JPH0321188B2 - - Google Patents

Info

Publication number
JPH0321188B2
JPH0321188B2 JP56021693A JP2169381A JPH0321188B2 JP H0321188 B2 JPH0321188 B2 JP H0321188B2 JP 56021693 A JP56021693 A JP 56021693A JP 2169381 A JP2169381 A JP 2169381A JP H0321188 B2 JPH0321188 B2 JP H0321188B2
Authority
JP
Japan
Prior art keywords
porous hollow
hollow fiber
pore diameter
hollow fibers
oxygenator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56021693A
Other languages
English (en)
Other versions
JPS57136456A (en
Inventor
Akira Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Terumo Corp
Original Assignee
Terumo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Corp filed Critical Terumo Corp
Priority to JP56021693A priority Critical patent/JPS57136456A/ja
Publication of JPS57136456A publication Critical patent/JPS57136456A/ja
Publication of JPH0321188B2 publication Critical patent/JPH0321188B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • External Artificial Organs (AREA)

Description

【発明の詳細な説明】 発明の背景 技術分野 本発明は多孔性中空糸型人工肺に関する。更に
詳しくは、少なくとも内壁面が疎水性の多孔性中
空糸をガス交換膜とする多孔性中空糸型人工肺に
おいて用いる多孔性中空糸の改良に関する。 先行技術 昨今、膜型人工肺におけるガス交換膜として、
多数の微小細孔をもつ疎水性多孔性膜が、そのガ
ス透過性の良さから実用化されてきており、疎水
性多孔性膜を用いた積層型や、中空糸型の人工肺
が種々開発されている。 この場合、疎水性多孔性膜を平膜とし、これを
積層して構成する積層型では、ガス側の層間に、
メツシユ、あるいは挾雑物等を挿入する必要があ
り、微小細孔を通して血中から透過してくる水蒸
気が、これに結露し、使用に従い、水がたまり、
これが膜面をおおつてしまい、性能が時間ととも
に低下してしまう。このため、このような欠点が
解消される点で、疎水性多孔性膜を中空糸とな
し、これを複数本集束して、中空糸内部を血液流
路とする中空糸型が望ましい形態とされている。 しかし、このような多孔性膜中空糸型人工肺
も、そのCO2除去能が充分でないという欠点があ
る。 この場合、本発明者らが先に提案したように、
多孔性中空糸の集束にあたり、例えば第1図に示
されるように、ハウジング2の中央部に絞り部2
15を設け、その部分での中空糸の充填率を密
に、またその両端部にゆくにつれ、充填率が疎に
なる構造とすると、換気酸素のチヤンネリングが
防止でき、CO2除去能は上昇する。 しかし、このような構造におけるときよりも、
更にCO2除去能が向上すれば、CO2除去能の調節
もより容易となり、しかも装置の小型化がより一
層容易となり、更にすぐれた人工肺が実現するこ
とになる。 発明の目的 本発明は、このような実状に鑑みなされたもの
であつて、多孔性中空糸型人工肺のCO2除去能を
更に向上せしめることをその主たる目的とする。 本発明者は、このような目的につき種々検討を
繰返した。その結果、微小細孔径の測定法として
現在一般的に用いられているいわゆる電子顕微鏡
法および水銀圧入法により、多孔性中空糸の平均
細孔径を測定すると、それぞれ異なる値を得るこ
とが多いこと、そして、そのそれぞれが所定の値
となつたとき、CO2除去能が従来のものと比べ向
上し、又CO2除去能の経時変化もきわめて少ない
ことを見出した。そして、このような知見から本
発明をなすに至つたものである。 すなわち本発明は、少なくとも内壁面が疎水性
の多孔性中空糸をガス交換膜とし、当該多孔性中
空糸内部を血液流路とする多孔性中空糸型人工肺
において、上記多孔性中空糸の平均細孔径が、電
子顕微鏡法で測定したとき、800〜1800Åであり、
しかも水銀圧入法で測定したとき、2000〜7000Å
であることを特徴とする多孔性中空糸型人工肺で
ある。 なお、本発明者らは、これまで、多孔性中空糸
型人工肺につき、種々の出願や発表を行つてきた
