JPH03211789A - Method of filling via hole in ceramic board with metal fine powder - Google Patents

Method of filling via hole in ceramic board with metal fine powder

Info

Publication number
JPH03211789A
JPH03211789A JP575290A JP575290A JPH03211789A JP H03211789 A JPH03211789 A JP H03211789A JP 575290 A JP575290 A JP 575290A JP 575290 A JP575290 A JP 575290A JP H03211789 A JPH03211789 A JP H03211789A
Authority
JP
Japan
Prior art keywords
via hole
metal fine
powder
determined
grain size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP575290A
Other languages
Japanese (ja)
Inventor
Masato Naruse
成瀬 正人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP575290A priority Critical patent/JPH03211789A/en
Publication of JPH03211789A publication Critical patent/JPH03211789A/en
Pending legal-status Critical Current

Links

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)

Abstract

PURPOSE:To enhance the filling density of metal fine particles in a via hole by mixing three and more types of metal fine particles whose grain sizes are different from each other. CONSTITUTION:Metal fine particles 4 are mixed by three and more types of metal fine particles whose grain sizes are different from each other so as to produce mixed powder. The greatest grain size (a primary grain size) is first determined based on the size of void produced between the particles when they are the most densely but in hexahedron close-packed structure, and then a large grain size (a secondary grain size) is determined. Then, their mixing ratio is determined based on the capacity of a via hole 3 and the capacity of void between the particles produced when the metal fine particles 4 of the primary grain size are the most densely put in hexahedron close-packed structure. In addition, the size of the void between the particles remaining after the metal fine particles 4 of the primary and secondary sizes are put in, is determined, based on the aforesaid data, a three-dimensional grain size and the mixing ratio are determined. Other grains sizes are then determined so as to produce their minimum grain size which is over 0.5mum which does not produce any coagulation. This construction makes it possible to minimize the void formed between the metal powder 4 in the via hole 3.

Description

【発明の詳細な説明】 〔概要〕 セラミック基板のビアホールへの金属微粉末充填方法に
関し、 ビアホール内に充填された金属微粉末の充填密度を高め
ることを目的とし、 グリーンシートに穿孔されたビアホールに金属微粉末を
充填するビアホールへの金属微粉末充填方法において、
上記金属微粉末を粒度の異なる3種類以上の混合粉末と
する構成とした。
[Detailed Description of the Invention] [Summary] Regarding a method for filling fine metal powder into via holes of a ceramic substrate, the present invention aims to increase the packing density of fine metal powder filled in the via holes. In a method for filling a via hole with fine metal powder,
The above-mentioned fine metal powder was configured to be a mixed powder of three or more types having different particle sizes.

〔産業上の利用分野〕[Industrial application field]

本発明は、ビアホールへの金属微粉末充填方法に関する
The present invention relates to a method for filling a via hole with fine metal powder.

〔従来の技術〕[Conventional technology]

セラミック基板は、マイラフィルム上にスラリー状のセ
ラミック原料を薄く布敷し、定尺に切断したグリーンシ
ートが使用される。このグリーンシートはその後2週間
程度熟成され、原料布敷時や切断時にセラミック原料に
かかった応力を開放している。その後ビアホールを明け
て、以下に詳しく説明するように金属微粉末が上記ビア
ホールに充填され、更に導体パターンが印刷された各層
を積層して焼成し、最後に表面導体パターンを形成する
ことによてセラミック基板が得られる。
The ceramic substrate used is a green sheet in which a slurry of ceramic raw material is thinly spread on a Mylar film and then cut into regular lengths. This green sheet is then aged for about two weeks to release the stress applied to the ceramic raw material during the laying and cutting of the raw material. After that, the via hole is opened, and as explained in detail below, the via hole is filled with fine metal powder. Furthermore, each layer with a printed conductor pattern is laminated and fired, and finally, a surface conductor pattern is formed. A ceramic substrate is obtained.

