JPH04151581A - Combined battery - Google Patents

Combined battery

Info

Publication number
JPH04151581A
JPH04151581A JP2276990A JP27699090A JPH04151581A JP H04151581 A JPH04151581 A JP H04151581A JP 2276990 A JP2276990 A JP 2276990A JP 27699090 A JP27699090 A JP 27699090A JP H04151581 A JPH04151581 A JP H04151581A
Authority
JP
Japan
Prior art keywords
battery
discharge
discharging
discharge capacity
diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2276990A
Other languages
Japanese (ja)
Inventor
Takeya Kazehara
風原 健也
Kazuo Ishida
和雄 石田
Kenichi Sawada
澤田 兼一
Hiroshi Sasama
笹間 拓
Kaoru Hisatomi
久富 薫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2276990A priority Critical patent/JPH04151581A/en
Publication of JPH04151581A publication Critical patent/JPH04151581A/en
Pending legal-status Critical Current

Links

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PURPOSE:To make it possible to replace a battery at the adequate time by connecting two batteries having the different discharging capacities in parallel, connecting a diode to the battery having the smaller discharging capacity in series, and generating two-stage discharging. CONSTITUTION:A battery 1 having the larger discharging capacity and a battery 2 having the smaller discharging capacity are connected in parallel. The battery 2 and a diode 3 are connected in series. When the combined batteries are discharged, at first, the battery 1 is discharged. The discharging of the battery 1 progresses at the flat discharging voltage. The discharging continues until the discharging capacity of the battery 1 is exhausted. At the time when the discharging of the battery 1 is finished, the voltage starts decreasing. When the voltage is decreased by the amount corresponding to the voltage drop in the forward direction of the diode 3, the battery 2 starts discharging. Thus two-stage discharging is performed. Therefore, the terminating period of the discharging of the battery 1 can be detected before the life of the entire combined batteries is terminated. The battery can be replaced at the adequate period.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は二段放電が可能な組電池に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to an assembled battery capable of two-stage discharge.

〔従来の技術〕[Conventional technology]

一次電池、特にその中でもリチウムまたはリチウム合金
を負極に用い、その量で電池の放電容量を規制するリチ
ウム電池は、放電末期まで内部抵抗に変化が認められな
いので、電池の作動電圧は放電末期まで平坦性が維持さ
れる。
Primary batteries, especially lithium batteries that use lithium or lithium alloy as the negative electrode and regulate the battery's discharge capacity by the amount, do not show any change in internal resistance until the end of discharge, so the operating voltage of the battery remains constant until the end of discharge. Flatness is maintained.

たとえば、リチウム規制のリチウム塩化チオニル電池を
20℃、3にΩで放電させたときの放電特性は第7図に
示す通りであり、リチウムがなくなるまでは平坦な放電
が続き、リチウムがなくなった時点で放電電圧が急激に
低下し、電池の寿命が終わる(たとえば、米国特許第4
,293,622号明細書)。
For example, when a lithium-regulated lithium-thionyl chloride battery is discharged at 20°C and 3Ω, the discharge characteristics are as shown in Figure 7. Flat discharge continues until the lithium runs out, and at the point when the lithium runs out, the discharge characteristics are as shown in Figure 7. The discharge voltage drops rapidly and the battery life ends (for example, as described in U.S. Patent No. 4
, 293, 622).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

そのため、この電池では、その寿命が終わる前に放電末
期を知ることができず、その結果、適切な時期に電池交
換をすることがむつかしい。
Therefore, with this battery, it is not possible to know the end of discharge before the end of its life, and as a result, it is difficult to replace the battery at an appropriate time.

したがって、本発明は、そのような問題点を解決し、電
池の寿命が終わる前に放電末期を検知することができ、
適切な時期での電池交換を可能にすることを目的とする
Therefore, the present invention solves such problems and can detect the end of discharge before the battery life ends.
The purpose is to enable battery replacement at an appropriate time.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、放電容量の異なる2個の電池を並列に接続し
てMlを池にし、放電容量の小さい側の電池にダイオー
ドを直列に接続することによって、二段放電を可能にし
、上記目的を達成したものである。
The present invention enables two-stage discharge by connecting two batteries with different discharge capacities in parallel to form a pond, and connecting a diode in series to the battery with the smaller discharge capacity, thereby achieving the above object. This has been achieved.