が、これら出願明細書や、発表論文において使用
している多孔性中空糸の平均細孔径は、電子顕微
鏡法と水銀圧入法による測定で、上記範囲外のも
のである。そして、これらすでに公表した多孔性
中空糸型人工肺と比較して、本発明における上記
範囲の平均細孔径をもつ多孔性中空糸を使用する
人工肺は、それらより20%以上のCO2除去能の向
上を示すものである。 発明の具体的構成 以下、本発明の具体的構成について詳細に説明
する。 本発明においてガス交換膜として用いる多孔性
中空糸は、少なくとも内壁面、すなわち血液接触
面が疎水性であり、内壁面の水に対する接触角は
90゜以上である。このため、多孔性中空糸として
は、ポリプロピレン、ポリエチレン等のポリオレ
フイン系樹脂、フツ素樹脂、シリコーン樹脂等の
疎水性樹脂製であつてもよく、あるいは、その他
の材料であつて、その少なくとも内壁面を、シリ
コーン油や反応性シリコーン樹脂等で処理し、疎
水性としたものであつてもよい。このうち、多孔
性中空糸としては、ポリオレフイン系樹脂、特に
ポリプロピレンから形成されるものであることが
好ましい。 このような材質からなる多孔性中空糸は、その
中空糸内壁と外壁に連通する微小細孔を多数有す
るものである。 この場合、微小細孔の平均細孔径は、電子顕微
鏡法にて測定したとき、800〜1800Åである。800
Å未満となると、CO2除去能の点で満足できな
い。又、1800Åを超えると、細孔からの水蒸気蒸
散が多量となり、外壁に結露する水滴が多くな
り、CO2除去能が経時とともに低下してしまう。
又、中空糸外壁に血液が経時的に浸出してくるこ
ともある。 なお、電子顕微鏡法による平均細孔径が1050〜
1700Åとなると、より好ましい結果を得る。 このような電子顕微鏡法による平均細孔径の測
定は、次のようにして行われる。 まず、中空糸試料を無作為に例えば10本程度抜
きとり、走査型電子顕微鏡にて、倍率約10000倍
程度で、試料の内面および外面において、比較的
均一な状態で細孔が分布する視野を選び観察す
る。通常、この観察は標準粒子とともに写真撮影
を行うことによればよい。 内面および外面において、物質透過を律速す
る、小さい方の孔径をもつ方を細孔径算出に用い
る。試料1本あたり、通常は1視野とし、1視野
のうち無作為に例えば100個の細孔を選び、その
寸法を測定する。試料例えば10本につき同様な測
定を行い、得られた例えば1000個の細孔から、例
えば100Åごとの細孔径度数分布図を作製する。
度数分布図において、分布がほぼ正規分布として
近似できるときには、最も頻度の高い孔径をもつ
て平均細孔径とする。又、正規分布とは認められ
ないときには、細孔径の総和から算術平均を行
い、これを平均細孔径とすればよい。 なお、以上では細孔形状が、ほぼ円形をなす場
合であるが、これとは異なり楕円に近い形状の場
合は、上記に準じその長径aと短径bを測定し、
その相乗平均√を平均細孔径とする。 他方、微小細孔の平均細孔径は、水銀圧入法で
測定したき、2000〜7000Åでなければならない。
前記同様、2000Å未満となるとCO2除去能の点で
満足できず、又、7000Åを超えると、水蒸気蒸散
量の増加によりCO2除去能の経時劣下が大きく、
又血液の経時的浸出が観察されるからである。 この場合、水銀圧入法による平均細孔径が、
2300〜5500Åとなると、より好ましい結果を得
る。 水銀圧入法による平均細孔径の測定は、次のよ
うにして行われる。 すなわち、公知の水銀圧入法細孔径測定装置を
用い、水銀中に試料を入れ、圧力を印加して、水
銀減量と圧力との関係を求める。いま、圧力Pと
細孔半径rとは、表面張力をσ、接触角をθとし
たとき、r=−2σcosθ/Pの関係をもつ。そこ
で、水銀減量と圧力との関係から、縦軸に細孔分
布量(%)をとり、細孔径2rの相対的累積曲線を
プロツトし、更にこの累積曲線を微分する。この
場合、通常、微分曲線には、いくつかのピークが
現出するが、通常、それらのうち何本かは、上記
電子顕微鏡法による値とかけはなれたところに現
出するものであり、又その強度は小さく、このた
め、最も大きいピークを平均細孔径とすればよ
い。 このような平均細孔径をもつ多孔性中空糸は、
その平均空孔率が、30〜80%であることが好まし
い。30%未満となると、CO2除去能が低下してし
まう。又80%を超えると、中空糸の強度が低くな
り、又、ピンホール等が多くなつてしまうからで
ある。 このような平均空孔率は、各中空糸の空孔率
(1−ρ/ρ′)×100〔%〕を平均して求められる。
ここに、ρは、中空糸の実際の密度であり、ρ′は
細孔が存在しないと仮定したときの中空系の密度
である。 更に、このような多孔性中空糸の平均内径は、
150〜500μであることが好ましい。150μ未満では
流体力学的な抵抗が大きくなり、あるいは目づま
り等を起してしまつたりする。又、500μを超え
ると、酸素添加能が低くなり、コンタクトタイム
を長くしなければならず、このため膜面積が大き
くなり、かつプライミング量も多くなるからであ
る。 又、その平均肉厚は10〜150μであることが好
ましい。10μ未満では多孔性中空糸の強度が弱く
なり、又、150μを超えると、膜厚内の拡散抵抗
