JPS61206179A - Series connection circuit of lithium secondary battery - Google Patents

Series connection circuit of lithium secondary battery

Info

Publication number
JPS61206179A
JPS61206179A JP60045413A JP4541385A JPS61206179A JP S61206179 A JPS61206179 A JP S61206179A JP 60045413 A JP60045413 A JP 60045413A JP 4541385 A JP4541385 A JP 4541385A JP S61206179 A JPS61206179 A JP S61206179A
Authority
JP
Japan
Prior art keywords
battery
charging
voltage
batteries
diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60045413A
Other languages
Japanese (ja)
Inventor
Nobuharu Koshiba
信晴 小柴
Yoshio Okuzaki
奥崎 義男
Keigo Momose
百瀬 敬吾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60045413A priority Critical patent/JPS61206179A/en
Publication of JPS61206179A publication Critical patent/JPS61206179A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4207Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To stabilize battery performance when batteries are connected in series by connecting a diode in parallel for stabilizing voltage to each battery connected in series. CONSTITUTION:A plurality of rechargeable batteries B having lithium as negative active material are connected in series, and a diode D such as Zener diode or light emitting diode is connected in parallel to each battery for stabilizing voltage. Even when voltage is concentrated on one battery by some accidents, current corresponding to excessive voltage branches to the diode and overcharge is prevented. At the same time, an action to charge battery is applied to other battery and both batteries are charged all together. Therefore, charging characteristics of each battery are stabilized and life of batteries are increased.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は充電可能なリチウム二次電池を直列に接続して
用いる回路構成に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a circuit configuration using rechargeable lithium secondary batteries connected in series.

従来の技術 一般的に二次電池を直列接続して用いる場合は。Conventional technology Generally, when using secondary batteries connected in series.

電池Bの■端子とe端子をリード板で溶接して直結し、
第8図の如く用いるのが常であった。しかし、この用い
方であると、電気容量の一番小さな電池が放電末期にお
いて電圧が先に落ちてOVを越え、負の領域に入りいわ
ゆる゛転極状態になってしまう。また、充電時の場合も
同じで電気容量の一番小さな電池が充電を早く完了し、
全電池が充電完了する迄に過充電状態となってしまう。
Directly connect the ■terminal and eterminal of battery B by welding them with a lead plate.
It was customary to use it as shown in Figure 8. However, with this method of use, the voltage of the battery with the smallest electric capacity drops first at the end of discharge, exceeding OV, and enters a negative region, resulting in a so-called polarity inversion state. Also, when charging, the battery with the smallest electric capacity will finish charging faster,
The battery becomes overcharged until all the batteries are fully charged.

これらの現象は、電池の寿命を著しく傷めてしまうので
、N1−cd蓄電池などではつぎのような対策をとって
いた。
Since these phenomena significantly shorten the life of the battery, the following measures have been taken for N1-cd storage batteries and the like.

すなわち、あらかじめ電池のもつ電気容量を調べ、電気
容量のほぼそろったもの同志を組み合わせること、及び
過放電防止用のアンダーカット回路を装備する、さらに
は過激な過充電を防止するため、微小電流で充電する、
いわゆるトリクル充電方式をとっていた。
In other words, it is necessary to check the electrical capacity of the batteries in advance and combine batteries with almost the same electrical capacity, and to equip batteries with an undercut circuit to prevent over-discharging. charge,
It used the so-called trickle charging method.

これらの対策は電池製造上、回路構成上において、たい
へんめんどうであり、ボスト高ともなり好ましい状態で
はないが、やむを得ない手段であつた0 また、充電方法の1つとして、定電圧充電方式があるが
、これは充電末期において、過電圧充電を防止するため
である。しかし、単電池の場合はこれでよいが電池を複
数個直列接続している場合は、各電池に充電電圧が均等
に配分されるとは限らず、とくに充電末期においては、
アンバランスになり易い傾向があった。
These countermeasures are very troublesome in terms of battery manufacturing and circuit configuration, and increase the cost of the battery, which is not a desirable situation, but it is an unavoidable measure.0 Also, as a charging method, there is a constant voltage charging method. However, this is to prevent overvoltage charging at the end of charging. However, this is fine for single batteries, but when multiple batteries are connected in series, the charging voltage is not necessarily distributed evenly to each battery, especially at the end of charging.
There was a tendency to become unbalanced.

