charging, decomposition gas from the electrolyte is generated inside the battery, making it difficult to use it for a long period of time. There was a problem.
1た、最近、普及しつつあるリチウム二次電池の場合、
電圧が3vと高いものがちり、さらに、メモリーバック
アップに必要な電圧が2v付近1で可能になっているた
め、1個で対応する動きもある。1. In the case of lithium secondary batteries, which have recently become popular,
Since the voltage required for memory backup can be as high as 3V, and the voltage required for memory backup can be as low as 2V, there is a trend to use just one.
発明が解決しようとする課題
と〈に、.リチウム二次電池のように、電池1個で対応
しようとする場合、適正な充電々圧が3v付近にあるの
に対し、主電源電圧が、多くは6v付近にあるので、定
電圧素子であるツエナーダイ.オードと定抵抗を直列に
接続し、その上にツェナーダイオードと並列にバックア
ップ電源を接続することによって、適正な充電々圧を得
ていた。しかし、この場合、ツエナーダイオードの制御
電圧のバラツキが大きいため、適正な充電々圧範囲を越
えてし1つたり、ツェナーダイオードを経由し7ての放
電損失などの問題点及び高価である等の問題点があった
。The problem that the invention aims to solve and When trying to cope with a single battery such as a lithium secondary battery, the appropriate charging voltage is around 3V, but the main power supply voltage is often around 6V, so a constant voltage element is used. Zener die. Appropriate charging voltage was obtained by connecting an ode and a constant resistor in series, and connecting a backup power supply in parallel with a Zener diode. However, in this case, there are large variations in the control voltage of the Zener diode, so there are problems such as overcharging beyond the appropriate charging voltage range, discharging loss via the Zener diode, etc., and high cost. There was a problem.
本発明は、これらの問題に対し、ツヱナーダイオードを
用いない簡単な回路で適正な充電々圧を得、しかも、.
これを低コストで実現することを目的としたものである
5,
課題を解決するための手段
本発明者らは種々検討した結果、第1図に示l−7た如
く、直流主電源の両極間に、複数個の抵抗を直列接続し
抵抗分割によって適正な充電々圧を得、その分割抵抗と
バックアップ電源とを並列接続するとともに、この両者
間にバックアップ電源より,分割抵抗に電流が逆流しな
いよう第1の逆流防止ダイオードを挿入し、さらにバン
クアップ電源ヨり、バックアップ時、直流主電源及び電
圧分割用の直列抵抗を経由して放電しないよう第2の逆
流防止ダイオードと直列抵抗の結線部間に、第3の逆流
防止ダイオードを挿入するものである。The present invention solves these problems by obtaining an appropriate charging pressure with a simple circuit that does not use a Zener diode.
The purpose of this is to realize this at low cost5. Means for Solving the Problem As a result of various studies, the inventors have devised a solution for connecting both poles of the DC main power supply as shown in Fig. 1-7. In between, connect multiple resistors in series and divide the resistors to obtain appropriate charging voltage, connect the divided resistors in parallel with a backup power source, and prevent current from flowing backwards into the divided resistors between the two from the backup power source. Insert the first backflow prevention diode, and then insert the second backflow prevention diode and the series resistor to prevent discharge via the DC main power supply and the series resistor for voltage division during backup. A third backflow prevention diode is inserted between them.
作用
こうすることにより、電圧は抵抗によって分割されるの
で、かなり精度の良い電圧が得られ、かつ3個の逆流防
止ダイオードにより、バックアップ時、抵抗や主電源を
経由して放′ボされることなく、ほy1oo%バックア
ップ負荷に有効に使用することができる。By doing this, the voltage is divided by the resistors, so a fairly accurate voltage can be obtained, and the three reverse current prevention diodes prevent the voltage from being discharged via the resistor or main power supply during backup. It can be effectively used for almost 100% backup load.
1た、用いる部品も抵抗と、逆流防止ダイオード3個な
ので安価に構或することができる。Furthermore, since the components used are a resistor and three backflow prevention diodes, it can be constructed at low cost.
