JPH03211202A - Powder for compact using gas atomized metal powder - Google Patents

Powder for compact using gas atomized metal powder

Info

Publication number
JPH03211202A
JPH03211202A JP2004721A JP472190A JPH03211202A JP H03211202 A JPH03211202 A JP H03211202A JP 2004721 A JP2004721 A JP 2004721A JP 472190 A JP472190 A JP 472190A JP H03211202 A JPH03211202 A JP H03211202A
Authority
JP
Japan
Prior art keywords
powder
fine
gas atomized
parts
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004721A
Other languages
Japanese (ja)
Inventor
Takeo Hisada
建男 久田
Tetsuya Kondo
鉄也 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2004721A priority Critical patent/JPH03211202A/en
Publication of JPH03211202A publication Critical patent/JPH03211202A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain a sintered body improved in compressibility and having high density and good mechanical property by blending fine powder, organic binder and liquid lubricant into gas atomized metal powder having large diameter and sticking the fine powder to the powder having large diameter. CONSTITUTION:Par 100 wt parts of the gas atomized metal powder equivalent to stainless steel, etc., composed of relatively large diameter powder, <=3 wt parts ratio in total of the organic binder, such as ethyl cellulose and the liquid lubricant, such as terpinolene, is added. Successively, to this, <= 50 wt parts ratio the fine powder having the average particle diameter of <= 1/2 the large diameter powder is added to form the metal powder for compact. When the fine powder is stuck at comparatively large quantity on the surface of the particle having large diameter powder, fine powders are difficult to aggregate. By improving the fluidity of mixed powder of large diameter powder and fine diameter powder, it can be promoted that both powders are mutually and uniformly diffused at the time of sintering.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、粉末冶金に用いる圧縮成形用ガス噴霧粉末に
関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a gas atomized powder for compression molding used in powder metallurgy.

(従来の技術) 従来より、鋼粉末等の金属粉末は、溶鋼等の金属溶湯か
ら水噴霧法あるいはガス噴霧法等によって製造され、各
種の用途に使われている。例えば粉末成形プレスに用い
られる水噴霧粉末は、押型空間に充填され、圧縮されて
所定形状に圧縮成形され、焼結用の圧粉体に成形される
(Prior Art) Metal powders such as steel powders have conventionally been produced from molten metals such as molten steel by water spraying methods, gas spraying methods, etc., and used for various purposes. For example, water-sprayed powder used in a powder molding press is filled into a mold space, compressed into a predetermined shape, and molded into a green compact for sintering.

このような粉末成形プレスでは、押型で水噴霧粉末を圧
縮成形する場合、粉末と押型壁との間および粉末粒子相
互間の摩擦を軽減するために例えばステアリン酸亜鉛等
の潤滑剤を添加することが一般に行われる。そして、従
来の圧縮成形用金属粉末としては、水噴霧粉末が用いら
れるのが通常であった。
In such a powder compacting press, when compressing water-sprayed powder in a die, a lubricant such as zinc stearate may be added to reduce friction between the powder and the die wall and between the powder particles. is commonly done. As the conventional metal powder for compression molding, water spray powder has usually been used.

(発明が解決しようとする課題) しかしながら、水噴霧粉末は、急冷凝固により製造され
るので、ガス噴霧粉末に比べ粉末形状が不規則な非球形
状のもので、粉末成形体として成形性は良好であるが圧
縮性が相対的に悪いという問題がある。
(Problem to be solved by the invention) However, since water spray powder is produced by rapid solidification, the powder shape is irregular and non-spherical compared to gas spray powder, and it has good moldability as a powder compact. However, there is a problem that the compressibility is relatively poor.

これに対し、ガス噴霧粉末は、不活性ガス中で噴霧され
て凝固される相対的に規則的な球形状のもので、粉末成
形体として圧縮性は良好であるが成形性が悪いという問
題がある。したがって、ガス噴霧粉末は、圧縮成形用金
属粉末としては用いられていないのが実状である。
On the other hand, gas atomized powder has a relatively regular spherical shape that is atomized and solidified in an inert gas, and although it has good compressibility as a powder compact, it has the problem of poor formability. be. Therefore, gas atomized powder is not actually used as metal powder for compression molding.