一方、最近では、リチウムを負極とした充電可能な電池
、すなわちリチウム二次電池が注目されているが、これ
は非水系電解質を用いるため分解電圧が高く、保存特性
や、充電効率が従来の二次電池よりはるかによいことが
期待される。また、水分を極端に嫌うため、完全密閉方
式がとられている。これらのことから、リチウム二次電
池を直列接続する場合、上記の問題点がより大きく生じ
易いし、とぐに充電末期の電圧バランスが問題となυよ
り高度な制御が要求されていた。
On the other hand, recently, rechargeable batteries with lithium as an anode, that is, lithium secondary batteries, have been attracting attention, but because they use a non-aqueous electrolyte, they have a high decomposition voltage, and their storage characteristics and charging efficiency are lower than that of conventional batteries. It is expected that it will be much better than the next battery. Additionally, since it is extremely sensitive to moisture, it is completely sealed. For these reasons, when lithium secondary batteries are connected in series, the above-mentioned problems are more likely to occur, and voltage balance at the end of charging becomes a problem, requiring more sophisticated control than υ.

発明が解決しようとする問題点 リチウム二次電池のなかでも、とくに正極に活性炭、負
極にリチウム合金を用いた場合の電池系は影響を大きく
うけるので、この系について具体的に説明する。
Problems to be Solved by the Invention Among lithium secondary batteries, battery systems that use activated carbon for the positive electrode and lithium alloy for the negative electrode are particularly affected, so this system will be specifically explained.

この電池の放電特性は第2図に示すとおりとなるが、こ
れを充電する場合は定電圧方式で充電することができる
The discharge characteristics of this battery are as shown in FIG. 2, and when charging this battery, it can be charged using a constant voltage method.

たとえば、充電電圧3vで充電すると、充電完了後3v
よシ放電を開始する。また、2.7vで充電すると同じ
く2,7vより放電を開始する。したがって、単電池の
場合は、充電電圧の設定により電池電圧を正確に規定す
ることができる。ところが、この電池を2セル直列接続
して用いた場合、例えば6vで充電すると、各電池v′
c3Vずつ均等に分割されるとは限らない。これは各電
池の内部抵抗の差や電気容量の差などによって若干具−
ab、それが充放電をくり返すことによシ、その差が大
きく拡大され、やがて片方の電池に過電圧が印加されて
電池性能の劣化を招くことになる。
For example, if you charge with a charging voltage of 3V, after charging is completed the voltage will be 3V.
Start the discharge. Also, when charging at 2.7V, discharging starts at 2.7V. Therefore, in the case of a single battery, the battery voltage can be accurately defined by setting the charging voltage. However, when two cells of this battery are connected in series and charged at 6V, each battery v'
It is not necessarily divided equally by c3V. This may vary slightly due to differences in internal resistance and capacitance of each battery.
As ab and ab are repeatedly charged and discharged, the difference between the two becomes greatly expanded, and eventually an overvoltage is applied to one of the batteries, leading to deterioration of battery performance.

本発明では、このような充電時における問題点を解決し
、リチウム二次電池を直列接続しても、電池性能を安定
化させることを目的とした。
The present invention aims to solve such problems during charging and to stabilize battery performance even when lithium secondary batteries are connected in series.

問題点を解決するための手段 すなわち、本発明では直列接続する各電池に並列に定電
圧化のだめのダイオード素子を接続したものである。
In order to solve the problem, in the present invention, a diode element for voltage regulation is connected in parallel to each battery connected in series.

ここでの定電圧化のだめのダイオード素子としてはツェ
ナーダイオード、あるいは発光ダイオードなどでよい。
A Zener diode, a light emitting diode, or the like may be used as the diode element for voltage constantization here.