実施例
直流主電源の電圧を6vとし、バックアップ電源として
、正極に6酸化バナジウム、負極にリチウムアルミニウ
ム合金を用いたバナジウムリチウム二次電池を用い、第
1図に示す充放電回路を構或した。バナジウム/リチウ
ム二次電池は約3vの電圧を有し、2 0 mAhの電
気容量を保有している。又その充放電特性を第2図に示
したが、充’i[は大体3vかも3.3vの間で行われ
、その後市H―が急激に立ち上がる。しかし、充電々圧
を約3.7V以内にホールドすれば、充電が完了した状
態で、安定な均衡を保つ性質を有している。EXAMPLE A charging/discharging circuit shown in FIG. 1 was constructed using a vanadium lithium secondary battery using vanadium hexaoxide as a positive electrode and a lithium aluminum alloy as a negative electrode as a backup power source with a DC main power supply voltage of 6 V. The vanadium/lithium secondary battery has a voltage of about 3V and a capacity of 20 mAh. Further, the charging and discharging characteristics are shown in FIG. 2, and charging is performed at approximately 3V or 3.3V, and then the voltage H- suddenly rises. However, if the charging voltage is held within about 3.7V, it has the property of maintaining a stable balance even when charging is completed.
第1図中、DOSは直流主電源テ6’l/, R, ,
.R,は抵抗で、その抵抗値はR, =200.2 ,
R,, =61oDである。D, , D2は逆流
防止ダイオードで、シワソトキーバリャー型で、電流が
数μA以下(充電完了時)のときの電圧ドロップが0.
2V程度のものである。D,はシリコン型ダイオードで
ある。BUSはバックアップ電源で、バナジウム/リチ
ウム二次電池である。In Figure 1, DOS is the DC main power supply 6'l/, R, ,
.. R, is a resistance, and its resistance value is R, =200.2,
R,, =61oD. D, , D2 are backflow prevention diodes, which are wrinkle-resistant type and have a voltage drop of 0.0 when the current is less than a few μA (when charging is complete).
It is about 2V. D, is a silicon type diode. BUS is a backup power source, which is a vanadium/lithium secondary battery.
R,,R2は、充電完了時のBUSの電圧が、3.4v
にするためD,の電圧ドロップ0.2vを加算し、R2
に3,6 Vになるようにし、さらに、BUSの充電
々流が3v時点で約2m▲にするようにして選んだ値で
ある。For R,,R2, the BUS voltage when charging is completed is 3.4v.
To make it, add the voltage drop of 0.2v of D, and
This value was chosen so that the voltage would be 3.6 V, and the charging current of the BUS would be approximately 2 m▲ at 3 V.
放電後のバナジウム/リチウム二次電池を本発明の回路
で充電すると、第3図に示すような充電カーブが得られ
た。そして充電々圧が3.4v付近で安定した。When the discharged vanadium/lithium secondary battery was charged using the circuit of the present invention, a charging curve as shown in FIG. 3 was obtained. And the charging voltage stabilized around 3.4v.
この回路で、直流主電源(電圧変動±3ダ),ダイオー
ド.抵抗及び電池をランダムに10個選び同じテストを
してみたところ、充電完了電圧がすべて、3.6±0.
15V以内に入った。This circuit uses a DC main power supply (voltage fluctuation ±3 da), a diode. When I randomly selected 10 resistors and batteries and ran the same test, the charging completion voltage for all of them was 3.6±0.
It was within 15V.
1た、このあと、充電されたバナジウム/リチウム二次
電池を、s lの定抵抗負荷で放電したところ、電池の
平均電圧が約2.8vで!気容量は2 0 mAhをす
べて得ることができた。これらのことよう、適正な充電
が行われたことが確認できた。1. After this, when the charged vanadium/lithium secondary battery was discharged with a constant resistance load of SL, the average voltage of the battery was about 2.8V! A total air capacity of 20 mAh was obtained. These things confirm that proper charging was performed.
比較例として、第4図に示したような、従来のツエナー
ダイオードとバックアップ電源を並列接続することによ
る電圧制御方式でテストしてみた。As a comparative example, we tested a voltage control method using a conventional Zener diode and a backup power supply connected in parallel, as shown in FIG.
図中、Rぱ保護抵抗、ZDはツェナーダイオードである
。In the figure, the protection resistor R and ZD are Zener diodes.