本発明が解決しようとする課題は、圧縮成形用金属粉末
として圧縮性の良好なガス噴霧粉末を用い、そのガス噴
霧粉末の成形性に改善を加え、さらに微粉末を加えてよ
り圧縮性を向上させ、焼結密度、機械的性質等の良好な
焼結体が得られる圧縮成形用金属原料粉末を提供するこ
とにある。
The problem to be solved by the present invention is to use a gas atomized powder with good compressibility as a metal powder for compression molding, improve the moldability of the gas atomized powder, and further improve the compressibility by adding fine powder. The object of the present invention is to provide a metal raw material powder for compression molding, which allows obtaining a sintered body with good sintered density, mechanical properties, etc.

(課題を解決するための手段) そのために本発明のガス噴霧金属粉末を用いた圧縮成形
用金属粉末は、粒径が相対的に大きな大径粉末からなる
ガス噴霧金属粉末100重量部と、該大径粉末の平均粒
径の2分の1以下の平均粒径をもつ50重量部以下の微
粉末と、有機結合剤および液状潤滑剤の合量3重量部以
下とからなる圧縮成形用粉末であって、前記微粉末が前
記大径粉末の表面に付着していることを特徴とする。
(Means for Solving the Problems) For this purpose, the metal powder for compression molding using the gas atomized metal powder of the present invention includes 100 parts by weight of the gas atomized metal powder consisting of large-diameter powder having a relatively large particle size, and Powder for compression molding consisting of 50 parts by weight or less of fine powder with an average particle size of 1/2 or less of the average particle size of the large-diameter powder, and 3 parts by weight or less of an organic binder and a liquid lubricant. The method is characterized in that the fine powder is attached to the surface of the large-diameter powder.

本発明のガス噴霧金属粉末を用いた圧縮成形用粉末の製
造法は、粒径が相対的に大きな大径粉末からなるガス噴
霧金属粉末100重量部と、該大径粉末の平均粒径の2
分の1以下の平均粒径をもつ50重量部以下の微粉末と
、有機結合剤および液状潤滑剤の合量3重量部以下とか
らなる圧縮成形用粉末を用い、前記大径粉末に前記有機
結合剤および前記液状潤滑剤を添加した後、前記微粉末
を添加することを特徴とする。
The method for producing a powder for compression molding using a gas atomized metal powder of the present invention involves adding 100 parts by weight of a gas atomized metal powder consisting of a large-diameter powder having a relatively large particle size, and 2 parts by weight of a gas-atomized metal powder consisting of a relatively large particle size,
Using a compression molding powder consisting of 50 parts by weight or less of fine powder having an average particle size of 1/2 or less, and a total of 3 parts by weight or less of an organic binder and a liquid lubricant, The method is characterized in that the fine powder is added after the binder and the liquid lubricant are added.

ガス噴霧金属粉末を用いたのは、粉末成形体の圧縮性を
高め、焼結して得られる焼結体の機械的強度を高められ
るからである。
The gas atomized metal powder is used because it can improve the compressibility of the powder compact and increase the mechanical strength of the sintered body obtained by sintering.

有機結合剤としては、エチルセルロース、ポリビニルア
ルコール等を用いるが、本発明の有機結合剤はこれらに
限られるものではない、有機結合剤を添加することによ
り、ガス噴霧粉末の成形性を改善し、金属粉末の成形性
が向上される。
As the organic binder, ethyl cellulose, polyvinyl alcohol, etc. are used, but the organic binder of the present invention is not limited to these. By adding an organic binder, the moldability of the gas atomized powder is improved, and the metal The moldability of the powder is improved.

液状潤滑剤としては、テルピネオール、オレイン酸等を
用いるが、本発明の液状潤滑剤は、これらの潤滑剤に限
られるものではない。
As the liquid lubricant, terpineol, oleic acid, etc. are used, but the liquid lubricant of the present invention is not limited to these lubricants.

有機結合剤および液状潤滑剤は共に不可欠の添加材であ
り、ガス噴霧金属粉末100重量部に対し有機結合剤と
液状潤滑剤の合量3重量部以下にしたのは、3重量部を
超すと圧縮性が過度に低下するためである。
Both the organic binder and the liquid lubricant are essential additives, and the reason why the total amount of the organic binder and liquid lubricant is 3 parts by weight or less for 100 parts by weight of the gas atomized metal powder is because it exceeds 3 parts by weight. This is because compressibility is excessively reduced.

平均粒径2分の1以下の微粉末を添加したのは、ガス噴
霧金属粉末の大径粒子の隙間に実質的に同一の組成をも
つ微粉末を入れて、焼結時の均一な拡散を促し圧縮性を
高めるためである。
The reason for adding fine powder with an average particle size of less than half is to insert fine powder with substantially the same composition into the gaps between large particles of gas atomized metal powder, and to ensure uniform diffusion during sintering. This is to improve compressibility.