第1図はその回路構成を示したものであり、Bはリチウ
ム二次電池、Cは電池それぞれに並列接続したダイオー
ド素子である。
FIG. 1 shows the circuit configuration, where B is a lithium secondary battery and C is a diode element connected in parallel to each battery.

作用 リチウム二次電池Bを直列に接続した場合の充放電回路
は第7図の如きであるが、定電圧を設けない場合は各電
池の充放電特性はアンバランスとなって第6図C■、■
の如くなるが、定電圧回路を設けた場合は第6図人、B
の如きなり、各電池の充放電特性がそろって安定化する
The charging/discharging circuit when the functional lithium secondary batteries B are connected in series is as shown in Figure 7, but if no constant voltage is provided, the charging/discharging characteristics of each battery become unbalanced, as shown in Figure 6C ,■
However, if a constant voltage circuit is installed, Figure 6, B
As a result, the charging and discharging characteristics of each battery are uniform and stabilized.

これは、充電時なんらかの作用により一方の電池に充電
電圧が集中しようとしても、ダイオード素子に過剰電圧
分の電流が分流して過充電を防止し、その間に他方の充
電されてない電池を十分に充電する作用が働き、結果と
して各電池がそろって充電されるためである。
This means that even if the charging voltage tries to concentrate on one battery due to some effect during charging, the current corresponding to the excess voltage is shunted to the diode element to prevent overcharging, and in the meantime, the other uncharged battery is sufficiently charged. This is because the charging action works, and as a result, all the batteries are charged together.

ダイオード素子が設定する電圧としては、電池特性の劣
化しない電圧(以下耐圧と呼ぶ)以下にすること、及び
使用回路の作動電圧に適合するように選ぶことが必要で
ある。
The voltage set by the diode element must be set to a voltage below which the battery characteristics do not deteriorate (hereinafter referred to as withstand voltage), and must be selected to match the operating voltage of the circuit in use.

たとえば、電池の耐圧が3.5V”liれば、3.sV
以下の定電圧とし、使用回路が5.Ovであれば、電池
を2セルとし、電池1個あたり半分の2.6V以上の定
電圧回路にするのが望ましい。
For example, if the withstand voltage of the battery is 3.5V"li, then 3.sV
The following constant voltage is used, and the circuit used is 5. If it is Ov, it is desirable to use a two-cell battery and a constant voltage circuit of 2.6V or more, which is half the voltage per battery.

定電圧化のダイオード素子として、ツェナーダイオード
を用いる場合は、上記の例では3v形のもの、発光ダイ
オードを用いる場合は発光ダイオード1個あたシ1.6
〜1.7vで定電圧作用があるので、2個直列接続のも
のを用いることができる。
When using a Zener diode as a diode element for voltage regulation, in the above example, a 3V type is used, and when using a light emitting diode, it is 1.6 volts per light emitting diode.
Since it has a constant voltage effect at ~1.7V, two connected in series can be used.

このように定電圧回路の各電池への並列接続により電池
充電特性を安定化させ、電池寿命を向上させることがで
きる。
In this way, by connecting the constant voltage circuit to each battery in parallel, battery charging characteristics can be stabilized and battery life can be improved.

実施例 以下、本発明の詳細な説明する。Example The present invention will be explained in detail below.

(実施例1) 第3図に本発明に用いたリチウム二次電池の半裁断面図
を示した。
(Example 1) FIG. 3 shows a half-cut sectional view of a lithium secondary battery used in the present invention.

図中、1は厚さ0.25mm外径20mmのステンレス
鋼からなる電池ケース、2は厚さ0.25mmのステン
レス鋼からなる封口板、3はリチウムを活物質として含
んだ合金、4は活性炭を主とした正極、5はセパレータ
で封口板内にコツプ状に載置したあと有機電解液を含浸
させている06は絶縁密封用のガスケットで電池ケース
2をかしめることKよシ絶縁封口する。
In the figure, 1 is a battery case made of stainless steel with a thickness of 0.25 mm and an outer diameter of 20 mm, 2 is a sealing plate made of stainless steel with a thickness of 0.25 mm, 3 is an alloy containing lithium as an active material, and 4 is activated carbon. 5 is a separator which is placed in a pot shape in a sealing plate and then impregnated with an organic electrolyte. 06 is an insulating sealing gasket that is insulated and sealed by caulking the battery case 2. .