なkZDとしてはHZ3CLL(制御電圧範囲3.1〜
3.5 V , (株)日立製作所製)を用いHの値は
2 2 0 Qとした。As a kZD, HZ3CLL (control voltage range 3.1~
3.5 V, manufactured by Hitachi, Ltd.), and the value of H was set to 2 20 Q.
この回路で実施例と同じように、各部品をランダムに1
0個ずつ選び、充電完了時の電池電圧を測定したところ
、3.3±0.2 5 Vの範囲であり、この中には3
.15Vのものが10個中2個あった。In this circuit, as in the example, each component is randomly
When the battery voltage was measured after charging was completed, it was in the range of 3.3±0.25 V, including 3.
.. 2 out of 10 were 15V.
これらを実施例と同じ条件で放電したところ、10個中
8個は16〜18mAhの電気容量を得ることができた
が、充電完了電圧が3.15Vのもの2個が約10m▲
hの電気容量しか得られなかった。When these were discharged under the same conditions as in the example, 8 out of 10 were able to obtain a capacitance of 16 to 18 mAh, but 2 with a charging completion voltage of 3.15 V were about 10 m▲
A capacitance of only h was obtained.
このことは、電池の放電時、ツェナーダイオードを経由
しての放電ロスがあり、さらに充電々圧が低いものは十
分には充電できないことを示している。This indicates that when a battery is discharged, there is a discharge loss via the Zener diode, and that a battery with a low charging voltage cannot be sufficiently charged.
発明の効果
以上のことから、本発明の充放電回路は、精度よく適正
な充電々圧を得ることができ、放電時の損失もなく、し
かもツエナーダイメードは用いず経済的な構或である。From the above effects of the invention, the charging/discharging circuit of the present invention can obtain an appropriate charging pressure with high precision, has no loss during discharging, and has an economical structure without using Zener dimade. .
なお、実施例ではバナジウム/リチウム二次電池を用い
たが、これは一例を示したに過ぎず、カーボン/リチウ
ム二次電池.マンガ//リチウム二次電池,二硫化モリ
ブデン/リチウム二次電池,ボリマーリチウム二次電池
などのリチウム二次電池、及び、キャパシタ, Ni
− C(1電池,鉛電池,固体電解質二次電池など充放
電可能な二次電源はすべて適用できる。Note that although a vanadium/lithium secondary battery was used in the examples, this is just an example, and a carbon/lithium secondary battery. Manga//Lithium secondary batteries such as lithium secondary batteries, molybdenum disulfide/lithium secondary batteries, and polymer lithium secondary batteries, and capacitors, Ni
-C (All rechargeable and dischargeable secondary power sources such as single batteries, lead batteries, and solid electrolyte secondary batteries are applicable.
1た、直流主電源の電圧はもちろん6vに限定されるも
のではなく、種々の電圧において、抵抗値を適切に選択
することによって、自由に使いこなすことができる。Furthermore, the voltage of the DC main power supply is of course not limited to 6V, and can be freely used at various voltages by appropriately selecting the resistance value.
【図面の簡単な説明】
第1図は本発明の充放電回路を示す図、第2図はバナジ
ウム/リチウム二次電池の充放電特性図、第3図は本発
明の充放電回路を用いた場合の充電カーブを示す図、第
4図は比較のための充放電回路を示す図である。
DOS・・・・・・直流主電源、 R,, R2・・・
・・・抵抗、D,,D2,D,・・・・・・逆流防止ダ
イオード、BUS・・・・バックアップダイオード、L
・・・・・・負荷、ZD・・・・・・ツエナーダイオー
ド。[Brief explanation of the drawings] Figure 1 is a diagram showing the charging/discharging circuit of the present invention, Figure 2 is a diagram showing the charging/discharging characteristics of a vanadium/lithium secondary battery, and Figure 3 is a diagram showing the charging/discharging circuit of the present invention. FIG. 4 is a diagram showing a charging/discharging circuit for comparison. DOS...DC main power supply, R,, R2...
...Resistance, D,,D2,D, ...Reverse current prevention diode, BUS...Backup diode, L
...Load, ZD... Zener diode.
