JPH0321087B2 - - Google Patents

Info

Publication number
JPH0321087B2
JPH0321087B2 JP60062524A JP6252485A JPH0321087B2 JP H0321087 B2 JPH0321087 B2 JP H0321087B2 JP 60062524 A JP60062524 A JP 60062524A JP 6252485 A JP6252485 A JP 6252485A JP H0321087 B2 JPH0321087 B2 JP H0321087B2
Authority
JP
Japan
Prior art keywords
thin film
light
gas
discharge
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60062524A
Other languages
Japanese (ja)
Other versions
JPS61220415A (en
Inventor
Kazufumi Ogawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6252485A priority Critical patent/JPS61220415A/en
Publication of JPS61220415A publication Critical patent/JPS61220415A/en
Publication of JPH0321087B2 publication Critical patent/JPH0321087B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、薄膜形成装置およびそれを用いた薄
膜形成方法に関するものである。さらに詳しく
は、放電と光照射を同時に利用した化学気相蒸着
法(CVDという)または物理気相蒸着法
(PVD)により薄膜を形成する技術に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a thin film forming apparatus and a thin film forming method using the same. More specifically, the present invention relates to a technique for forming a thin film by chemical vapor deposition (CVD) or physical vapor deposition (PVD), which utilizes discharge and light irradiation simultaneously.

従来技術 従来より光あるいは放電を利用したCVD技術
やPVD技術は種々知られている。しかしながら、
従来の光を用いたCVD装置やPVD装置の欠点
は、減圧容器内に光を導入する際に用いる光導入
窓が、薄膜形成時に汚されて光透過率が劣化する
点にある。この欠点を解決するために減圧室内に
ミラーを設置し、直接光導入窓に薄膜材料が付着
するのを防止する方法等が用いられているが、こ
の場合ミラーの表面が薄膜材料で汚染され反射率
が悪くなるため、根本的な解決策とはなつていな
い。
Prior Art Various CVD and PVD technologies using light or discharge have been known. however,
A drawback of conventional CVD and PVD devices that use light is that the light introduction window used to introduce light into the vacuum container becomes dirty during thin film formation, resulting in a decrease in light transmittance. To solve this problem, methods are used to prevent thin film materials from adhering to the direct light introduction window by installing a mirror inside the decompression chamber, but in this case, the surface of the mirror is contaminated with the thin film material and reflects light. This is not a fundamental solution because the rate is poor.

発明が解決しようとする問題点 本発明は、光を用いたCVD装置またはPVD装
置において、従来より薄膜形成時に生じていた光
導入窓の汚染を防止することにより、装置連続使
用時間の向上ないし装置の可動率の向上を図るも
のである。
Problems to be Solved by the Invention The present invention improves the continuous operating time of the device by preventing contamination of the light introduction window that conventionally occurs during thin film formation in CVD or PVD devices that use light. The aim is to improve the operating rate of

問題点を解決するための手段 以上述べてきた従来装置の欠点に鑑み、本発明
は、光導入窓近傍に格子状電極あるいは対向電極
よりなる放電用電極を設置し、光導入窓近傍にや
つてきた薄膜材料微粒子をグロー放電によりイオ
ン化させ、さらに電界によりトラツプすることに
より、光導入窓の汚染を防止する方法を提供する
ものである。
Means for Solving the Problems In view of the drawbacks of the conventional devices described above, the present invention provides a discharge electrode consisting of a grid-like electrode or a counter electrode near the light introduction window. The present invention provides a method for preventing contamination of a light introduction window by ionizing fine particles of thin film material by glow discharge and trapping them by an electric field.

作用 一般にPVD法あるいは、CVD法を用いて薄膜
形成する場合、減圧容器内に反応ガスを導入した
り、蒸発微粒子を生成させ、これらを基板表面で
反応させたり堆積させたりする方法が用いられて
いるが、これら反応ガスや蒸発微粒子は、当然光
導入窓にも接近する。そこで、あらかじめ光導入
窓近傍に電圧を印加したグロー放電用の電極を設
置しておき、接近してきた反応ガスや微粒子をグ
ロー放電によりイオン化して、電極にトラツプす
ることにより光導入窓の汚染を防止し、光導入窓
の光路を確保することができる。
Effect Generally, when forming a thin film using the PVD method or CVD method, a method is used in which a reaction gas is introduced into a vacuum container, evaporated fine particles are generated, and these are reacted or deposited on the substrate surface. However, these reactive gases and evaporated fine particles naturally approach the light introduction window. Therefore, by installing a glow discharge electrode to which a voltage is applied near the light introduction window in advance, the approaching reactive gas and fine particles are ionized by glow discharge and trapped in the electrode, thereby preventing contamination of the light introduction window. It is possible to prevent this and ensure the optical path of the light introduction window.