また本発明の圧縮成形用粉末は、ガス噴霧金属粉末の大
径粉末に有機結合剤および液状潤滑剤を添加した後、微
粉末を添加すると、大径粉末の粒子表面に微粉末を比較
的多量に付着することができる。これは、大径粉末の粒
子表面を有機結合剤および液状潤滑剤により濡らし、大
径粉末粒子の周囲にできる限り多量の微粉末を付着させ
て微粉末同志を集合しにくすることにより、大径粉末と
微粉末の混合粉末の流動性を高めるとともに、焼結時に
大径粉末と微粉末が相互に均一に拡散するのを促進する
ためである。
In addition, in the compression molding powder of the present invention, when fine powder is added after adding an organic binder and a liquid lubricant to a large-diameter powder of gas atomized metal powder, a relatively large amount of fine powder is deposited on the particle surface of the large-diameter powder. can be attached to. This is achieved by wetting the particle surface of the large-diameter powder with an organic binder and liquid lubricant, and attaching as much fine powder as possible around the large-diameter powder particles to make it difficult for the fine powder to aggregate. This is to improve the fluidity of the mixed powder of the large-diameter powder and the fine powder, and to promote uniform diffusion of the large-diameter powder and the fine powder into each other during sintering.

(実施例) 以下、本発明の実施例について説明する。(Example) Examples of the present invention will be described below.

叉1」口。1" mouth.

組成が、Coo、012wt%(以下単に1%」と表示
する)、Si:0.85%、Mn : 0゜14%、P
:0.005%、S:0.001%、Ni:0.05%
、Cr:12.5%、残部Feからなるステンレス鋼(
SUS430L相当)の溶湯からガス噴霧法によりガス
噴霧粉末を得た。
The composition is Coo, 012wt% (hereinafter simply referred to as 1%), Si: 0.85%, Mn: 0°14%, P
: 0.005%, S: 0.001%, Ni: 0.05%
, Cr: 12.5%, balance Fe stainless steel (
A gas atomized powder was obtained from a molten metal (equivalent to SUS430L) by a gas atomization method.

このガス噴霧粉末を一60メツシュに分級した後、有機
結合剤としてエチルセルロース、液状潤滑剤としてテル
ピネオールをガス噴霧粉末100重量部に対しそれぞれ
0.5重量部加えた。その後この粉末に対し、−350
メツシユに分級し平均粒径5.7μmにしたカーボン(
天然黒鉛)の微粉末を1重量部添加した。この場合、ス
テンレス鋼粉末の大径粒子表面にカーボンからなる微粉
末が付着した。この混合粉末を実施例1とする。
After classifying this gas atomized powder into 160 meshes, 0.5 parts by weight of ethyl cellulose as an organic binder and terpineol as a liquid lubricant were added to 100 parts by weight of the gas atomized powder. After that, -350
Carbon classified into mesh particles with an average particle size of 5.7 μm (
1 part by weight of fine powder of natural graphite was added. In this case, fine powder made of carbon adhered to the surface of the large diameter particles of the stainless steel powder. This mixed powder is referred to as Example 1.

また前記ガス噴霧粉末に代えてこれと同一組成をもつ水
噴霧粉末を用いた比較例1の混合粉末を作製した。エチ
ルセルロースおよびテルピネオールおよびカーボンにつ
いては実施例1と同様の量だけ同様に添加した。これら
の粉末を圧カフt/cm”で圧縮成形した結果を第1表
に示す。
In addition, a mixed powder of Comparative Example 1 was prepared using a water spray powder having the same composition as the gas spray powder in place of the gas spray powder. Ethyl cellulose, terpineol, and carbon were added in the same amounts as in Example 1. Table 1 shows the results of compression molding these powders with a pressure cuff of t/cm''.

(以下、余白、) 第1表に示されるように、実施例1は、比較例1に比べ
、圧粉密度が高(、ラトラー値が相対的に小さいことが
解る。このことは実施例1は比較例1に比べ焼結密度が
高(、組織も均一であり、付着した微粉末が相対的に均
質に大径粉末内へ拡散したことを示す。これよりガス噴
霧粉末を用いた場合、水噴霧粉末を用いた場合に比較し
て、同一組成・同一条件下で圧縮成形すると、圧縮性お
よび成形性が良好であることが判明した。
(hereinafter referred to as margin) As shown in Table 1, Example 1 has a higher green density (and a relatively smaller Rattler value) than Comparative Example 1. Compared to Comparative Example 1, the sintered density was higher (and the structure was more uniform, indicating that the attached fine powder was relatively homogeneously diffused into the large diameter powder. From this, when gas atomized powder was used, It was found that compression molding with the same composition and under the same conditions had better compressibility and moldability than when water spray powder was used.