Claims (1)
ねた直流主電源とから構成されそれらが接続された回路
において、直流主電源の電圧がバックアップ電源の適正
な充電々圧より高い場合、直流主電源の両極間に複数個
の抵抗を直列接続し抵抗分割によって、適正な充電々圧
を得、その分割抵抗とバックアップ電源とを並列接続す
るとともに、両者間にバックアップ電源より、分割抵抗
に電流が逆流しないよう第1の逆流防止ダイオードを挿
入し、さらに、バックアップ電源より、直流主電源回路
へ放電できるように、第2の逆流防止ダイオードを経由
して結線し、前記バックアップ電源より、バックアップ
時直流主電源及び、電圧分割用の直列抵抗を経由して放
電しないよう第2の逆流防止ダイオードと、直列抵抗の
結線部間に第3の逆流防止ダイオードを結線することを
特徴とした充放電回路。In a circuit where a chargeable/dischargeable backup power supply and a DC main power supply that also serves as a charging power supply are connected, if the voltage of the DC main power supply is higher than the appropriate charging voltage of the backup power supply, the DC main power supply By connecting multiple resistors in series between the two poles of the resistor and dividing the resistors, an appropriate charging voltage can be obtained.The dividing resistor and a backup power source are connected in parallel, and current flows backward from the backup power source to the dividing resistor between the two. A first reverse current prevention diode is inserted to prevent the backup power supply from discharging into the DC main power supply circuit, and a second reverse current prevention diode is connected so that the backup power supply can discharge the DC main power supply circuit during backup. A charging/discharging circuit characterized in that a third backflow prevention diode is connected between the connection portion of the second backflow prevention diode and the series resistor so as not to discharge via the power supply and the series resistor for voltage division.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1157781A JPH0322837A (en) | 1989-06-20 | 1989-06-20 | Charge/discharge circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1157781A JPH0322837A (en) | 1989-06-20 | 1989-06-20 | Charge/discharge circuit |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0322837A true JPH0322837A (en) | 1991-01-31 |
Family
ID=15657157
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1157781A Pending JPH0322837A (en) | 1989-06-20 | 1989-06-20 | Charge/discharge circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0322837A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE112010005492T5 (en) | 2010-04-16 | 2013-01-24 | Mitsubishi Electric Corporation | navigation system |
DE112010005493T5 (en) | 2010-04-16 | 2013-01-24 | Mitsubishi Electric Corporation | navigation system |
DE112010005494T5 (en) | 2010-04-16 | 2013-01-31 | Mitsubishi Electric Corp. | navigation system |
-
1989
- 1989-06-20 JP JP1157781A patent/JPH0322837A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE112010005492T5 (en) | 2010-04-16 | 2013-01-24 | Mitsubishi Electric Corporation | navigation system |
DE112010005493T5 (en) | 2010-04-16 | 2013-01-24 | Mitsubishi Electric Corporation | navigation system |
DE112010005494T5 (en) | 2010-04-16 | 2013-01-31 | Mitsubishi Electric Corp. | navigation system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3216133B2 (en) | Non-aqueous electrolyte secondary battery charging method | |
CN100373742C (en) | Over voltage transient controller | |
KR101084828B1 (en) | Battery pack and Charging Control Method for Battery Pack | |
JP2010045963A (en) | Battery circuit and battery pack | |
JPH104636A (en) | Method for charging lithium cell | |
CN108235791A (en) | Correct the method for charging lithium-ion battery for making up voltage | |
JPH0322837A (en) | Charge/discharge circuit | |
US6194868B1 (en) | Voltage indicator for indicating that the voltage of a battery passes a given value | |
CN213181889U (en) | Test circuit, PCBA controller and electrical equipment | |
JPS61206179A (en) | Series connection circuit of lithium secondary battery | |
JPH07123604A (en) | Charger for secondary battery | |
DeSando | Universal Programmable Battery Charger with Optional Battery Management System | |
TWI836705B (en) | Power system | |
JP3642105B2 (en) | Battery pack | |
Bhardwaj | Implementing a DC UPS with Battery’s State of Charge Estimation Based on Coulomb-Counting Method | |
JP2841470B2 (en) | Charge / discharge circuit | |
CN218005907U (en) | Voltage equalization circuit and device of super capacitor | |
JP3040946U (en) | Charger for secondary battery | |
TWI459701B (en) | Rechargeable battery and operating method thereof | |
TWI786769B (en) | Battery health management method | |
JP2500878Y2 (en) | Power supply circuit | |
JPH02299173A (en) | Charging/discharging circuit | |
JP2952315B2 (en) | Storage battery device | |
JPH0322838A (en) | Charge/discharge circuit | |
JPS5833939A (en) | Charger for battery |