組み合わせる電池は、放電容量が異なっておりさえすれ
ば、同一電池系のものでもよいし、また、異種電池系の
ものでもよい。
The batteries to be combined may be of the same battery type, or may be of different types of batteries, as long as they have different discharge capacities.

〔作用〕[Effect]

上記の組電池では、放電容量が異なる2個の電池を並列
に接続し、放電容量の小さい側の電池にダイオードを直
列に接続しているので、この組電池を放電させると、ま
ず、放電容量の大きい側の電池が放電し、その放電容量
の大きい側の電池の放電が終了して電圧が降下しはしめ
、ダイオードの順方向電圧降下に相当するぶん電圧が降
下したときに、放電容量の小さい側の電池の放電が始ま
り、二段放電が生じる。
In the above battery pack, two batteries with different discharge capacities are connected in parallel, and a diode is connected in series to the battery with the smaller discharge capacity, so when this battery pack is discharged, the discharge capacity When the battery with the larger discharge capacity discharges and the battery with the larger discharge capacity finishes discharging and the voltage drops, and the voltage drops by an amount equivalent to the forward voltage drop of the diode, the battery with the smaller discharge capacity The battery on the other side begins to discharge, resulting in a two-stage discharge.

したがって、組電池全体としての寿命が終わる前に放電
容量の大きい側の電池の放電末期を検知することができ
、適切な時期での電池交換が可能になる。
Therefore, the end of discharge of the battery with the larger discharge capacity can be detected before the life of the battery pack as a whole ends, and the battery can be replaced at an appropriate time.

〔実施例〕〔Example〕

つぎに本発明の実施例を図面に基づいて説明する。 Next, embodiments of the present invention will be described based on the drawings.

実施例1 第1図は本発明の実施例1の組電池の回路図である。Example 1 FIG. 1 is a circuit diagram of a battery pack according to a first embodiment of the present invention.

第1図において、(1)は第1放電電圧を与える放電容
量の大きい側の電池であり、(2)は第2放電電圧を与
える放電容量の小さい側の電池である。これらの電池(
1)と電池(2)とは並列に接続されている。
In FIG. 1, (1) is a battery with a larger discharge capacity that provides a first discharge voltage, and (2) is a battery with a smaller discharge capacity that provides a second discharge voltage. These batteries (
1) and battery (2) are connected in parallel.

(3)はダイオードであり、(4)はダイオード保護用
の抵抗である。この抵抗(4)は、使用されるダイオー
ド(3)の順方向最大許容電流で放電容量の小さい側の
電池(2)の電圧を割ったときの商以上の値を持つもの
が用いられる。ただし、抵抗(4)はダイオード(3)
と放電容量の小さい側の電池(2)を含む直列回路に短
絡のおそれがない場合は必ずしも必要ではない。
(3) is a diode, and (4) is a resistor for protecting the diode. This resistor (4) has a value greater than or equal to the quotient of the voltage of the battery (2) with the smaller discharge capacity divided by the maximum allowable forward current of the diode (3) used. However, the resistor (4) is a diode (3)
This is not necessarily necessary if there is no risk of short circuit in the series circuit including the battery (2) with the smaller discharge capacity.

この組電池では、電池(1)と電池(2)とが並列に接
続され、電池(2)とダイオード(3)とが直列に接続
されているので、この組電池を放電させると、最初は放
電容量の大きい側の電池(1)が放電する。電池(1)
の放電は平坦な放電電圧で進行し、それが電池(1)の
放電容量がなくなるまで続く、そして、電池(1)の放
電が終了した時点で電圧が降下しはじめ、ダイオード(
3)の順方向電圧降下に相当するぶん電圧が降下すると
、放電容量の小さい側の電池(2)が放電しはじめ、二
段放電になる。
In this assembled battery, battery (1) and battery (2) are connected in parallel, and battery (2) and diode (3) are connected in series, so when this assembled battery is discharged, initially The battery (1) with the larger discharge capacity discharges. Battery (1)
The discharge proceeds at a flat discharge voltage, which continues until the discharge capacity of the battery (1) is exhausted, and when the discharge of the battery (1) is finished, the voltage begins to drop and the diode (
When the voltage drops by an amount corresponding to the forward voltage drop in 3), the battery (2) with the smaller discharge capacity begins to discharge, resulting in a two-stage discharge.

この実施例1の組電池において、放電容量の大きい側の
電池(1)としてAA形(単3形)のリチウム−塩化チ
オニル電池(放電容量1,900mA h )を用い、
放電容量の小さい側の電池(2)として同一電池系で1
 /Z AA形のリチウム−塩化チオニル電池(放電容
量850m A h )を用い、ダイオード(3)とし
て15953を用い、抵抗(4)として抵抗値30Ωの
ものを用い、20℃、3にΩで放電させたときの放電特
性を第2図に示す。
In the assembled battery of Example 1, an AA type (AA type) lithium-thionyl chloride battery (discharge capacity 1,900 mAh) was used as the battery (1) on the larger discharge capacity side,
1 in the same battery system as the battery (2) with smaller discharge capacity
/Z Using a AA type lithium-thionyl chloride battery (discharge capacity 850 mA h), using 15953 as the diode (3) and using a resistance value of 30 Ω as the resistor (4), discharge at 20°C at 3 Ω. Figure 2 shows the discharge characteristics when

第2図に示すように、この組電池では、約3.6Vでの
平坦な放電の後、3.Ov付近に二段目の放電が現れる
As shown in FIG. 2, after a flat discharge at about 3.6V, this battery pack has a 3. A second stage of discharge appears near Ov.

第2図における約3.6vでの平坦な放電は放電容量の
大きい側の電池(11に基づくものであり、二段目の放
電は放電容量の小さい側の電池(2)によるものである
The flat discharge at about 3.6 V in FIG. 2 is based on the battery (11) with the higher discharge capacity, and the second stage discharge is due to the battery (2) with the lower discharge capacity.

この組電池では、上記のように二段放電が生じるので、
この電圧変化によって、組電池全体としての寿命が終わ
る前に放電容量の大きい側の電池(1)の放電末期を検
知することができ、適切な時期での電池交換が可能にな
る。
In this assembled battery, two-stage discharge occurs as described above, so
Due to this voltage change, it is possible to detect the end of discharge of the battery (1) with the larger discharge capacity before the life of the battery pack as a whole ends, and it becomes possible to replace the battery at an appropriate time.

実施例2 実施例2の組電池の回路図を第3図に示す。Example 2 A circuit diagram of the assembled battery of Example 2 is shown in FIG.

第3図において、(1)は放電容量の大きい側の電池で
、(2)は放電容量の小さい側の電池である。そして、
電池(1)と電池(2)とは並列に接続されている。
In FIG. 3, (1) is a battery with a larger discharge capacity, and (2) is a battery with a smaller discharge capacity. and,
Battery (1) and battery (2) are connected in parallel.

(3)はダイオードであり、この実施例2の組電池では
2個のダイオード(3)が使用されており、これらダイ
オード(3)は2個とも放電容量の小さい側の電池(2
)に直列に接続されている。(4)は抵抗である。
(3) is a diode, and two diodes (3) are used in the assembled battery of Example 2, and both of these diodes (3) are connected to the battery (2) with a smaller discharge capacity.
) are connected in series. (4) is resistance.

この組電池を放電させると、実施例1の組電池と同様に
、最初は放電容量の大きい側の電池(1)が放電し、平
坦な放電電圧での放電が電池(1)の放電容量がなくな
るまで続く、そして、電池(1)の放電が終了した時点
で電圧が降下しはじめ、2個のダイオード(3)の順方
向電圧降下に相当するぶん電圧が降下したときに、放電
容量の小さい側の電池(2)が放電しはじめ、二段放電
になる。
When this assembled battery is discharged, like the assembled battery of Example 1, the battery (1) with the larger discharge capacity discharges first, and discharge at a flat discharge voltage causes the discharge capacity of the battery (1) to increase. The voltage continues until the battery (1) has finished discharging, and when the voltage drops by an amount equivalent to the forward voltage drop of the two diodes (3), the discharge capacity is small. The battery on the side (2) begins to discharge, resulting in a two-stage discharge.