上記金属微粉末の充填方法には乾式法と湿式法とがある
が、第2図に乾式法による金属微粉末の充填方法を示し
た。まず、第2図(a)に示す熟成後のグリーンシート
1に対し孔明は処理を施し、第2図(b)に示すように
、90〜120μm程度のビアホール3を形成した後、
第2図(c)に示すようにビアホール3に導体を形成す
るための金属微粉末4が充填される。この工程では、グ
リーンシートlのマイラフィルム2を上側にしておき、
該マイラフィルム2の上から金属微粉末4を散布し、例
えばゴムで作られたスキージ5でマイラフィルム2の上
面を擦って、ビアホール3に金属微粉末4を擦り入れる
とともに、その他の部分の金属微粉末4をマイラフィル
ム2の一ト面から擦り取る。この充填工程の後、第2図
(d)に示す飛散防止処理工程で、ビアホール3のマイ
ラフィルム2側端部に金属クリーム8を別のスキージで
擦り込み、更に、グリーンシート1を反転させて、マイ
ラフィルム2と反対側の側面に保護フィルム7を貼着す
る。
There are a dry method and a wet method for filling the metal fine powder, and FIG. 2 shows the dry method for filling the metal fine powder. First, Koumei processes the aged green sheet 1 shown in FIG. 2(a) to form via holes 3 of approximately 90 to 120 μm as shown in FIG. 2(b).
As shown in FIG. 2(c), the via hole 3 is filled with metal fine powder 4 for forming a conductor. In this step, the Mylar film 2 of the green sheet 1 is placed on the upper side,
Sprinkle fine metal powder 4 over the Mylar film 2, and rub the top surface of the Mylar film 2 with a squeegee 5 made of rubber, for example, to rub the fine metal powder 4 into the via hole 3, and remove metal from other parts. The fine powder 4 is scraped off from one side of the Mylar film 2. After this filling step, in the scattering prevention treatment step shown in FIG. 2(d), the metal cream 8 is rubbed onto the end of the Mylar film 2 side of the via hole 3 with another squeegee, and the green sheet 1 is further turned over. A protective film 7 is attached to the side opposite to the Mylar film 2.

この後、印刷工程でグリーンシート1の上面には導体パ
ターンが印刷され、積層工程で所要数の中間層と表面層
を積層して多層化し、焼成工程において積層されたグリ
ーンシートを焼き固めるとともに、グリーンシートに含
有されたバインダーを除去し、研磨工程で表裏両面を研
磨した後、薄膜形成工程で研磨された表面に表面導体パ
ターンが形成される。
After this, a conductive pattern is printed on the top surface of the green sheet 1 in a printing process, a required number of intermediate layers and surface layers are laminated in a lamination process to form a multilayer, and the laminated green sheet is baked and hardened in a firing process. After removing the binder contained in the green sheet and polishing both the front and back surfaces in a polishing step, a surface conductor pattern is formed on the polished surface in a thin film forming step.

一方、図示ない湿式法は金属微粉末を有機バインダ(ビ
ヒクル)その他の配合物と混合した金属ペーストをグリ
ーンシートの上面に塗布し、スキージでグリーンシート
の上面を擦ってビアホールに金属ペーストを充填する方
法である。しかしながら、この場合には、焼成工程でビ
ヒクルの分解により発生する気体成分が導体中に封入さ
れ、導体が多孔質化するという問題があるので、今日で
は、主として上記の乾式法が採用されている。
On the other hand, in the wet method (not shown), a metal paste made by mixing fine metal powder with an organic binder (vehicle) and other compounds is applied to the top surface of the green sheet, and the top surface of the green sheet is rubbed with a squeegee to fill the via holes with the metal paste. It's a method. However, in this case, there is a problem that the gaseous components generated by the decomposition of the vehicle during the firing process are encapsulated in the conductor, making the conductor porous, so today, the above-mentioned dry method is mainly adopted. .