が大きくなり、しかも膜厚内に水蒸気が結露しや
すく、経時的な性能劣化が大きくなるからであ
る。 更に、このような多孔性中空糸の人工肺中の有
効長としては、特に制限はないが、概ね100mm〜
500mm程度とすればよい。 なお、このような多孔性中空糸の内壁面には、
抗血栓性材料でガス透過性にすぐれたもの、例え
ばポリアルキルスルホン、エチルセルロース、ポ
リジメチルシロキサン等をコーテイングしておく
こともできる。又、その端部外壁面には、放電処
理、薬品処理等を施し、後述の隔壁との接着性を
高めておくこともできる。 このような多孔性中空糸としては、一般に、公
知の延伸法により製造されたもの等を用いればよ
い。 一般に、多孔性中空糸、特にポリプロピレン多
孔性中空糸の製法においては、原料ポリプロピレ
ン樹脂を、紡糸温度210〜270℃ドラフト比180〜
600で溶融紡糸し、その後155℃以下で第一段熱処
理を行なう。次に110℃未満好ましくは室温〜90
℃の温度で30〜200%延伸を行ない、その後第二
段熱処理を行なう。 細孔の大きさと空孔率は、延伸倍率と温度によ
つて変化する。この場合、特に第一段熱処理温度
によつて、原料樹脂の結晶化度が変化し、細孔径
が変わる。また、延伸倍率が高い程細孔径は大き
くなる。この2つの条件を変えることによつて、
本発明の細孔径をもつ中空糸を得ることができ
る。 本発明の多孔性中空糸型人工肺は、このような
多孔性中空糸を複数本集束し、その両端部におい
て、高分子重合体壁内に埋め込み開口してなる。
隔壁を構成する高分子重合体としては、ポツテイ
ング材として知られるポリウレタン樹脂等から形
成すればよい。 このような多孔性中空糸型人工肺1の1例が第
1図に示される。同図に示されるように、人工肺
1はハウジング2をもち、このハウジング2は、
例えば筒状体21の両端に取り付けカバー22,
23を取り付けて構成される。ハウジング2内に
は、例えば10000〜60000本程度の多孔性中空糸
3,…がほぼ平行に配列されている。この場合、
隔壁内の中空糸の実質的な充填部分における充填
率は30〜60℃程度とすればよい。 そして、この多孔性中空糸3,…の両端部は、
ハウジング2の取り付けカバー22,23内にお
いて、上記のように高分子重合体隔壁41,45
によつてその開口を露出して支持固定されてい
る。同時に、この隔壁41,45は、ハウジング
2内において、閉塞したガス室5を形成してい
る。そして取り付けカバー22,23には、それ
ぞれガス用入口および出口61,65が設けら
れ、ガス室5内に空気流路が形成されている。な
お、筒状体21は、このガス用入口および出口6
1,65に対向するごとく延長され、リブ25
1,255を形成し、吹送されるガスの短絡がお
こらないよう配慮されている。 他方、隔壁41,45の外端面は、ヘツドカバ
ー71,75によつてそれぞれ覆われており、こ
のヘツドカバー71,75には血液用入口および
出口81,85が設けられている。なお、第1図
に示される人工肺1では、隔壁は遠心注型によつ
て形成される結果、その内壁面は凹面をなす。
又、ハウジング2の筒状体21内に、絞り部21
5が形成され、中空糸3の充填率が端部にゆくに
つれ疎になる構造となつている。このような構造
を採用する必要は必ずしもないが、これにより
CO2除去能がより高いものとなる。このような場
合、絞り部における中空糸の充填率は概ね60〜80
%程度とすることが好ましい。 発明の具体的作用効果 以上詳述した本発明の多孔性中空糸型人工肺
は、血液用入口81から血液を導入し、血液を多
孔性膜中空糸内部を通過させ、血液用出口85か
ら排出するとともに、酸素、空気等をガス用入口
61、ガス室5、ガス用出口65の経路で吹送し
て使用する。このとき、多孔性中空糸の微小細孔
を介し、血液への酸素添加と血液からのCO2除去
が行われる。 そして、本発明の多孔性中空糸型人工肺は、従
来の人工肺、あるいは本発明の範囲外の細孔径を
もつ中空糸を用いた人工肺と比較して、CO2除去
能が格段と向上するものである。この場合、本発
明の人工肺のCO2除去能は、本発明者らがこれま
で発表してきた人工肺における最良のものと比較
して、20%、より好ましい細孔径範囲となつたと
きには30%以上もの向上をみる。このため、CO2
除去能の調節がより容易となり、又装置の小型化
もより一層容易となる。 又、CO2の除去能が、長時間に亘る体外循環に
際し、経時的に劣化することもない。更には、微
小細孔から血液が浸出することもない。 この結果、本発明によれば、小型高性能で、性
能の安定な人工肺が実現することになる。 そして、このような本発明の多孔性中空糸型人
工肺は、開心術、補助循環等に用いてきわめて有
用である。 本発明者は、本発明の効果を確認するため種々
実験を行つた。以下にその1例を示す。 実施例 延伸法における第一段熱処理温度と延伸率を変
えて作製した6種のポリプロピレン製多孔性中空
糸を用意した。これら6種の多孔性中空糸は、と
もに、内径200μ、肉厚25μ、空孔率45〜50%のも
のである。 これら6種の多孔性中空糸につき、それぞれ試
料10本を抜きとり、走査型電子顕微鏡(日本電子
社製)にて、倍率10000倍で、試料内外面を標準