電池の大きさは外径的20mm、高さ約2.0mmであ
る。
The size of the battery is 20 mm in outer diameter and approximately 2.0 mm in height.

この電池Bを用い、第4図に示す充放電回路で、各電池
と並列にツェナー電圧3.OVのツェナーダイオード2
..22を接続した。もちろんこのツェナーダイオード
は各電池共皆同じものを用いる。これを人とする。
Using this battery B, a charging/discharging circuit shown in FIG. 4 is used to connect each battery in parallel with a Zener voltage of 3. OV zener diode 2
.. .. 22 was connected. Of course, the same Zener diode is used for each battery. Let's call this a person.

この充放電回路で、充電抵抗R1を1にΩ、放電抵抗R
2を2okΩとして、充電電圧s、oV、充電時間4時
間、放電時間6時間の条件で200回目の各単電池の充
放電特性を測定した。
In this charging/discharging circuit, the charging resistor R1 is set to 1Ω, and the discharging resistor R
The charging and discharging characteristics of each cell were measured for the 200th time under the conditions of charging voltage s, oV, charging time 4 hours, and discharging time 6 hours, with 2 okΩ.

(実施例2) 実施例1ではツェナーダイオードを用いたが、そのかわ
りに第5図に示したように発光ダイオードLEDを2個
直列接続して各電池Bに並列接続し、他はすべて実施例
1と同じとし、人と同じ試験をした。これをBとする。
(Example 2) In Example 1, a Zener diode was used, but instead, two light emitting diodes LED were connected in series and connected in parallel to each battery B, as shown in FIG. It was the same as 1, and the same test as humans was conducted. Let this be B.

比較として、第7図の如くダイオード素子を用いず、他
は実施例1,2とまったく同じとし、人。
For comparison, as shown in FIG. 7, the diode element was not used, and the other aspects were exactly the same as in Examples 1 and 2, and a person was tested.

Bと同じ比較をした。これをCとする。I made the same comparison as B. Let this be C.

この結果を第6図に示した。第6図より明らかなように
、ム、Bの各電池共特性がよくそろい、実線の範囲内に
入りているのに対し、ダイオード素子を用いていないC
では充電で両方の電池電圧が大きく分かれ、片方の電池
■は耐圧3.6vを大きく越えでいるため放電特性も劣
化している。また、電池■は充電電圧が低くなっている
ため、十分に充電されず放電特性が劣化している。
The results are shown in FIG. As is clear from Figure 6, the characteristics of batteries M and B are well matched and fall within the range of the solid line, whereas the characteristics of batteries C, which do not use diode elements,
In this case, the voltages of both batteries are largely separated during charging, and one battery (2) has a withstand voltage of 3.6V, which is much higher than that of the other battery, and its discharge characteristics are also deteriorated. In addition, since the charging voltage of battery (2) is low, it is not sufficiently charged and its discharge characteristics are deteriorated.

これらのことから、定電圧回路の並列接続は、電池の充
電を安定させることができる。
For these reasons, parallel connection of constant voltage circuits can stabilize battery charging.

また、定電圧回路として、使用目的により、定電圧ダイ
オードと直列あるいは並列に抵抗を接続して用いること
もできる〇 さらに、実施例では正極に活性炭を用いたが、この他に
正極に二硫化チタン、マンガン酸化物などを用いたもの
にも有効である。
Also, depending on the purpose of use, a resistor can be connected in series or parallel with the voltage regulator diode as a constant voltage circuit.Although activated carbon was used for the positive electrode in the example, titanium disulfide may also be used for the positive electrode. It is also effective for those using manganese oxide, etc.