夫施■ユ 組成が、C:0.013%、Si:0.77%、Mn:
0.13%、P:0.004%、S:0゜001%、N
i :13.42%、Cr:17.12%、Mo:1.
94%からなるステンレス鋼(SUS316L)の溶湯
からガス噴霧法によりガス噴霧粉末を得た。
The composition of Fuse is C: 0.013%, Si: 0.77%, Mn:
0.13%, P: 0.004%, S: 0°001%, N
i: 13.42%, Cr: 17.12%, Mo: 1.
A gas atomized powder was obtained from a molten metal of 94% stainless steel (SUS316L) by a gas atomization method.

このガス噴霧粉末を一60メツシュに分級した後有機結
合剤としてメチルセルロース、液状潤滑剤としてエチレ
ングリコールを加え、その後−400メツシユに分級し
たFe−4Bの微粉末をガス噴霧粉末100重量部に対
し8重量部添加した。
After classifying this gas atomized powder into 160 meshes, methylcellulose as an organic binder and ethylene glycol as a liquid lubricant were added, and then fine powder of Fe-4B, which was classified into -400 meshes, was added to 100 parts by weight of the gas atomized powder. Part by weight was added.

この混合粉末を実施例2とし、金型にて圧カフt/ c
 m ”で圧縮成形した。
This mixed powder was used as Example 2, and was molded into a pressure cuff t/c.
Compression molding was performed at

また前記ガス噴霧粉末に代えてこれと同一組成をもつ水
噴霧粉末を用いた比較例2の混合粉末を作製した。この
混合粉末を一100メツシュに分級した後固体潤滑剤を
混合する通常工程により圧縮成形した。この結果を第2
表に示す。
In addition, a mixed powder of Comparative Example 2 was prepared using a water spray powder having the same composition as the gas spray powder in place of the gas spray powder. This mixed powder was classified into 1100 meshes and compression molded using the usual process of mixing a solid lubricant. This result is the second
Shown in the table.

第2表に示されるように、実施例2の成形体は、比較例
2に比べ、圧粉密度が高く、ラトラー値が相対的に小さ
いことが解る。このことから有機結合剤と液状潤滑剤を
用いることによりガス噴霧粉末の成形性は向上し、圧縮
性も向上していることが解る。
As shown in Table 2, it can be seen that the compact of Example 2 has a higher green density and a relatively smaller Rattler value than Comparative Example 2. This shows that the use of an organic binder and a liquid lubricant improves the moldability and compressibility of the gas atomized powder.

見立■1 組成が、C:0.012wt%、Si:0.80%、M
n:0.02%、P:0.05%、S:0.01%、N
i :47.00%、残部Feからなるパーマロイ(F
e−Ni系合金)の溶湯からガス噴霧法によりガス噴霧
粉末を得た。
Mitate ■1 Composition is C: 0.012wt%, Si: 0.80%, M
n: 0.02%, P: 0.05%, S: 0.01%, N
i: Permalloy (F) consisting of 47.00%, balance Fe
A gas atomized powder was obtained from a molten metal of e-Ni alloy) by a gas atomization method.

このガス噴霧粉末を一60メツシュに分級した後、有機
結合剤としてエチルセルロース、液状潤滑剤としてテル
ピネオールをガス噴霧粉末100重量部に対しそれぞれ
0゜5重量部混合し、これにパーマロイの微粉末を10
重量部添加し、混合した。得られた粉末を実施例3とし
た。
After classifying this gas atomized powder into 160 meshes, 0.5 parts by weight of ethyl cellulose as an organic binder and terpineol as a liquid lubricant were mixed with 100 parts by weight of the gas atomized powder, and 10% of permalloy fine powder was added to this.
Parts by weight were added and mixed. The obtained powder was designated as Example 3.

実施例3の粉末について日本工業規格(J I S−2
2502)に基づく流動性試験を行なった。
Regarding the powder of Example 3, Japanese Industrial Standards (JIS-2)
2502) was conducted.

その結果は第3表に示す通りである。The results are shown in Table 3.