粒子(ダウ・ケミカル社製 ユニホーム・ラテツ
クス・パーテイクル)とともに観察した。試料内
外面において、比較的均一な状態で細孔が存在す
る視野を選び、しかも内外面のうち小さい方の孔
径をもつ方の視野を写真撮影した。1視野中、無
作為に100個の細孔を選び、寸法測定した。この
場合、細孔は、6種の中空糸とも、ほぼ楕円形状
をなし、細孔径はその長径と短径との相乗平均と
した。6種の中空糸につき、10本づつの試料につ
いて、同様の測定を行い、それぞれにつき、得ら
れた1000個の細孔径を算術平均し、下記表1に示
される結果を得た。 他方、これとは別に、カルロ・エルバ
(CARLO−ERBA)社製、水銀圧入式ポロシメ
ーター65−H型を用いて、試料を水銀中に入れ、
圧力を印加して、水銀減量と圧力との関係を求め
たのち、これから、横軸に細孔径、縦軸に細孔分
布量をとり、細孔径の相対的累積曲線をプロツト
し、更にこの累積曲線を微分した。6種の中空糸
につき、得られた微分曲線には、何本かのピーク
が存在したが、1000〜10000μの範囲にては1本
のピークをもち、このピークは、他のピークと比
較して格段と高いピーク値をもつていた。6種の
中空糸につき、試料をかえ、それぞれ計3回の測
定を行い、そのときのピーク値を平均した結果を
下記表1に併記する。 なお、表1中、中空糸No.、ならびに電子顕微鏡
法および水銀圧入法による平均細孔径値に付した
*印は、本発明の範囲外であることを示すもので
ある。又、中空糸No.6は、本発明者らが過去に発
表した試作人工肺において用いた多孔性中空糸の
測定値である。
【表】 次に、これら6種の中空糸No.1〜6 12500本
を用い、それぞれ、有効長15cmにて第1図に示さ
れるような膜面積1m2の6種の人工肺1を作製し
た。この場合、隔壁41,45はポリウレタン樹
脂から形成し、隔壁内の中空糸充填率は35%絞り
部215での中空糸充填率は65%とした。 次いで、第2図に示されるような、ガス交換試
験回路にて、各人工肺のCO2除去能および酸素添
加能を測定した。同図において、Dは静脈血作製
装置、R1,R2は貯血槽、P1,P2は送血ポンプ、
HEは熱交換器、1は多孔性中空糸型人工肺を表
わす。 静脈血作製装置Dには、血漿遊離ヘモグロビン
量Hb=12g/dlの新鮮ヘパリン加牛血を充填し
た。又、静脈血作製装置Dには、CO2、O2、N2
の混合ガスを吹送して、SVO2=65±2%、PV
CO2=50±2mmHgの静脈血を作製した。更に、
熱交換器HEにより、血液温度を37℃とし、人工
肺に血液量500ml/minにて送り込んだ。又、人
工肺1にはそのガス室5に500/minの流量で
100%O2ガスを吹送した。 このような回路にて循環を行い、循環直後、1
時間後、5時間後の酸素添加能およびCO2除去能
を測定した。この場合、酸素添加能は、人工肺1
の前後にて採血を行い、これを血液ガス分析計
〔インストウルメンテーシヨン・ラボラトリー社
(Instrumentation Laboratory Inc.)製モデル
113〕で測定して算出した。又、CO2除去能は、
排出ガス中のCO2濃度をガスクロマトグラフイ
(日立製作所製ガスクロ164)で定量して算出し
た。なお、循環直後の測定が完了した後は、第2
図に示されるバイパスラインを用いて循環を行
い、1時間後および5時間後の測定直前に上記の
とおり、SVO2、PVCO2を調整し、バイパスライ
ンを閉じ測定を行つた。 このようにして測定した各人工肺のCO2除去能
および酸素添加能を下記表2に示す。
【表】 表2に示される結果から、電子顕微鏡法、水銀
圧入法ともに、本発明の範囲未満の平均細孔径の
中空糸No.1を使用する人工肺では、CO2除去能が
低いことがわかる。又、電子顕微鏡法、水銀圧入
法ともに、本発明の範囲を超える平均細孔径をも
つ中空糸No.5を使用する人工肺では、循環直後の
CO2除去能は高くなるが、経時とともにCO2除去
能は劣化し、5時間後には満足できない値となつ
てしまう。これは細孔からの水蒸気蒸散が多く、
中空糸外壁に水滴が結露し、性能劣化が生じてい
るものと考えられる。なお、中空糸No.5を用いる
人工肺では、中空糸外壁に血液の経時的浸出が見
うけられた。 一方、本発明者らが先に発表した中空糸No.6
は、電子顕微鏡法では本発明における平均細孔径
をもつが、水銀圧入法によると、本発明の範囲未
満の平均細孔径をもつものである。そしてこのよ
うな中空糸では、充分高いCO2除去能が得られな
い。 これに対し、本発明の範囲内の平均細孔径をも
つ中空糸No.2〜4を用いる人工肺では、中空糸No.
6を用いる人工肺と比較して、20%以上のCO2
去能の向上がみられる。又、CO2除去能の経時劣
化もきわめて少ない。 以上から、本発明における多孔性中空糸の平均
細孔径範囲の臨界性、およびそれに併い生じるす
ぐれた効果が明白である。
【図面の簡単な説明】
第1図は、本発明における多孔性中空糸型人工
肺の1例を示す、その半分を断面にて表わす正面
図である。第2図は、本発明の効果を確認するた
めに用いたガス交換試験用回路を示す模式図であ
る。 1……多孔性中空糸型人工肺、3……多孔性中
空糸。