この実施例2の組電池において、放電容量の大きい側の
電池(1)としてAA形のリチウム−塩化チオニル電池
(放電容量1,900m A h )を用い、放電容量
の小さい側の電池(2)として1/2AA形のりチウム
−塩化チオニル電池(放電容量850mAh)を用い、
ダイオード(3)には2個ともl5953を用い、抵抗
(4)として抵抗値30Ωのものを用い、20℃、3に
Ωで放電させたときの放電特性を第4図に示す。
In the assembled battery of Example 2, an AA type lithium-thionyl chloride battery (discharge capacity 1,900 mA h) was used as the battery (1) with the larger discharge capacity, and the battery (2) with the smaller discharge capacity was used. Using a 1/2 AA type lithium-thionyl chloride battery (discharge capacity 850mAh),
Both diodes (3) were made of 15953, and the resistor (4) had a resistance value of 30Ω, and the discharge characteristics when discharged at 3Ω at 20° C. are shown in FIG.

第4図に示すように、この組電池では、約3.6Vでの
平坦な放電の後、2.4V付近に二段目の放電が現れる
As shown in FIG. 4, in this assembled battery, after a flat discharge at about 3.6V, a second stage of discharge appears at around 2.4V.

第4図における約3.6vでの平坦な放電は放電容量の
大きい側の電池(1)に基づくものであり、二段目の放
電は放電容量の小さい側の電池(2)によるものである
The flat discharge at approximately 3.6V in Figure 4 is based on the battery (1) with the larger discharge capacity, and the second stage discharge is due to the battery (2) with the smaller discharge capacity. .

この組電池では、上記のように二段放電が生じるので、
この電圧変化によって、組電池全体としての寿命が終わ
る前に放電容量の大きい側の電池(1)の放電末期を検
知することができ、適切な時期での電池交換が可能にな
る。
In this assembled battery, two-stage discharge occurs as described above, so
Due to this voltage change, it is possible to detect the end of discharge of the battery (1) with the larger discharge capacity before the life of the battery pack as a whole ends, and it becomes possible to replace the battery at an appropriate time.

特に、この実施例2の組電池では、ダイオード(3)を
2個用い、放電容量の小さい側の電池(2)に直列に接
続しているので、電池(2)と放電容量の大きい側の電
池(1)との放電電圧の差が、実施例1の場合の2倍に
なるので、二段放電がより明確に現れる。
In particular, in the assembled battery of Example 2, two diodes (3) are used and are connected in series to the battery (2) with the smaller discharge capacity, so that the battery (2) and the battery (2) with the larger discharge capacity Since the difference in discharge voltage with battery (1) is twice that of Example 1, two-stage discharge appears more clearly.

実施例3 実施例3の組電池の回路図を第5図に示す。Example 3 A circuit diagram of the assembled battery of Example 3 is shown in FIG.

第5図において、(1)は放電容量の大きい側の電池で
、(2)は放電容量の小さい側の電池であり、(3)は
ダイオードで、(4)は抵抗である。
In FIG. 5, (1) is a battery with a larger discharge capacity, (2) is a battery with a smaller discharge capacity, (3) is a diode, and (4) is a resistor.

電池(1)と電池(2)とは並列に接続され、放電容量
の小さい側の電池(2)にダイオード(3)が直列に接
続されているが、この組電池には、さらに、電池(1)
と同じ放電容量を持つ電池(5)が電池(2)に並列に
接続されている。
Battery (1) and battery (2) are connected in parallel, and a diode (3) is connected in series to battery (2) with a smaller discharge capacity. 1)
A battery (5) having the same discharge capacity as is connected in parallel to battery (2).

この組電池を放電すると、まず、電池(1)と電池(5
)とが平坦な放電電圧で放電し、電池(1)と電池(5
)との放電容量がなくなるまで平坦な放電が続く。
When this assembled battery is discharged, first battery (1) and battery (5) are discharged.
) are discharged at a flat discharge voltage, and battery (1) and battery (5
) until the discharge capacity is exhausted.

そして、電池(1)と電池(5)の放電が終了した時点
で電圧が降下しはじめ、ダイオード(3)の順方向電圧
降下に相当するぶん電圧が降下したときに、放電容量の
小さい側の電池(2)が放電しはじめ、二段放電になる
Then, when the battery (1) and battery (5) have finished discharging, the voltage begins to drop, and when the voltage drops by an amount equivalent to the forward voltage drop of the diode (3), the side with the smaller discharge capacity Battery (2) begins to discharge, resulting in a two-stage discharge.

この組電池において、放電容量の大きい側の電池(1)
および電池(5)としてAA形のリチウム−塩化チオニ
ル電池(放電容量1,900mA h )を用い、放電
容量の小さい側の電池(2)として電池(1)とは異種
電池系のリチウムー二酸化マンガン電池(放電容量20
0m A h )を用い、ダイオード(3)として1S
953を用い、抵抗(4)として抵抗値30Ωのものを
用い、20℃、3にΩで放電させたときの放電特性を第
6図に示す。
In this battery pack, the battery with larger discharge capacity (1)
A AA-type lithium-thionyl chloride battery (discharge capacity 1,900 mAh) was used as battery (5), and a lithium-manganese dioxide battery of a different type from battery (1) was used as battery (2) with a smaller discharge capacity. (discharge capacity 20
0m A h ) and 1S as diode (3).
FIG. 6 shows the discharge characteristics when a resistor (4) of 953 with a resistance value of 30 Ω was used and discharged at 20° C. with a resistance of 3 Ω.

第6図に示すように、この組電池では、約3.6■での
平坦な放電の後、2.3V付近に二段目の放電が現れる
As shown in FIG. 6, in this assembled battery, after a flat discharge at about 3.6V, a second stage of discharge appears at around 2.3V.

第6図における約3.6Vでの平坦な放電は放電容量の
大きい側の電池(1)と電池(5)とに基づくものであ
り、二段目の放電は放電容量の小さい側の電池(2)に
よるものである。
The flat discharge at about 3.6V in Figure 6 is based on batteries (1) and (5) with larger discharge capacity, and the second stage discharge is based on battery (1) with smaller discharge capacity ( 2).

この組電池では、上記のように二段放電が生じるので、
この電圧変化によって、組電池全体としての寿命が終わ
る前に放電容量の大きい側の電池(1)と電池(5)の
放電末期を検知することができ、適切な時期での電池交
換が可能になる。
In this assembled battery, two-stage discharge occurs as described above, so
This voltage change makes it possible to detect the end of discharge for batteries (1) and (5), which have larger discharge capacities, before the end of the battery life as a whole, making it possible to replace the batteries at an appropriate time. Become.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明では、放電容量の異なる2
個の電池を並列に接続し、放電容量の小さい側の電池に
ダイオードを直列に接続することによって、ダイオード
の有する順方向電圧降下特性を利用して、二段放電を発
生させ、組電池全体としての寿命が終わる前に放電容量
の大きい側の電池の放電末期を検知することができるよ
うになり、適切な時期での電池交換が可能になった。
As explained above, in the present invention, two
By connecting two batteries in parallel and connecting a diode in series to the battery with the smaller discharge capacity, a two-stage discharge is generated by utilizing the diode's forward voltage drop characteristics, and the entire assembled battery It is now possible to detect the end of discharge of a battery with a larger discharge capacity before the end of its lifespan, making it possible to replace the battery at an appropriate time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例1の組電池の回路図であり、第
2図は実施例1の組電池の放電特性を示す図である。第
3図は本発明の実施例2の組電池の回路図であり、第4
図は実施例2の組電池の放電特性を示す図である。第5
図は本発明の実施例3の組電池の回路図であり、第6図
は実施例3の組電池の放電特性を示す図である。第7図
は従来電池の放電特性を示す図である。 (1)・・・放電容量の大きい側の電池、(2)・・・
放電容量の小さい側の電池、(3)・・・ダイオ−ト ド・・放電容量の大きい側の電池 2・・・放電容量の小さい側の電池 3・・・ダイオード 結2図 才( を時 開 (h) l・・・放電容量の大きい側の電池 2・・・放電容量の小さい側の電池 3・・・ダイオード 第 4図 1欠 上 胃し 晴 聞 (h) ■・・・放電容量の大きい側の電池 2・・・放電容量の小さい側の電池 3・・・ダイオード 3α℃ 方( 電 時 開 (h) 入電時間 (h) 1丁目1番羽号 日立マクセル株式会社
FIG. 1 is a circuit diagram of a battery pack according to Example 1 of the present invention, and FIG. 2 is a diagram showing the discharge characteristics of the battery pack according to Example 1. FIG. 3 is a circuit diagram of the assembled battery according to the second embodiment of the present invention;
The figure is a diagram showing the discharge characteristics of the assembled battery of Example 2. Fifth
The figure is a circuit diagram of a battery pack according to Example 3 of the present invention, and FIG. 6 is a diagram showing the discharge characteristics of the battery pack according to Example 3. FIG. 7 is a diagram showing the discharge characteristics of a conventional battery. (1)...battery with larger discharge capacity, (2)...
Battery with smaller discharge capacity (3)...Diode...Battery with larger discharge capacity 2...Battery with smaller discharge capacity 3...Diode connection (open when open) (h) l...Battery 2 on the side with larger discharge capacity...Battery 3 on the side with smaller discharge capacity...Diode Battery 2 on the larger side...Battery 3 on the side with smaller discharge capacity...Diode 3α℃ side (Electrical open time (h) Power on time (h) 1-chome No. 1 Hitachi Maxell, Ltd.

Claims (1)

【特許請求の範囲】[Claims] 1、放電容量の異なる2個の電池を並列に接続し、放電
容量の小さい側の電池にダイオードを直列に接続したこ
とを特徴とする二段放電が可能な組電池。
1. An assembled battery capable of two-stage discharge, characterized in that two batteries with different discharge capacities are connected in parallel, and a diode is connected in series to the battery with the smaller discharge capacity.
JP2276990A 1990-10-15 1990-10-15 Combined battery Pending JPH04151581A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2276990A JPH04151581A (en) 1990-10-15 1990-10-15 Combined battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2276990A JPH04151581A (en) 1990-10-15 1990-10-15 Combined battery

Publications (1)

Publication Number Publication Date
JPH04151581A true JPH04151581A (en) 1992-05-25

Family

ID=17577233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2276990A Pending JPH04151581A (en) 1990-10-15 1990-10-15 Combined battery

Country Status (1)

Country Link
JP (1) JPH04151581A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008260346A (en) * 2007-04-10 2008-10-30 Nissan Motor Co Ltd Power source system for hybrid electric vehicle, and its control device
JP2012085368A (en) * 2010-10-06 2012-04-26 Yokogawa Electric Corp Power circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008260346A (en) * 2007-04-10 2008-10-30 Nissan Motor Co Ltd Power source system for hybrid electric vehicle, and its control device
JP2012085368A (en) * 2010-10-06 2012-04-26 Yokogawa Electric Corp Power circuit

Similar Documents

Publication Publication Date Title
US6828757B2 (en) Circuit for adjusting charging rate of cells in combination
TWI395389B (en) Electric power storage system using capacitors and control method thereof
JP2005151683A (en) Battery pack charger
JP2007305475A (en) Storage device and storage cell
JP3990054B2 (en) Individual charging battery automatic charging circuit
TW202013853A (en) Method of managing batteries and power system
JP6408912B2 (en) Hybrid battery system
AU728771B2 (en) Lithium cell recharging
KR102595567B1 (en) Battery management device and method
JPH04151581A (en) Combined battery
JP2950956B2 (en) Charging method
JPH08241705A (en) Battery
JP2003173822A (en) Charge and discharge system and how to use it
KR102340096B1 (en) Power supply for motorcycle start motor
KR102351768B1 (en) Serial-Parallel convertible battery charging apparatus and method thereof
KR200211543Y1 (en) battery device
JPH01120765A (en) Nonaqueous electrolyte secondary battery
JP2003299256A (en) Method and apparatus for controlling charging/ discharging of secondary battery
JP3484609B1 (en) Cordless equipment system
JPH10174309A (en) Battery charger for nonaqueous electrolyte secondary battery
JPH0322837A (en) Charge/discharge circuit
JPH0992342A (en) Battery device
JPS58148633A (en) Automatic charger
WO2014128905A1 (en) Lithium ion secondary battery
JP6915286B2 (en) Power storage device