発明の効果 以上から明らかなように、本発明によれば、リチウム二
次電池を直列に接続しても安定していて長寿命の充放電
サイクルができる。
Effects of the Invention As is clear from the above, according to the present invention, even when lithium secondary batteries are connected in series, stable and long-life charge/discharge cycles can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の電池の直列接続回路図、第2図はリチ
ウム二次電池の放電特性を示す図、第3図は本発明に用
いたリチウム二次電池の構成図、第4図はツェナーダイ
オードを用いた場合の本発明の充放電回路図、第6図は
発光ダイオードを用いた場合の本発明の充放電回路図、
第6図は本発明の場合と従来の場合の充放電特性図、第
7図は従来の充放電回路図、第8図は従来の電池の直列
接続回路である。 B・・・・・・電池、D・・・・・・ダイオード素子s
  R1+ ”2・・・・・・抵抗、1・・・・・・ケ
ース、2・・・・・・封口板、3・・・・・・負’hs
 4・・・・・・正極、5・・・・・・セパレータ、6
・旧・・ガスケット。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図 特開 vJ B 図 1糧4 第4図 第5図 LED−一一死尤グイオード
Fig. 1 is a series connection circuit diagram of the battery of the present invention, Fig. 2 is a diagram showing the discharge characteristics of the lithium secondary battery, Fig. 3 is a block diagram of the lithium secondary battery used in the present invention, and Fig. 4 is a diagram showing the discharge characteristics of the lithium secondary battery. A charging/discharging circuit diagram of the present invention when using a Zener diode, FIG. 6 is a charging/discharging circuit diagram of the present invention when using a light emitting diode,
FIG. 6 is a charging/discharging characteristic diagram of the present invention and a conventional case, FIG. 7 is a conventional charging/discharging circuit diagram, and FIG. 8 is a conventional battery series connection circuit. B...Battery, D...Diode element s
R1+ "2...Resistance, 1...Case, 2...Sealing plate, 3...Negative'hs
4...Positive electrode, 5...Separator, 6
・Old gasket. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Unexamined VJ B Figure 1 Food 4 Figure 4 Figure 5 LED-11 Death Guide

Claims (3)

【特許請求の範囲】[Claims] (1)リチウムを負極活物質とする充電可能な電池を複
数個直列接続し、各電池にそれぞれ並列にダイオード素
子を接続したリチウム二次電池の直列接続回路。
(1) A series connection circuit of lithium secondary batteries in which a plurality of rechargeable batteries each using lithium as a negative electrode active material are connected in series, and a diode element is connected in parallel to each battery.
(2)ダイオード素子がツェナーダイオードである特許
請求の範囲第1項記載のリチウム二次電池の直列接続回
路。
(2) A series connection circuit for lithium secondary batteries according to claim 1, wherein the diode element is a Zener diode.
(3)ダイオード素子が発光ダイオードである特許請求
の範囲第1項記載のリチウム二次電池の直列接続回路。
(3) A series connection circuit for lithium secondary batteries according to claim 1, wherein the diode element is a light emitting diode.
JP60045413A 1985-03-07 1985-03-07 Series connection circuit of lithium secondary battery Pending JPS61206179A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60045413A JPS61206179A (en) 1985-03-07 1985-03-07 Series connection circuit of lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60045413A JPS61206179A (en) 1985-03-07 1985-03-07 Series connection circuit of lithium secondary battery

Publications (1)

Publication Number Publication Date
JPS61206179A true JPS61206179A (en) 1986-09-12

Family

ID=12718570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60045413A Pending JPS61206179A (en) 1985-03-07 1985-03-07 Series connection circuit of lithium secondary battery

Country Status (1)