Claims (1)

  1. 【特許請求の範囲】 1 少くとも内壁面が疎水性の多孔性中空糸をガ
    ス交換膜とし、当該多孔性中空糸内部を血液流路
    とする多孔性中空糸型人工肺において、上記多孔
    性中空糸の平均細孔径が、電子顕微鏡法で測定し
    たとき、800〜1800Åであり、しかも水銀圧入法
    で測定したとき、2000〜7000Åであることを特徴
    とする多孔性中空糸型人工肺。 2 多孔性中空糸がポリオレフイン系樹脂からな
    る特許請求の範囲第1項記載の多孔性中空糸型人
    工肺。 3 多孔性中空糸がポリプロピレンからなる特許
    請求の範囲第2項記載の多孔性中空糸型人工肺。 4 多孔性中空糸の平均細孔径が、電子顕微鏡法
    で測定したとき、1050〜1700Åであり、しかも水
    銀圧入法で測定したとき、2300〜5500Åである特
    許請求の範囲第1項〜第3項のいずれかに記載の
    多孔性中空糸型人工肺。 5 多孔性中空糸の平均空孔率が30〜80%である
    特許請求の範囲第1項〜第4項のいずれかに記載
    の多孔性中空糸型人工肺。 6 多孔性中空糸の平均内径が150〜500μであ
    り、その平均肉厚が10〜150μである特許請求の
    範囲第1項〜第5項のいずれかに記載の多孔性中
    空糸型人工肺。
JP56021693A 1981-02-17 1981-02-17 Porous hollow yarn type artificial lang Granted JPS57136456A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56021693A JPS57136456A (en) 1981-02-17 1981-02-17 Porous hollow yarn type artificial lang

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56021693A JPS57136456A (en) 1981-02-17 1981-02-17 Porous hollow yarn type artificial lang

Publications (2)

Publication Number Publication Date
JPS57136456A JPS57136456A (en) 1982-08-23
JPH0321188B2 true JPH0321188B2 (ja) 1991-03-22

Family

ID=12062140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56021693A Granted JPS57136456A (en) 1981-02-17 1981-02-17 Porous hollow yarn type artificial lang

Country Status (1)

Country Link
JP (1) JPS57136456A (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5997669A (ja) * 1982-11-25 1984-06-05 テルモ株式会社 血液用多管式熱交換器
JPS60249968A (ja) * 1984-05-25 1985-12-10 テルモ株式会社 中空繊維膜型人工肺
JP4562490B2 (ja) * 2004-10-26 2010-10-13 泉工医科工業株式会社 人工肺ガス交換モニタ

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54160098A (en) * 1978-06-06 1979-12-18 Terumo Corp Hollow gut type artificial lungs

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0127794Y2 (ja) * 1979-03-28 1989-08-23

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54160098A (en) * 1978-06-06 1979-12-18 Terumo Corp Hollow gut type artificial lungs

Also Published As

Publication number Publication date
JPS57136456A (en) 1982-08-23

Similar Documents

Publication Publication Date Title
EP0299381B1 (en) Membrane-type artificial lung and method of using it
US4239729A (en) Oxygenator
US6103117A (en) Polysulfone hollow fiber semipermeable membrane
US5192320A (en) Artificial lung and method of using it
JPS624994B2 (ja)
EP1578521A1 (en) Permselective membrane and process for manufacturing thereof
WO1997034687A1 (fr) Membrane en fils creux utilisee pour l'epuration du sang et epurateur de sang
US4925534A (en) Hemodialysis method and membrane
EP1685862B1 (en) Hollow fiber membrane for blood purification and blood purification apparatus including the same
JPH10108907A (ja) 血液浄化膜、その製造方法及び血液浄化用モジュール
JP2792556B2 (ja) 血液浄化用モジュール、血液浄化膜及びその製造方法
US4824569A (en) Hollow fiber for dialysis and method for manufacture thereof
EP0041692A1 (en) Blood oxygenator
JPH0321188B2 (ja)
US5626760A (en) Multifunction device for the treatment of blood
US5849189A (en) Hollow fiber blood purifying membrane and process for its production
JPS6160165B2 (ja)
JPH09308685A (ja) 血液浄化用中空糸膜及び血液浄化器
JP4190361B2 (ja) 中空糸型の体液処理器、これに用いる中空糸束およびそれらの製造方法
JPS612743A (ja) 多孔質膜
JPS61408A (ja) 中空糸複合膜
JPH0127794Y2 (ja)
JPH067859B2 (ja) 多孔質中空糸膜および中空糸膜型人工肺
JPH10235171A (ja) 中空糸膜の製造方法ならびに中空糸膜および中空糸膜型ダイアライザー
JPS60150757A (ja) 中空糸膜型人工肺