なお、流動度の(φ5)の欄に示す値はJIS−225
02の試験法においてロート径をφ5に変えて行なった
結果を示す。
In addition, the value shown in the (φ5) column of flow rate is JIS-225
The results obtained by changing the funnel diameter to φ5 in the test method No. 02 are shown below.

(以下、余白、) 第3表において、比較例3は、大径のガス噴霧粉末に微
粉末を加えたもので、有機結合剤および液状潤滑剤は加
えなかったものの流動度を示す。
(Hereinafter referred to as margins) In Table 3, Comparative Example 3 shows the fluidity of a case in which fine powder was added to a large-diameter gas atomized powder, but no organic binder or liquid lubricant was added.

比較例4は、ガス噴霧粉末に代えて水噴霧粉末を一10
0メツシュに分級した後、これにステアリン酸亜鉛を1
重量部加えた混合粉末についての流動度を示す。
Comparative Example 4 uses water atomized powder instead of gas atomized powder.
After classifying into 0 mesh, add 1 part of zinc stearate to it.
The fluidity of the mixed powder added in parts by weight is shown.

実施例3の粉末は、大径のガス噴霧粉末の表面に微粉末
が付着するのが観察され、比較例3では微粉末の付着が
観察されなかった。また実施例3は、流動性が比較例3
および比較例4に比べて良好であった。ここに実施例3
において、大径のガス噴霧粉末90重量部に対し微粉末
を10重量部としたのは、第1図に示すように、大径の
ガス噴霧粉末90重量部に対し微粉末10重量部にて圧
粉密度が約7.50g/cm”の最大値をとり、微粉末
の割合が増えていくと次第に圧粉密度が低下するためで
ある。
In the powder of Example 3, fine powder was observed to adhere to the surface of the large diameter gas atomized powder, whereas in Comparative Example 3, no fine powder was observed to adhere. Furthermore, in Example 3, the fluidity was that of Comparative Example 3.
And it was better than Comparative Example 4. Example 3 here
As shown in Figure 1, 10 parts by weight of fine powder was used for 90 parts by weight of large-diameter gas atomized powder. This is because the green powder density takes a maximum value of about 7.50 g/cm'', and as the proportion of fine powder increases, the green powder density gradually decreases.

ここに大径のガス噴霧粉と微粉末とがそれぞれ50重量
部の割合にてほぼ水噴霧粉末相当の圧粉密度となる。
Here, the large-diameter gas atomized powder and the fine powder are each used at a ratio of 50 parts by weight, resulting in a compacted powder density approximately equivalent to that of the water atomized powder.

(発明の効果) 以上説明したように、本発明のガス噴霧金属粉末を用い
た圧縮成形用粉末によれば、大径のガス噴霧金属粉末に
対し、所定量の有機結合剤と液状潤滑剤を加え、大径粉
末表面に微粉末を付着させたことによって、流動性、成
形性および圧縮性の良好な金属粉末が得られるという効
果がある。したがって、本発明の圧縮成形用金属粉末を
圧縮成形し、得られた成形体を焼結することによって、
ガス噴霧粉末の特性を活かして、機械的強度等の優れた
焼結体が得られるという効果がある。
(Effects of the Invention) As explained above, according to the compression molding powder using the gas atomized metal powder of the present invention, a predetermined amount of an organic binder and a liquid lubricant are added to the large diameter gas atomized metal powder. In addition, by adhering the fine powder to the surface of the large-diameter powder, there is an effect that a metal powder with good fluidity, moldability, and compressibility can be obtained. Therefore, by compression molding the metal powder for compression molding of the present invention and sintering the obtained molded body,
By taking advantage of the characteristics of the gas atomized powder, a sintered body with excellent mechanical strength etc. can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の実施例によるガス噴霧粉末における
大径粉末と微粉末の添加比と圧粉密度の関係を示す特性
図である。
FIG. 1 is a characteristic diagram showing the relationship between the addition ratio of large diameter powder and fine powder and green powder density in gas atomized powder according to an example of the present invention.