実施例 以下、本発明の一実施例を第1図〜第3図を用
いて説明する。例えば、レーザビーム蒸着を行う
場合、第1図に示すように、少なくとも光導入窓
1、基板保持部2、放電用電極3、ガス導入口
4、排気口5を備えた減圧容器6と、減圧容器6
内のガスを排気する排気装置7と、外部光源8
と、放電用電源9を有する薄膜形成装置におい
て、あらかじめ減圧容器内のガスを排気した後、
光ビーム10(例えば、CO2レーザ、YAGレー
ザ、ルビーレーザ、その他赤外ランプ等の光をレ
ンズ11を用いて集光したもの)を用いて、薄膜
材料のターゲツト12を照射蒸発させて基板13
上に薄膜を形成する際、あらかじめ、光導入窓1
近傍の放電電極3に直流または交流(高周波電流
を含む)電圧を印加しておき、接近してきた薄膜
材料の蒸発微粒子を放電によりイオン化し、さら
に放電電極3の電位をプラスにしておくことによ
り光導入窓に接近してくるイオンを反発し、マイ
ナス電位に帯電させた部分(例えば、基板)にト
ラツプさせることにより、光導入窓1の蒸発物に
よる汚染を大幅に低減できる。16は、ミラーで
ある。
Embodiment An embodiment of the present invention will be described below with reference to FIGS. 1 to 3. For example, when performing laser beam evaporation, as shown in FIG. container 6
an exhaust device 7 for exhausting the gas inside, and an external light source 8
In the thin film forming apparatus having the discharge power source 9, after exhausting the gas in the reduced pressure container in advance,
A target 12 of thin film material is irradiated and evaporated using a light beam 10 (for example, light from a CO 2 laser, a YAG laser, a ruby laser, or another infrared lamp, etc., condensed using a lens 11) to form a substrate 13.
When forming a thin film on the top, in advance, the light introduction window 1 is
By applying a direct current or alternating current (including high frequency current) voltage to the nearby discharge electrode 3, the approaching evaporated fine particles of the thin film material are ionized by discharge, and by keeping the potential of the discharge electrode 3 positive, light is emitted. By repelling ions approaching the introduction window and trapping them in a negatively charged part (for example, the substrate), contamination of the light introduction window 1 by evaporated matter can be significantly reduced. 16 is a mirror.

なお、このとき、Ar,He等の不活性ガスを少
量導入しておくと、放電を安定化しやすい。また
反応性ガスを導入しながら蒸着を行えば、プラズ
マ反応を伴つた蒸着膜が得られることは言うまで
もない。また、第1図の場合には、光路上に電極
を設置しているので、光ビームを通過させるため
には電極をグリツド状にしておく必要があるが、
第2図のタイプでは、放電電極14,15は対向
しており、光路を邪魔することがないのでグリツ
ド状である必要はない。
Note that at this time, if a small amount of inert gas such as Ar or He is introduced, the discharge can be easily stabilized. It goes without saying that if vapor deposition is performed while introducing a reactive gas, a vapor deposited film accompanied by a plasma reaction can be obtained. In addition, in the case of Figure 1, since the electrodes are installed on the optical path, the electrodes must be shaped like a grid in order for the light beam to pass through.
In the type shown in FIG. 2, the discharge electrodes 14 and 15 face each other and do not obstruct the optical path, so they do not need to be grid-shaped.

また、上述の原理は、レーザビーム蒸着時にの
み利用できるものではない。例えば、第3図に示
すような光CVDにおいても本発明の効果は十分
発揮される。
Furthermore, the above-mentioned principle is not only applicable during laser beam deposition. For example, the effects of the present invention are fully exhibited even in optical CVD as shown in FIG.

すなわち、あらかじめ減圧容器21内のガスを
排気した後、反応性ガスをガス導入口22より導
入しながら、さらに放電電極23に電圧を印加し
て放電させながら、光導入窓24より集光した光
25を導入し、光照射されている基板26表面で
気相化学反応を生じせしめて薄膜堆積を行うこと
も可能である。
That is, after evacuating the gas in the depressurized container 21 in advance, while introducing the reactive gas through the gas inlet 22 and applying a voltage to the discharge electrode 23 to cause discharge, the light collected through the light introduction window 24 is It is also possible to deposit a thin film by introducing 25 and causing a gas phase chemical reaction on the surface of the substrate 26 that is irradiated with light.