Country Link
JP (1) JPS61206179A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0677912A2 (en) * 1994-04-13 1995-10-18 Rolf Dr. Zinniker Charging circuit for batteries
US5578914A (en) * 1994-06-08 1996-11-26 Nissan Motor Co., Ltd. Charging system for multi-cell battery
US5602481A (en) * 1994-03-11 1997-02-11 Nissan Motor Co., Ltd. Series connection circuit for secondary battery
US5773957A (en) * 1996-01-17 1998-06-30 Nissan Motor Co., Ltd. Charge control system for set of cells
US6960899B2 (en) 2003-02-10 2005-11-01 Denso Corporation Apparatus for discharging a combination battery consisting of a plurality of secondary batteries
US6984961B2 (en) 2002-01-17 2006-01-10 Matsushita Electric Industrial Co., Ltd. Battery assembly system and electric-motor vehicle system using the same
JP2012023822A (en) * 2010-07-13 2012-02-02 Ntt Facilities Inc Lithium ion battery pack system
JP2017135776A (en) * 2016-01-25 2017-08-03 大和ハウス工業株式会社 Power supply device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5740254B2 (en) * 1978-06-19 1982-08-26

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5740254B2 (en) * 1978-06-19 1982-08-26

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5602481A (en) * 1994-03-11 1997-02-11 Nissan Motor Co., Ltd. Series connection circuit for secondary battery
EP0677912A2 (en) * 1994-04-13 1995-10-18 Rolf Dr. Zinniker Charging circuit for batteries
EP0677912A3 (en) * 1994-04-13 1996-02-14 Rolf Dr Zinniker Charging circuit for batteries.
US5578914A (en) * 1994-06-08 1996-11-26 Nissan Motor Co., Ltd. Charging system for multi-cell battery
US5773957A (en) * 1996-01-17 1998-06-30 Nissan Motor Co., Ltd. Charge control system for set of cells
US6984961B2 (en) 2002-01-17 2006-01-10 Matsushita Electric Industrial Co., Ltd. Battery assembly system and electric-motor vehicle system using the same
US7091700B2 (en) 2002-01-17 2006-08-15 Matsushita Electric Industrial Co., Ltd. Battery assembly system and electric-motor vehicle system using the same
US6960899B2 (en) 2003-02-10 2005-11-01 Denso Corporation Apparatus for discharging a combination battery consisting of a plurality of secondary batteries
DE102004006022B4 (en) 2003-02-10 2018-05-30 Denso Corporation Devices for discharging a battery composite, which consists of a plurality of secondary batteries
JP2012023822A (en) * 2010-07-13 2012-02-02 Ntt Facilities Inc Lithium ion battery pack system
JP2017135776A (en) * 2016-01-25 2017-08-03 大和ハウス工業株式会社 Power supply device

Similar Documents

Publication Publication Date Title
US4736150A (en) Method of increasing the useful life of rechargeable lithium batteries
US4303877A (en) Circuit for protecting storage cells
JP3389670B2 (en) Series connection circuit of secondary battery
US7135839B2 (en) Battery pack and method of charging and discharging the same
US7071653B2 (en) Method for charging a non-aqueous electrolyte secondary battery and charger therefor
JPH04331425A (en) Overcharge preventing device and overdischarge preventing device
EP0773618A2 (en) Battery charging system
KR970004131B1 (en) Battery pack
US7737661B2 (en) Secondary battery having constant-voltage device
US20050140334A1 (en) Power supply apparatus
Brandt et al. Reproducibility and reliability of rechargeable lithium/molybdenum disulfide batteries
JPH10154503A (en) Battery pack
JPS61206179A (en) Series connection circuit of lithium secondary battery
EP0973224B1 (en) Method for measuring residual capacity of secondary cell having nickel hydroxide positive plate
JP3249261B2 (en) Battery pack
US6801017B2 (en) Charger for rechargeable nickel-zinc battery
US6097176A (en) Method for managing back-up power source
JPS6255274B2 (en)
JPH08241705A (en) Battery
US11588190B2 (en) Electric battery recharge method
JPH06231805A (en) Battery overcharge/overdischarge preventive method
GB2187903A (en) Method of recharging a sealed lead-acid storage battery
JPH08182211A (en) Charging apparatus of pack battery
JP3433751B2 (en) Overcharge / overdischarge prevention device
JPH0837738A (en) Battery charging circuit