上記金属微粉末4の充填に使用される金属微粉末4の粒
径の最小値は、該金属微粉末4の流動性が保持できる値
、即ち0.5μmより大きく、また、最大値はスルーホ
ール壁に沿って粗充填部分の生じるいわゆる壁効果の生
じない値、即ちスルーホール径の50分の1より小さい
値に設定され、この観点から、上記乾式あるいは湿式の
いずれの方法においても、金属微粉末4の平均粒径は工
The minimum value of the particle size of the metal fine powder 4 used for filling the metal fine powder 4 is a value that can maintain the fluidity of the metal fine powder 4, that is, larger than 0.5 μm, and the maximum value is greater than the through hole diameter. It is set to a value that does not cause the so-called wall effect that causes a rough filling part along the wall, that is, a value smaller than 1/50 of the through-hole diameter. The average particle size of Powder 4 is .

1μm程度である。It is about 1 μm.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記したように、金属微粉末4の流動性や壁効果等の観
点から、従来では90〜120μm程度のビアホール3
に対して、平均粒径1.1μm程度の銅粉末を充填する
ようにしているが、上記従来の方法によると、ビアホー
ル3の容積に対して、実際に充填される金属微粉末4の
容積、即ち充填率は40〜60%程度であるに過ぎない
。金属微粉末の粒径等から理論的に演算される最密充填
率は約74%であることを鑑みれば、上記従来の方法の
よる充填率には甚だ不満が大きいといえる。
As mentioned above, from the viewpoint of the fluidity of the fine metal powder 4 and the wall effect, conventionally, the via hole 3 has a diameter of about 90 to 120 μm.
However, according to the above-mentioned conventional method, the volume of the fine metal powder 4 actually filled with respect to the volume of the via hole 3 is That is, the filling rate is only about 40 to 60%. Considering that the closest packing ratio calculated theoretically from the particle size of fine metal powder is about 74%, it can be said that the filling ratio obtained by the above-mentioned conventional method is extremely dissatisfied.

本発明は、上記の事情を鑑みてなされたものであり、ビ
アホール内に充填された金属微粉末の充填密度を高めら
れるようにしたビアホールへの金属微粉末充填方法を提
供することを目的とする。
The present invention has been made in view of the above-mentioned circumstances, and an object of the present invention is to provide a method for filling a via hole with fine metal powder that can increase the packing density of the fine metal powder filled in the via hole. .

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、第1図に示すように、グリーンシートlに穿
孔されたビアホール3に金属微粉末4を充填するビアホ
ールへの金属微粉末充填方法において、上記金属微粉末
4を粒度の異なる3種類以上の混合粉末としている。
As shown in FIG. 1, the present invention provides a method for filling a via hole with fine metal powder 4 in which a via hole 3 bored in a green sheet l is filled with fine metal powder. The above mixed powder is used.

〔作 用〕[For production]

充填される金属微粉末4の粒径の決定は、まず最大粒径
(1次粒径)の金属微粉末4を六方最密充填させた時に
粒子間に形成される空隙の大きさによって金属微粉末4
の次に大きい粒径(2次粒径)が決定され、ビアホール
3の容積と、1次粒径の金属微粉末4を六方最密充填さ
せた時に生じる粒子間の空隙の容積とから1次粒径の金
属微粉末4と2次粒径の金属微粉末4の混合比が決定さ
れる。また、1次粒径の金属微粉末4と2次粒径の金属
微粉末4とを充填した後に残される粒子間の空隙の大き
さ、合計容積が決定され、これらに基づき3次の粒径と
その配合比が決定される。このようにして順次次数の多
い粒径が決定されるこになる。
The particle size of the metal fine powder 4 to be filled is first determined by the size of the void formed between the particles when the metal fine powder 4 of the maximum particle size (primary particle size) is hexagonally close packed. powder 4
The next largest particle size (secondary particle size) is determined, and the primary particle size is determined from the volume of the via hole 3 and the volume of voids between particles that occur when metal fine powder 4 of the primary particle size is hexagonally close-packed. The mixing ratio of the fine metal powder 4 having the particle size and the fine metal powder 4 having the secondary particle size is determined. In addition, the size and total volume of the gaps between the particles remaining after filling the metal fine powder 4 with the primary particle size and the metal fine powder 4 with the secondary particle size are determined, and based on these, the tertiary particle size is determined. and its blending ratio is determined. In this way, grain sizes with increasing orders are determined in sequence.