なお、この場合も、放電用電極23の電位をプ
ラス電位にしておくことにより、イオン化された
ガスが光導入窓24に接近するのを防止すること
ができる。さらに、基板保持部27または基板の
電位を減圧容器内で最も低くしておくことによ
り、イオン化された薄膜材料を効率よく基板表面
に集めることが可能である。第3図中、28は排
気口、29は集光レンズ、30は光源、31は放
電用電源を示す。
In this case as well, the ionized gas can be prevented from approaching the light introduction window 24 by keeping the potential of the discharge electrode 23 at a positive potential. Further, by keeping the potential of the substrate holder 27 or the substrate at the lowest level in the vacuum container, it is possible to efficiently collect the ionized thin film material on the substrate surface. In FIG. 3, 28 is an exhaust port, 29 is a condensing lens, 30 is a light source, and 31 is a discharge power source.

発明の効果 以上のように、本発明の薄膜形成装置およびそ
れを用いた薄膜形成方法を利用することにより、
光ビーム蒸着あるいは光CVD等における薄膜形
成時、光導入窓の汚染を大幅に低減できるので、
装置の連続使用時間の向上ないし装置の可動率の
向上が計れるとともに、放電電極の工夫により装
置構造の複雑化をもたらすこともなく良好な薄膜
形成が可能となり、光を用いて薄膜を形成する産
業においては効果大なるものである。
Effects of the Invention As described above, by using the thin film forming apparatus of the present invention and the thin film forming method using the same,
When forming thin films using light beam evaporation or optical CVD, contamination of the light introduction window can be significantly reduced.
In addition to improving the continuous operating time of the device or improving the operating rate of the device, it is also possible to form a good thin film without complicating the device structure by devising a discharge electrode. It is very effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は本発明の実施例における薄膜
形成装置およびそれを用いた薄膜形成方法を説明
するための図であり、第1図はグリツド電極を用
いた例、第2図は対向電極を用いた例を示してお
り、第3図は本発明のさらに他の実施例を説明す
るための図である。 1,24…光導入窓、2,27…基板保持部、
3,14,15,23…放電用電極、5,28…
排気口、6,21…減圧容器、7…排気装置、
8,30…光源、9,31…放電用電源。
1 and 2 are diagrams for explaining a thin film forming apparatus and a thin film forming method using the same in an embodiment of the present invention. FIG. 1 is an example using grid electrodes, and FIG. An example using electrodes is shown, and FIG. 3 is a diagram for explaining still another embodiment of the present invention. 1, 24... Light introduction window, 2, 27... Substrate holding part,
3, 14, 15, 23...discharge electrode, 5, 28...
Exhaust port, 6, 21...reduced pressure container, 7...exhaust device,
8, 30...Light source, 9, 31...Discharge power source.

Claims (1)

【特許請求の範囲】 1 光導入窓、基板保持部、放電用電極、ガス導
入口、排気口を備えた減圧容器と、この減圧容器
内のガスを排気する排気装置と、外部光源と、放
電用電源を有するとともに、前記放電用電極の一
部が前記光導入窓の近傍に光導入窓に対して平行
に設置された格子状電極よりなり、前記格子状電
極の電位を前記基板保持部の電位より高くした薄
膜形成装置を用い、あらかじめ前記減圧容器内の
ガスを排気した後、前記放電電極にて放電を行い
ながら前記光導入窓より光を導入して薄膜原料を
照射加熱蒸発させるか前記光による気相化学反応
を生じさせて前記基板保持部に設置した基板の表
面に薄膜を形成させ、前記格子状電極にて前記薄
膜形成イオンを反発させることを特徴とする薄膜
製造方法。 2 光導入窓、基板保持部、放電用電極、ガス導
入口、排気口を備えた減圧容器と、この減圧容器
内のガスを排気する排気装置と、外部光源と、放
電用電源を有するとともに、前記放電用電極が前
記光導入窓の近傍に設置された対向電極よりなる
薄膜形成装置を用い、あらかじめ前記減圧容器内
のガスを排気した後、前記電極にて放電を行いな
がら前記光導入窓より光を導入して薄膜原料を照
射加熱蒸発させるか前記光による気相化学反応を
生じさせて前記基板保持部に設置した基板の表面
に薄膜を形成させ、前記放電用電極にて前記薄膜
形成イオンを反発させることを特徴とする薄膜製
造方法。
[Claims] 1. A reduced pressure container equipped with a light introduction window, a substrate holder, a discharge electrode, a gas inlet, and an exhaust port, an exhaust device for exhausting gas in this reduced pressure container, an external light source, and a discharge A part of the discharge electrode is a grid-shaped electrode installed near the light-introducing window and parallel to the light-introducing window, and the potential of the grid-shaped electrode is adjusted to the potential of the substrate holding part. Using a thin film forming apparatus with a potential higher than that, the gas in the reduced pressure container is evacuated in advance, and light is introduced through the light introduction window while discharging at the discharge electrode to irradiate and heat the thin film raw material to evaporate it, or A method for manufacturing a thin film, characterized in that a thin film is formed on the surface of a substrate placed in the substrate holder by causing a gas phase chemical reaction with light, and the ions forming the thin film are repelled by the grid electrode. 2. It has a reduced pressure container equipped with a light introduction window, a substrate holder, a discharge electrode, a gas inlet, and an exhaust port, an exhaust device for exhausting the gas in the reduced pressure container, an external light source, and a power source for discharge, Using a thin film forming apparatus in which the discharge electrode is a counter electrode installed near the light introduction window, after previously exhausting the gas in the reduced pressure container, the discharge electrode is used to discharge gas from the light introduction window while discharging at the electrode. Light is introduced to irradiate and heat the thin film raw material to evaporate it, or the light causes a gas phase chemical reaction to form a thin film on the surface of the substrate placed in the substrate holder, and the thin film forming ions are removed by the discharge electrode. A thin film manufacturing method characterized by repelling.
JP6252485A 1985-03-27 1985-03-27 Apparatus for forming thin film and manufacture of thin film using same Granted JPS61220415A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6252485A JPS61220415A (en) 1985-03-27 1985-03-27 Apparatus for forming thin film and manufacture of thin film using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6252485A JPS61220415A (en) 1985-03-27 1985-03-27 Apparatus for forming thin film and manufacture of thin film using same