Claims (2)

【特許請求の範囲】[Claims] (1)粒径が相対的に大きな大径粉末からなるガス噴霧
金属粉末100重量部と、該大径粉末の平均粒径の2分
の1以下の平均粒径をもつ50重量部以下の微粉末と、
有機結合剤および液状潤滑剤の合量3重量部以下とから
なる圧縮成形用粉末であって、 前記微粉末が前記大径粉末の表面に付着していることを
特徴とするガス噴霧金属粉末を用いた圧縮成形用粉末。
(1) 100 parts by weight of gas atomized metal powder consisting of large-diameter powder with a relatively large particle size, and 50 parts by weight or less of fine particles having an average particle size of one-half or less of the average particle size of the large-diameter powder. powder and
A compression molding powder comprising an organic binder and a liquid lubricant in a total amount of 3 parts by weight or less, wherein the fine powder is attached to the surface of the large diameter powder. Powder for compression molding used.
(2)粒径が相対的に大きな大径粉末からなるガス噴霧
金属粉末100重量部と、該大径粉末の平均粒径の2分
の1以下の平均粒径をもつ50重量部以下の微粉末と、
有機結合剤および液状潤滑剤の合量3重量部以下とから
なる圧縮成形用粉末を用い、前記大径粉末に前記有機結
合剤および前記液状潤滑剤を添加した後、前記微粉末を
添加することを特徴とするガス噴霧金属粉末を用いた圧
縮成形用粉末の製造法。
(2) 100 parts by weight of gas atomized metal powder consisting of large-diameter powder with a relatively large particle size, and 50 parts by weight or less of fine particles having an average particle size of one-half or less of the average particle size of the large-diameter powder; powder and
Using a compression molding powder consisting of a total amount of an organic binder and a liquid lubricant of 3 parts by weight or less, adding the organic binder and the liquid lubricant to the large-diameter powder, and then adding the fine powder. A method for producing powder for compression molding using gas atomized metal powder, characterized by:
JP2004721A 1990-01-12 1990-01-12 Powder for compact using gas atomized metal powder Pending JPH03211202A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004721A JPH03211202A (en) 1990-01-12 1990-01-12 Powder for compact using gas atomized metal powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004721A JPH03211202A (en) 1990-01-12 1990-01-12 Powder for compact using gas atomized metal powder

Publications (1)

Publication Number Publication Date
JPH03211202A true JPH03211202A (en) 1991-09-17

Family

ID=11591754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004721A Pending JPH03211202A (en) 1990-01-12 1990-01-12 Powder for compact using gas atomized metal powder

Country Status (1)

Country Link
JP (1) JPH03211202A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105648300A (en) * 2014-11-12 2016-06-08 东睦新材料集团股份有限公司 Additive used for improving stainless steel sintered density and method for manufacturing relevant stainless steel sintered component with additive

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105648300A (en) * 2014-11-12 2016-06-08 东睦新材料集团股份有限公司 Additive used for improving stainless steel sintered density and method for manufacturing relevant stainless steel sintered component with additive

Similar Documents

Publication Publication Date Title
JP2010265454A (en) Lubricant combination and process for preparing the same
JP2010168667A (en) Iron-based powder composition containing combination of binder-lubricant, and production of the powder composition
KR101362294B1 (en) Metallurgical powder composition
US3652261A (en) Iron powder infiltrant
TW201026843A (en) Lubricant for powder metallurgical compositions
JPH01219101A (en) Iron powder for powder metallurgy and production thereof
KR100852304B1 (en) Method for making compacted products and iron-based powder comprising lubricant
JP2008248306A (en) Powder for powder compaction, powder-compacted magnetic core, and method for producing the same
JPH0586403A (en) Powder mixture and binder for powder metallurgy
JP6741153B2 (en) Partially diffused alloy steel powder
JP2001098301A (en) Granulated powder for high density sintered body and sintered body using same
JPH03211202A (en) Powder for compact using gas atomized metal powder
JP3326072B2 (en) Iron-based mixture for powder metallurgy and method for producing the same
TW200417433A (en) Method of preparing iron-based components
JP2002047502A (en) Cr-CONTAINING Fe-BASED ALLOY POWDER AND Cr-CONTAINING Fe-BASED ALLOY SINTERED BODY USING THE SAME
JP2001294905A (en) Method for producing micromodule gear
JPH03130302A (en) Powder for compressed compacting using gas atomized metal powder
JPH07228901A (en) Method for adjusting apparent density of mixed powder for powder metallury and mixed powder for powder metallurgy
JP2002289418A (en) High-density sintered body granulating powder and sintered body using the same
JPS6227545A (en) Manufacture of sintered soft-magnetic parts
JP2639812B2 (en) Magnetic alloy powder for sintering
KR20230059880A (en) Iron-based mixed powder and method for manufacturing the same
JPH04285141A (en) Manufacture of ferrous sintered body
JPS6123701A (en) Raw material powder of powder metallurgy for producing ferrous parts
JPH07197101A (en) Iron-phosphorus steel powder for powder metallurgy and production of sintered parts