ここで上記1次の粒径をどのよに決定するかが問題とな
るが、上記手順で算出される最小粒径が凝集を起こさな
い(流動性を確保できる)0.5μm以上のできるだけ
小さい値になるように1次あるは他の次数の粒径も決定
される。
The problem here is how to determine the above-mentioned primary particle size, but the minimum particle size calculated by the above procedure should be the smallest possible value of 0.5 μm or more that does not cause aggregation (fluidity can be ensured). The particle size of the first order or other orders is also determined so that

そして、このような粒度の異なる混合粉末よりなる金属
微粉末4をビアホール3に擦り込むことにより、ビアホ
ール3内で金属微粉末4の粒子間に形成される空隙を最
小にすることができ、金属微粉末の充填率を最密充填率
近くまで高めることができる。
By rubbing the metal fine powder 4 made of such a mixed powder with different particle sizes into the via hole 3, the voids formed between the particles of the metal fine powder 4 in the via hole 3 can be minimized, and the metal The packing rate of fine powder can be increased to close to the closest packing rate.

〔実 施 例〕〔Example〕

本発明のビアホールへの金属微粉末充填の手順そのもの
は第2図に示した従来の手順と全く同様である。
The procedure of filling fine metal powder into a via hole according to the present invention is exactly the same as the conventional procedure shown in FIG.

すなわち、第2図(a)に示す熟成後のグリーンシート
1に第2図(b)に示すように、直径90〜120μm
の多数のビアホール3が穿孔される。
That is, as shown in FIG. 2(b), the green sheet 1 after ripening shown in FIG. 2(a) has a diameter of 90 to 120 μm.
A large number of via holes 3 are drilled.

この後、第2図(c)に示すように、グリーンシート1
をマイラフィルム2側を上にして、該マイラフィルム2
の上からグリーンシート1に銅微粉末からなる金属微粉
末4を散布し、例えばゴムで作ったスキージ5でマイラ
フィルム2の上面をこすることにより、グリーンシート
1に穿孔されたビアホール3に金属微粉末4が充填され
る。
After this, as shown in FIG. 2(c), the green sheet 1
with the Mylar film 2 side up, and place the Mylar film 2
Fine metal powder 4 made of fine copper powder is sprinkled onto the green sheet 1 from above, and by rubbing the top surface of the Mylar film 2 with a squeegee 5 made of rubber, for example, the metal is poured into the via holes 3 drilled in the green sheet 1. Fine powder 4 is filled.

この充填工程の後、金属微粉末4の飛散防止処理として
、第2図(d)に示すように、金属微粉末4が充填され
たビアホール3のマイラフィルム2側端部に金属ペース
ト8を塗り込め、また、ポリエチレン等で作られた保護
フィルム7をグリーンシートlのマイラフィルム2と反
対側の面に貼着する。
After this filling step, as a treatment to prevent the fine metal powder 4 from scattering, a metal paste 8 is applied to the end of the Mylar film 2 side of the via hole 3 filled with the fine metal powder 4, as shown in FIG. 2(d). In addition, a protective film 7 made of polyethylene or the like is attached to the surface of the green sheet 1 opposite to the mylar film 2.

本発明においては、上記充填工程で使用される金属粉末
4の粒度は、3種類以上(ここでは5種類)としている
In the present invention, the particle size of the metal powder 4 used in the filling step is three or more types (here, five types).

即ち、金属微粉末4の最大粒径(1次粒径)の金属微粉
末4を六方最密充填させた時に粒子間に形成される空隙
の大きさによって金属微粉末4の次に大きい粒径(2次
粒径)が決定される。更に、ビアホール3の容積と、1
次粒径の金属微粉末4を六方最密充填させた時に生じる
粒子間の空隙の容積とから1次粒径の金属微粉末4と2
次粒径の金属微粉末4の混合比が決定され、また、1次
粒径の金属微粉末4と2次粒径の金属微粉末4とを充填
した後に残される粒子間の空隙の大きさ、及びその空隙
の合計容積が決定され、これらに基づき3次の金属微粉
末4の粒径と配合比が決定される。このようにして順次
次数の多い粒径が決定されることになる。
That is, the next largest particle size of the metal fine powder 4 depends on the size of the voids formed between the particles when the metal fine powder 4 having the maximum particle size (primary particle size) of the metal fine powder 4 is hexagonally close-packed. (secondary particle size) is determined. Furthermore, the volume of via hole 3 and 1
From the volume of voids between particles that occur when the fine metal powders 4 of the following particle sizes are hexagonally close-packed, the fine metal powders 4 and 2 of the primary particle size are
The mixing ratio of the metal fine powder 4 having the primary particle size is determined, and the size of the void between the particles remaining after filling the metal fine powder 4 having the primary particle size and the metal fine powder 4 having the secondary particle size is determined. , and the total volume of their voids are determined, and based on these, the particle size and blending ratio of the tertiary fine metal powder 4 are determined. In this way, grain sizes with increasing orders are determined in sequence.

このようにして順次決定された5種の粒径とその配合比
(全体で100%)を第1表及び第1図に示す。ここで
は最小粒径が凝集を起こさない(流動性を確保できる)
045μm以上のできるだけ小さい値になるように他の
粒径が決定されている。
Table 1 and FIG. 1 show the five particle sizes sequentially determined in this manner and their blending ratios (total 100%). Here, the minimum particle size does not cause agglomeration (fluidity can be ensured)
Other particle sizes are determined to be as small as possible, 0.045 μm or more.

第 表 そして、この5種類の異なる粒度よりなる金属微粉末4
をビアホール3に擦り込むと、ビアホール3の径の11
50よりも大径の金属微粉末4(即ち、壁効果の現れる
粒径)が含まれているにもかかわらず、粒径の小さい微
粉末が含まれているので壁効果によりビアホール3の周
面近傍に発生する空隙の間に粒径の小さい微粉末が入り
込み、充填率が高められる。また、ビアホール3の中央
部でも、粒径の異なる粒子が最適配合比で配合されてい
るので粒子間の空隙が最小となり、金属微粉末4の充填
率を最密充填率近くの例えば71゜6%程度まで高める
ことができ、ビア導体中の空隙の発生率、とア断線の発
生率及び薄膜形成時の障害発生率を減少させることがで
きる。
Table 4: Fine metal powder 4 made of these five different particle sizes
When rubbed into via hole 3, 11 of the diameter of via hole 3
Although it contains fine metal powder 4 with a diameter larger than 50 (i.e., a particle size where a wall effect appears), it contains fine powder with a small particle size, so the peripheral surface of the via hole 3 is affected by the wall effect. Fine powder with a small particle size enters between the voids generated in the vicinity, increasing the filling rate. In addition, in the center of the via hole 3, particles with different particle sizes are blended in an optimal blending ratio, so the voids between the particles are minimized, and the filling rate of the metal fine powder 4 is reduced to near the closest packing rate, for example, 71°6. %, thereby reducing the incidence of voids in via conductors, the incidence of disconnections, and the incidence of failures during thin film formation.

この5種類の異なる粒度よりなる金属微粉末4を使用す
る場合と、粒径が平均粒径1.1μmを中心とするブロ
ード状分布の従来の金属微粉末4を使用する場合とにつ
いて確認された充填率、微細空隙発生率、ビア断線発生
率、薄膜形成時の障害発生率は第2表に示す通りである
It was confirmed that the case of using the fine metal powder 4 made of these five different particle sizes and the case of using the conventional fine metal powder 4 with a broad distribution of particle sizes centered on an average particle size of 1.1 μm. The filling rate, micro-void occurrence rate, via disconnection occurrence rate, and failure occurrence rate during thin film formation are shown in Table 2.

第  2  表 なお、充填率は、ビア容積重たりの金属微粉末の充填量
(重量)を充填密度として算出し、この充填密度を理論
密度、即ち、ビア容積重たりの金属微粉末4の重量(−
ビア容積×比重)で除した値であり、微細空隙発生率は
、焼成、研磨後にビアホールの研磨面に露出した直径1
08m以上の空隙発生数を1万ホールに対して算出した
値であり、ビア断線発生率は、1枚当たり1万ホールの
ビアホールを形成したグリーンシートを10層積層し、
焼成した後の表裏間のビア断線の発生率であり、薄膜形
成時の障害発生率は薄膜形成工程で薄膜を形成した後の
断線障害の発生率を1万ホールに対して算出した値であ
る。
Table 2 Note that the filling rate is calculated by calculating the filling amount (weight) of fine metal powder per via volume weight as the filling density, and calculating this filling density as the theoretical density, that is, the weight of fine metal powder 4 per volume weight of the via. (−
Via volume x specific gravity), and the microvoid generation rate is the diameter of the via hole exposed on the polished surface after firing and polishing.
This is the value calculated for the number of voids of 0.8m or more per 10,000 holes.
This is the occurrence rate of via disconnection between the front and back sides after firing, and the failure occurrence rate during thin film formation is the value calculated for 10,000 holes of the occurrence rate of disconnection failure after forming a thin film in the thin film forming process. .

上記の実施例においては、5種類の異なる粒度よりなる
金属微粉末4が使用されているが、その中の5μm、2
.07μm、0.58μmの3種類の粒度を中心とする
3種類の異なる粒度分布を有する金属微粉末4を使用す
る場合にも、同様に70%を越える充填率を得ることが
できた。
In the above embodiment, metal fine powder 4 having five different particle sizes is used, of which 5 μm, 2 μm,
.. In the case of using fine metal powder 4 having three different particle size distributions centered on the three particle sizes of 0.07 μm and 0.58 μm, a filling rate exceeding 70% could be similarly obtained.

(発明の効果〕 以上のように、本発明においては、金属微粉末の粒度が
3種類以上の混合粉末にしているので、粒径の小さい粒
子によって壁効果により生じる空隙が埋められてビアホ
ールの周面近傍の充填率が高められるとともに、ビアホ
ールの中央部でも粒径の大きい粒子の間に形成される空
隙に粒径の小さい粒子が入ってビアホール内に大きい空
隙l生しることが防止される。その結果、ビアホール内
への金属粉末の充填率を最密充填構造に匹敵するような
高充填率まで高めることができ、焼成後のビアホールの
導体の抵抗が減少するとともに、ビア断線の発生を防止
することができ、ビア接続に対する信頼性を高めること
ができる。
(Effects of the Invention) As described above, in the present invention, since the metal fine powder is a mixed powder with three or more types of particle sizes, the voids caused by the wall effect are filled by particles with small particle sizes, and the periphery of the via hole is filled with small particles. In addition to increasing the filling rate near the surface, it is also possible to prevent small-sized particles from entering the voids formed between large-sized particles in the center of the via hole, thereby preventing large voids from forming within the via hole. As a result, it is possible to increase the filling rate of metal powder into the via hole to a high filling rate comparable to that of a close-packed structure, which reduces the resistance of the conductor in the via hole after firing and reduces the occurrence of via disconnection. This can improve the reliability of via connections.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係るビアホールへの金属微
粉末充填方法に使用される金属粉末の粒度分布と配合比
とを示す粒度分布図であり、第2図は一般的なビアホー
ルへの金属微粉末充填方法の手順を示す概念図である。 図中、 l・・・グリーンシート、3・・・ビアホール、4・・
・金属微粉末、  5・・・スキージ。 (a)!%& (b) 北 9月 (C)充積 (d)4敷力土処狸− 47鰺粉末充5菓の斗j慢吃水づフロー図第2ド1
FIG. 1 is a particle size distribution diagram showing the particle size distribution and compounding ratio of metal powder used in a method for filling fine metal powder into a via hole according to an embodiment of the present invention, and FIG. FIG. 3 is a conceptual diagram showing the steps of a method for filling fine metal powder. In the figure, l... Green sheet, 3... Beer hole, 4...
- Fine metal powder, 5... Squeegee. (a)! % & (b) North September (C) Filling (d) 4 Shikiki Todokoro Tanuki - 47 Mackerel Powder Filling 5 Sweets Flow Diagram 2nd Do 1

Claims (1)

【特許請求の範囲】 〔1〕グリーンシート(1)に穿孔されたビアホール(
3)に金属微粉末(4)を充填するビアホールへの金属
微粉末充填方法において、 上記金属微粉末(4)を粒度の異なる3種類以上の混合
粉末としたことを特徴とする、セラミック基板のビアホ
ールへの金属微粉末充填方法。
[Scope of Claims] [1] Via hole (
3) A method for filling a via hole with fine metal powder (4), wherein the fine metal powder (4) is a mixed powder of three or more types of different particle sizes. A method of filling fine metal powder into via holes.
JP575290A 1990-01-12 1990-01-12 Method of filling via hole in ceramic board with metal fine powder Pending JPH03211789A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP575290A JPH03211789A (en) 1990-01-12 1990-01-12 Method of filling via hole in ceramic board with metal fine powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP575290A JPH03211789A (en) 1990-01-12 1990-01-12 Method of filling via hole in ceramic board with metal fine powder

Publications (1)

Publication Number Publication Date
JPH03211789A true JPH03211789A (en) 1991-09-17

Family

ID=11619851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP575290A Pending JPH03211789A (en) 1990-01-12 1990-01-12 Method of filling via hole in ceramic board with metal fine powder

Country Status (1)

Country Link
JP (1) JPH03211789A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005031760A1 (en) * 2003-09-26 2007-11-15 日立化成工業株式会社 Mixed conductive powder and its use

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005031760A1 (en) * 2003-09-26 2007-11-15 日立化成工業株式会社 Mixed conductive powder and its use
US7790063B2 (en) 2003-09-26 2010-09-07 Hitachi Chemical Company, Ltd. Mixed conductive power and use thereof
JP4677900B2 (en) * 2003-09-26 2011-04-27 日立化成工業株式会社 Mixed conductive powder and its use
US8029701B2 (en) 2003-09-26 2011-10-04 Hitachi Chemical Co., Ltd. Mixed conductive powder and use thereof

Similar Documents

Publication Publication Date Title
TW507350B (en) Circuitry with integrated passive components and method for producing
US4781968A (en) Micro-electronics devices and methods of manufacturing same
US4865875A (en) Micro-electronics devices and methods of manufacturing same
JP3015621B2 (en) Conductive paste composition
DE112012006469T5 (en) Microelectronic package with non-planar encapsulated microelectronic devices and a build-up layer without bumps
EP0519676B1 (en) Process of producing multiple layer glass-ceramic circuit board
JPH03211789A (en) Method of filling via hole in ceramic board with metal fine powder
JPH08274470A (en) Multilayer interconnection board
JP5177027B2 (en) Electrode pad manufacturing method, circuit wiring body including electrode pad and manufacturing method thereof, solder joint structure using the electrode pad, and method thereof
JPH04286149A (en) Manufacture of low permittivity hybrid multilayer ceramic wiring board
JP2003141929A (en) Copper powder for copper paste
JP3150932B2 (en) Conductive paste for ceramic multilayer circuit board
JP2020010009A (en) Printed circuit board and method of manufacturing the same
He et al. Monte Carlo study of solder paste microstructure and ultra-fine-pitch stencil printing
JPH02152105A (en) Conductive material and manufacture thereof
JP2000349406A (en) Conductive paste for printed wiring board, printed wiring board using the same, and electronic device
JPH04290492A (en) Manufacture of ceramic circuit board with low dielectric constant
JP2001044633A (en) Ceramic circuit board
JPH0823169A (en) Manufacture of multilayer ceramic wiring board
JPH03212991A (en) Method for filling fine metallic powder into via hole
JPH09116266A (en) Forming method of via in build up wiring board
JPH0215690A (en) Wiring paste and ceramic wiring board formed making use thereof
JP2545485B2 (en) Method for forming via on multilayer ceramic substrate
JPH01286494A (en) Ceramic substrate
JP2002216539A (en) Conductive paste