Publications (2)

Publication Number Publication Date
JPS61220415A JPS61220415A (en) 1986-09-30
JPH0321087B2 true JPH0321087B2 (en) 1991-03-20

Family

ID=13202657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6252485A Granted JPS61220415A (en) 1985-03-27 1985-03-27 Apparatus for forming thin film and manufacture of thin film using same

Country Status (1)

Country Link
JP (1) JPS61220415A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02156075A (en) * 1988-12-09 1990-06-15 Mitsubishi Metal Corp Production of thin superconductor film

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57160119A (en) * 1981-03-28 1982-10-02 Mitsugi Hanabusa Manufacture of amorphous silicon film by reactive laser sputtering
JPS58165330A (en) * 1982-03-25 1983-09-30 Mitsubishi Electric Corp Manufacture of semiconductor device
JPS6122618A (en) * 1984-07-10 1986-01-31 Mitsubishi Electric Corp Vapor-phase epitaxial crystal growing device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57160119A (en) * 1981-03-28 1982-10-02 Mitsugi Hanabusa Manufacture of amorphous silicon film by reactive laser sputtering
JPS58165330A (en) * 1982-03-25 1983-09-30 Mitsubishi Electric Corp Manufacture of semiconductor device
JPS6122618A (en) * 1984-07-10 1986-01-31 Mitsubishi Electric Corp Vapor-phase epitaxial crystal growing device

Also Published As

Publication number Publication date
JPS61220415A (en) 1986-09-30

Similar Documents

Publication Publication Date Title
JPS6254078A (en) Apparatus for depositing membrane to substrate by cathodic sputtering treatment
JPH0321087B2 (en)
JPH0682643B2 (en) Surface treatment method
JP3394130B2 (en) Method for manufacturing organic electroluminescence element and apparatus for manufacturing organic electroluminescence element
JPH11106911A (en) Thin film forming device and formation of compound thin film using it
JPH07122136B2 (en) Ion beam sputtering device and operating method
JPS63286570A (en) Thin film formation device
JPH09195044A (en) Formation of thin film
JP3191513B2 (en) Method for selective deposition of fine particles
JPH05275350A (en) Semiconductor manufacturing equipment
JPH05279844A (en) Laser abrasion device
JPS61210190A (en) Thin film forming device
JPS62270766A (en) Vapor deposition device and method using said device
JPH10242072A (en) Method and apparatus for preventing laser entrance window from contamination
JP3513730B2 (en) Laser annealing equipment
JP2576154B2 (en) How to clean the sample stage cover
JPH04314864A (en) Method for plasma-cleaning substrate surface
JP3525134B2 (en) Cluster ion beam mass separation method
JPH03219541A (en) Plasma processing device
JPS6289861A (en) Method and apparatus for bombardment vapor deposition of thin film
JPS5842770A (en) Device for blocking vapor flow from evaporating source
JPH10135149A (en) Laser annealing apparatus
JPH04202656A (en) Thin film forming apparatus
JPH02107760A (en) Device for forming film in vacuum
JPH10272353A (en) Method for purification of metal or nonmetallic substance and apparatus therefor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees